Il. Matrix Multiplication

Thomas Sauerwald

Easter 2016

i UNIVERSITY OF
¥ CAMBRIDGE

Outline

Introduction

SRS

.-_'Er,, Il. Matrix Multiplication Introduction

Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
ci=> ax-by Vij=12...n
k=1

‘;‘E.h Il. Matrix Multiplication Introduction

Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
ci=> ax-by Vij=12...n
k=1

SQUARE-MATRIX-MULTIPLY (A4, B)

1 n = A.rows
2 let C be anew n X n matrix
3 fori =1ton

4 for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = ¢jj +aix by
8 return C

‘.‘En Il. Matrix Multiplication Introduction

Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
cj=> ax-by Vij=12...n
k=1

SQUARE-MATRIX-MULTIPLY (A4, B)

1 n = A.rows

2 let C be anew n X n matrix

3 fori =1ton

4 for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = ¢jj +aix by
8 return C

SQUARE-MATRIX-MULTIPLY(A, B) takes time ©(n?).

Il. Matrix Multiplication Introduction

Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
ci=> ax-by Vij=12...n
k=1

\

SQUARE-MATRIX-MULTIPLY (4, B) | This definition suggests that n? - n = n®

1 n= A rows arithmetic operations are necessary.

2 let C be anew n X n matrix
3 fori =1ton

4 for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = ¢jj +aix by
8 return C

SQUARE-MATRIX-MULTIPLY(A, B) takes time ©(n?).

‘.‘En Il. Matrix Multiplication Introduction

Outline

Serial Matrix Multiplication

s
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

o
Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

o
Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A1 Ap2 Bi1 Bz Ci1 Ci2
<A21 Azz) ’ (Bm 522> » C (Cm sz)

o
Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A A Bi1 By Ci1
<A21 Azz) ’ (Bm 522> ’ (Cm

Hence the equation C = A - B becomes:

C12)
Cn)’

o
Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A1 Ap2 Bi1 Bz Ci1 Ci2
<A21 Azz) ’ (Bm 522> ’ (Cm Ca2
Hence the equation C = A - B becomes:

Ci1 Ci2\ _ (A Aw) (B B
Co1 C2 Az A Bxy Bao

4, II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

Al A Bi1 Bz Ci
A - B =) C =
<A21 Azz) ’ (Bm Bzz) (Cm
Hence the equation C = A - B becomes:
Ci1 Ciz _ A Az) Bi1 Biz2
Co1 Ca2 A2t Az Bt Bz
This corresponds to the four equations:
Ci1 = A1 - Byt + A2 - By
Ci2 = A1 - Biz + A2 - Boo

Cot = Azt - Bi1 + Az - Bay
Co2 = At - Bia + Az - Boo

C1 2
CZZ

).

kel
4, II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A1 Ap2 Bi1 Bz Ci1 Ci2
<A21 Azz) ’ (Bm Bzz) ’ (Cm Ca2
Hence the equation C = A - B becomes:
Ci1 Ciz _ A Az . Bi1 Biz2
Cxr Co Ay Az Boy Bae
This corresponds to the four equations:

Cin = A Bii + Az Bas Each equation specifies
Ciz = Ai1 - Bz + Az B2 two multiplications of
Co1 = Aot - Bi1 + A - By] N/2%xn/2 matrices and the
Coo = Aot - Bia + Asp - By | 2ddition of their products.

4, II. Matrix Multiplication Serial Matrix Multiplication 5

Divide & Conquer: First Approach (Pseudocode)

Ci1 = A1 - Bi1 + Asz - By
Ci2 = A1 - Bia + A2 - B
Co1 = Azt - Bi1 + Az - Boy
Ci1 = A2t - Biz + Az2 - Boz

Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n= A.rows
let C be a new n X n matrix
ifn==1
¢ = an-bn
else partition 4, B, and C as in equations (4.9)
Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)
7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

NN B W N

Ci1 = A1 - Bi1 + Asz - By
Ci2 = A1 - Bia + A2 - B
Co1 = Azt - Bi1 + Az - Boy
Ci1 = A2t - Biz + Az2 - Boz

el - el
E:',,' II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

Line 5: Handle submatrices implicitly through

2 let C be anew n x n matrix . i . .
3 ifn == index calculations instead of creating them.
4 ¢ = an-bn
5 else partition A, B, and C as in equations (4.9) Z
6 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)
7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Ci1 = A1 - Bi1 + Asz - By
Ci2 = A1 - Bia + A2 - B
Cot = Azt - Bi1 + Az - By
Ci1 = A2t - Biz + Az2 - Boz

el - el
Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n= A.rows
let C be a new n X n matrix
ifn==1
¢ = an-bn
else partition 4, B, and C as in equations (4.9)
Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5,, By;)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

NN B W N

Let T(n) be the runtime of this procedure.

Sl
E:',,' II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n= A.rows
let C be a new n X n matrix
ifn==1
¢ = an-bn
else partition 4, B, and C as in equations (4.9)
Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)
7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5,, By;)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

NN B W N

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T(n) =
(n) ifn>1.

el el
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==

4 ¢ = an-bn

5 else partition A, B, and C as in equations (4.9)

6 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)

7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)

8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T(n) =
(n) ifn>1.

8 Multiplications

el el
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==

4 ¢ = an-bn

5 else partition A, B, and C as in equations (4.9)

6 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)

7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)

8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,
8- T(n/2) itn>1.

8 Multiplications

T(n) =

el el
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1

[NV I SRS I S)

10

n = A.rows

let C be a new n X n matrix

ifn==

i =an-bu

else partition 4, B, and C as in equations (4.9)
Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)
C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)
Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)

return C

Let T(n) be the runtime of this procedure. Then:

i
&

/1 N
[8 Multiplications] (4 Additions and Partitioningj

T(n) =

o(1) ifn=1,
8- T(n/2) itn>1.

Il. Matrix Multiplication

Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1

[NV I SRS I S)

10

n = A.rows

let C be a new n X n matrix

ifn==

i =an-bu

else partition 4, B, and C as in equations (4.9)
Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)
C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)
Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)

return C

Let T(n) be the runtime of this procedure. Then:

i
&

/1 N
[8 Multiplications] (4 Additions and Partitioningj

T(n) =

o(1) ifn=1,
8. T(n/2)+O©(r?) ifn>1.

Il. Matrix Multiplication

Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==

4 ¢ = an-bn

5 else partition A, B, and C as in equations (4.9)

6 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)

7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)

8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5,, By;)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =18 . T(n/2) + 0(r2) ifn>1.

Solution: T(n) =

el el
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==

4 ¢ = an-bn

5 else partition A, B, and C as in equations (4.9)

6 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)

7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)

8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5,, By;)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =18 . T(n/2) + 0(r2) ifn>1.

Solution: T(n) = e(glogz ")

el el
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix
3 ifn==
4 ¢ = an-bn
5 else partition A, B, and C as in equations (4.9)
6 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)
7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =18 . T(n/2) + 0(r2) ifn>1.

Solution: T(n) = ©(8°%") = ©(n®) {No improvement over the naive algorithm!]

el el
Il. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==

4 ¢ = an-bn

5 else partition A, B, and C as in equations (4.9)

6 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)

7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)

8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =18 . T(n/2) + 0(r2) ifn>1.

Solution: T(n) = ©(8%%2") = ©(n®)

el el
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix
3 ifn==
4 ¢ = an-bn
5 else partition A, B, and C as in equations (4.9)
6 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)
7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =98 T(n/2) + 0(r?) ifn>1.
\

Solution: T(n) = ©(8°%") = ©(n®) [Goal: Reduce the number of multiplicationsj

el el
Il. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: Second Approach

5

Idea: Make the recursion tree less bushy by performing only 7 recursive
multiplications of n/2 x n/2 matrices.

Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only 7 recursive
multiplications of n/2 x n/2 matrices.

~——— Strassen’s Algorithm (1969)

1. Partition each of the matrices into four n/2 x n/2 submatrices

2. Create 10 matrices Sy, Sz, ..., S1o. Eachis n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

el el
%‘.’ II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only 7 recursive
multiplications of n/2 x n/2 matrices.

~——— Strassen’s Algorithm (1969) N\
1. Partition each of the matrices into four n/2 x n/2 submatrices

2. Create 10 matrices S1, S, ..., Si9. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

\L N J

[Time for steps 1,2,4: ©(n?), hence T(n) =7 - T(n/2) + ©(n*) = T(n) = @(nlog7)_J

Il. Matrix Multiplication Serial Matrix Multiplication 7

Solving the Recursion

T(n)=7-T(n/2)+c-r?

el el
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 = S+ Bop = (A11 + At2) - B
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 = Sg - S10 = (A11 — A21) - (By1 + Bi2)

Il. Matrix Multiplication Serial Matrix Multiplication

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = A1 - S = Ay1 - (Bi2 — Bo2)
P2 = Sy - Bop = (A1 + A2) - B2
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

el - el
E:',,' II. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = A1 - S = Ay1 - (Bi2 — Bo2)
P2 = Sy - Bop = (A1 + A2) - B2
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:

el el
E:',,' II. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = A1 - S = Ay1 - (Bi2 — Bo2)
P2 = Sy - Bop = (A1 + A2) - B2
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:
Ps + Py — P> + Pg =

el - el
E:',,' II. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 =83 - Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:
Ps + P4 — P + Pg = A11By1 + A11B2a + A2 Bi1 + A2 Boo + A2 Bot — Az By
— A11Bo2 — A12Bo2 + A12B21 + A12Bop — Ao Boy — AxeBoo

Sl
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 =83 - Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:
Ps + Py — Po + Pg = A11By1 + ArBzz + AeeBiT + AeaBas + AeaBat — AeeBiT
— AtBaz — A28 + A12Bo1 + AreBas — ApeBot — ApeBe

Sl
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 =83 - Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:
Ps + Py — Po + Pg = A11By1 + ArBzz + AeeBiT + AeaBas + AeaBat — AeeBiT
— AuBrz — AwaBsa + A12B21 + AweBsz — AeeBai — AeaBrs
= A11B11 + A12B24

Sl
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 =83 - Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 = Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps Py + P
A21Bi1 + A22Bat A21Bi2 + AaBoo P3 + P4 Ps+ Py — P3 — P
N d:
[Other three blocks can be verified similarly.]
Proof:

Ps + Py — Po + Pg = A11By1 + ArBzz + AeeBiT + AeaBas + AeaBat — AeeBiT
— AuBrz — AwaBsa + A12B21 + AweBsz — AeeBai — AeaBrs
= A11B11 + A12B24

Sl
%‘.’ Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 =83 - Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 = Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps Py + P
A21Bi1 + A22Bat A21Bi2 + AaBoo P3 + P4 Ps+ Py — P3 — P
N d:
[Other three blocks can be verified similarly.]
Proof:

Ps + Py — Po + Pg = A11By1 + ArBzz + AeeBiT + AeaBas + AeaBat — AeeBiT
— AuBrz — AwaBsa + A12B21 + AweBsz — AeeBai — AeaBrs
= A11B11 + A12B24 |

Sl
%‘.’ Il. Matrix Multiplication Serial Matrix Multiplication 9

Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

i

u,‘ﬂ:, II. Matrix Multiplication Serial Matrix Multiplication

Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:
= O(r®), naive approach

i

u,‘ﬂ:, II. Matrix Multiplication Serial Matrix Multiplication

Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:
= O(r®), naive approach
= O(n?%%,), Strassen (1969)

Il. Matrix Multiplication Serial Matrix Multiplication

Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:
= O(r®), naive approach
= O(n?%%,), Strassen (1969)
= O(n?7"%), Pan (1978)
= O(n?*%%%), Schénhage (1981)
= O(n**'"), Romani (1982)
= O(n?*%), Coppersmith and Winograd (1982)
= O(n?7), Strassen (1986)
= O(n*%7®), Coppersmith and Winograd (1989)

Il. Matrix Multiplication Serial Matrix Multiplication

Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:
= O(n®), naive approach
= O(n?%%,), Strassen (1969)
= O(n?7"%), Pan (1978)
(n?522), Schénhage (1981)
(n*%'7), Romani (1982)
(n?#%8), Coppersmith and Winograd (1982)
(n?47), Strassen (1986)
(n?-%78), Coppersmith and Winograd (1989)
= O(n?%*), Stothers (2010)
(rP3728842) '/ Williams (2011)
- O(rP372%%) | ¢ Gall (2014)

o}

O 0 OO

©)

Il. Matrix Multiplication Serial Matrix Multiplication

Outline

Reminder: Multithreading

Il. Matrix Multiplication

Reminder: Multithreading

Memory Models

Distributed Memory

= Each processor has its private memory
= Access to memory of another processor via messages

Il. Matrix Multiplication Reminder: Multithreading

Memory Models

Distributed Memory
= Each processor has its private memory

= Access to memory of another processor via messages

[

0 O 0
O———O—0

&

i II. Matrix Multiplication Reminder: Multithreading

Memory Models

Distributed Memory
= Each processor has its private memory

= Access to memory of another processor via messages

[[R [[

/A VN
O—(—)—()—®)

Shared Memory

= Central location of memory
= Each processor has direct access

Il. Matrix Multiplication Reminder: Multithreading

Memory Models

Distributed Memory

= Each processor has its private memory
= Access to memory of another processor via messages

[[R [[

(D— D) —()—(D)—(5)—(z
</ N N N

Shared Memory

= Central location of memory
= Each processor has direct access

Shared Memory

T d b oe

Il. Matrix Multiplication Reminder: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult

il
Il. Matrix Multiplication Reminder: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

il
II. Matrix Multiplication Reminder: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult

= Use concurrency platform which coordinates all resources
ANN
[Scheduling jobs, communication protocols, load balancing etc.]

nfi
%’E 1I. Matrix Multiplication Reminder: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:

il
Il. Matrix Multiplication Reminder: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn

il
Il. Matrix Multiplication Reminder: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn
= (optional) prefix to a procedure call statement
= procedure is executed in a separate thread

* sync

II. Matrix Multiplication Reminder: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn
= (optional) prefix to a procedure call statement
= procedure is executed in a separate thread

* sync
= wait until all spawned threads are done
* parallel

o
%’E 1I. Matrix Multiplication Reminder: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn
= (optional) prefix to a procedure call statement
= procedure is executed in a separate thread
* sync
= wait until all spawned threads are done
* parallel

= (optinal) prefix to the standard loop for
= each iteration is called in its own thread

nfi
%’E 1I. Matrix Multiplication Reminder: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn
= (optional) prefix to a procedure call statement
= procedure is executed in a separate thread
* sync
= wait until all spawned threads are done
* parallel

= (optinal) prefix to the standard loop for
= each iteration is called in its own thread

AN

Only logical parallelism, but not actual!

Need a scheduler to map threads to processors.

i II. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers Recursively (Fig. 27.1)

0: FIB(n)

1 if n<=1 return n
2: else x=FIB(n-1)

3 y=FIB (n-2)

4 return x+y

II. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers Recursively (Fig. 27.1)

0: FIB(n)

1 if n<=1 return n
2: else x=FIB(n-1)

3 y=FIB (n-2)

4 return x+y

il
Il. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers Recursively (Fig. 27.1)

Very inefficient — exponential time!

0: FIB(n)

1 if n<=1 return n
2: else x=FIB(n-1)

3 y=FIB (n-2)

4 return x+y

i II. Matrix Multiplication Reminder: Multithreading 14

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync
return x+y

o s W N KE o

[
%’E 11 Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB (n)

e Without spawn and sync same pseudocode as before
e spawn does not imply parallel execution (depends on scheduler)

sync e

return x+y

o s W N KE o

o
i II. Matrix Multiplication Reminder: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB (n)

Computation Dag G = (V, E)

o s W N KE o

return x+y /

nfi
%’E 11 Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB (n)

Computation Dag G = (V, E)
e V set of threads (instructions/strands without parallel control)

o s W N KE o

return x+y /

[
%’E 11 Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB (n)

Computation Dag G = (V, E)
e V set of threads (instructions/strands without parallel control)
e E set of dependencies

o s W N KE o

return x+y /

[
%’E 11 Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Computation Dag G = (V, E)
e V set of threads (instructions/strands without parallel control)
e E set of dependencies

e

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3: y=P-FIB (n-2)

4 sync

[
%’E 11. Matrix Multiplication Reminder: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

return x+y

]
mm Il. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

il
Il. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

il
Il. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

Il. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

C
P-FIB(4)
P-FIB(3)

o O

P-FIB(2)

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3: y=P-FIB (n-2)

4 sync

II. Matrix Multiplication Reminder: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Q
P-FIB(4)
P-FIB(3)

-0 O

P-FIB(2)

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3: y=P-FIB (n-2)

4 sync

[
%’E 11. Matrix Multiplication Reminder: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

o O

P-FIB(2)

-0 O

P-FIB(2)

P-FIB(1)

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

il
Il. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

il
Il. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

Il. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

Il. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

Il. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

Il. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

Il. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

Il. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

Il. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

..

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

Il. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

v

P-FIB(1)

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

Il. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

v

P-FIB(1)

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

Il. Matrix Multiplication Reminder: Multithreading 15

Computing Fibonacci Numbers in Parallel (DAG Perspective)

. II. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

LSO

Q)

[

e

1. Matrix Multiplication

Reminder: Multithreading

el

Computing Fibonacci Numbers in Parallel (DAG Perspective)

bl

. II. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

. II. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

. II. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

. II. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

w

Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

Q-

N

r
1
|]
1
|]
|]
» 2
1

1. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

> 4

0O :
-> 2 2
N A
\ @/
o 5

—)3\ /;,3

N & /
> 2 2

1. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

-~
g ¥’

1. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

Q-

N

-~
g ¥’

1. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

.—> 4 4
\. _—

-~
g ¥’

1. Matrix Multiplication Reminder: Multithreading 16

Performance Measures

Work

Total time to execute everything on a single proces-
sor.

Il. Matrix Multiplication Reminder: Multithreading

Performance Measures

Work

Total time to execute everything on a single proces-
sor.

5

Il. Matrix Multiplication Reminder: Multithreading

Performance Measures

Work

Total time to execute everything on a single proces-
sor.

5

30

]
I

Il. Matrix Multiplication Reminder: Multithreading

Performance Measures

Work

Total time to execute everything on a single proces-
sor.

Span

Longest time to execute the threads along any path.

o

.;‘n.v, II. Matrix Multiplication Reminder: Multithreading

Performance Measures

Work

Total time to execute everything on a single proces-
sor.

Span

Longest time to execute the threads along any path.

o

.;‘n.v, II. Matrix Multiplication Reminder: Multithreading

Performance Measures

Work

Total time to execute everything on a single proces-
sor.

Span

Longest time to execute the threads along any path.

. II. Matrix Multiplication Reminder: Multithreading

Performance Measures

Work

Total time to execute everything on a single proces-
sor.

Span

Longest time to execute the threads along any path.

Il. Matrix Multiplication Reminder: Multithreading

Performance Measures

Work
Total time to execute eve@ing on a single proces-

sor.
If each thread takes unit time, span is

the length of the critical path.

Span

Longest time to execute the threads along any path.

o

Il. Matrix Multiplication Reminder: Multithreading

Performance Measures

Work
Total time to execute eve@ing on a single proces-

sor.
If each thread takes unit time, span is

the length of the critical path.

Span

Longest time to execute the threads along any path.

o

Il. Matrix Multiplication Reminder: Multithreading

Performance Measures

Work #nodes = 5
Total time to execute eve@ing on a single proces-
sor.
If each thread takes unit time, span is
the length of the critical path. O
Span l ‘/(D

Longest time to execute the threads along any path.

O«

i II. Matrix Multiplication Reminder: Multithreading 17

Work Law and Span Law

i II. Matrix Multiplication

Reminder: Multithreading

Work Law and Span Law

= Ty = work, T = span

Sl II. Matrix Multiplication

Reminder: Multithreading

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

Il. Matrix Multiplication Reminder: Multithreading

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors

= Tp = running time on P processors
~

(Running time actually also depends on scheduler etc.!)

bl
X 6 II. Matrix Multiplication Reminder: Multithreading

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

Work Law

o
%’E 11. Matrix Multiplication Reminder: Multithreading

J \

V\[Time on P processors can't be shorter than if all work all timej

= Ty = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors T,=8,P=2

Work Law

X 6 II. Matrix Multiplication Reminder: Multithreading 18

J \

V\[Time on P processors can't be shorter than if all work all timej

= Ty = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors T,=8,P=2

Work Law

o R, II. Matrix Multiplication Reminder: Multithreading 18

J \

V\[Time on P processors can't be shorter than if all work all timej

= Ty = work, T = span
= P = number of (identical) processors

= Tp = running time on P processors T =

Work Law

i II. Matrix Multiplication Reminder: Multithreading

J \

V\[Time on P processors can't be shorter than if all work all timej

= Ty = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

Work Law

i II. Matrix Multiplication Reminder: Multithreading

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

~—— Work Law

~——— Span Law

II. Matrix Multiplication Reminder: Multithreading

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors

= Tp = running time on P processors Too =5
—— Work Law \
T
Te> 2
P
ors

“(Time on P processors can’t be shorter than time on co pro

~——— Span Law N\

TF’Z Teo

bl
X 6 II. Matrix Multiplication Reminder: Multithreading

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

~—— Work Law

~——— Span Law

= Speed-Up: %

Too=5

II. Matrix Multiplication Reminder: Multithreading

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

——— Work Law N
T4
Tp > —
F=P

~——— Span Law N\
TP > Too

* Speed-Up: % {Maximum Speed-Up bounded by P!]

Too=5

bl
X 6 II. Matrix Multiplication Reminder: Multithreading

Work Law and Span Law

= T, = work, T,

= span

= P = number of (identical) processors
= Tp = running time on P processors

~—— Work Law

——— Span Law

» Speed-Up: %
= Parallelism: TT—‘

Too=5

o R, II. Matrix Multiplication

Reminder: Multithreading

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

——— Work Law N
T4
Tp > —
F=P

~——— Span Law N\
TP Z Too

= Speed-Up: %

L] i . L
Parallelism: 5 {Maximum Speed-Up for oo processors! J

Too=5

el R
%’E 11. Matrix Multiplication Reminder: Multithreading

Outline

Multithreaded Matrix Multiplication

o

.-_'E-,, Il. Matrix Multiplication

Multithreaded Matrix Multiplication

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n x n matrix A = (a;) and n-vector x = (x;) yields
an n-vector y = (y;) given by

n
yi=Y apx fori=12..n
j=1

‘;‘E.-n Il. Matrix Multiplication Multithreaded Matrix Multiplication

20

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n x n matrix A = (a;) and n-vector x = (x;) yields
an n-vector y = (y;) given by

n
yi=Y apx fori=12..n
j=1

MAT-VEC(4, x)

1 n = A.rows

2 let y be a new vector of length n
3 parallelfori = 1ton

4 Vi = 0

5 parallel fori = 1ton

6 for j = 1ton

7 yi = yi taijx;

8 return y

‘;‘E.-n Il. Matrix Multiplication Multithreaded Matrix Multiplication

20

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n x n matrix A = (a;) and n-vector x = (x;) yields
an n-vector y = (y;) given by

n
yi=Y apx fori=12..n
=1

MAT-VEC(4, x)

1 n = A.rows
2 let y be a new vector of length n
3 parallel fori = 1ton
g amﬁe]:fogi - lton The parallel for-loops can be used since
P . o different entries of y can be computed concurrently.
6 for j = 1ton
7 Yi = yi +aijx;
8 return y
ot

;,E.;n II. Matrix Multiplication Multithreaded Matrix Multiplication 20

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n x n matrix A = (a;) and n-vector x = (x;) yields
an n-vector y = (y;) given by

n
y,-:E aj X fori=1,2,...,n
J=1

MAT-VEC(4, x)

ol e S e

n = A.rows
let y be a new vector of length n
parallel fori = 1ton
Vi =0 . The parallel for-loops can be used since
parallel fori = 1ton . .
. different entries of y can be computed concurrently.
for j = 1ton
Yi = yi +aijx;
return y
How can a compiler implement the parallel for-loop?

Il. Matrix Multiplication Multithreaded Matrix Multiplication 20

Implementing parallel for based on Divide-and-Conquer

MAT-VEC-MAIN-LOOP(A, x, y,n,i,i’)

1 ifi==1i

2 for j = 1ton

3 Vi = yi+ayx;

4 elsemid = [(i +1i')/2]

5 spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid)
6 MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i')

7 sync

|
Il. Matrix Multiplication Multithreaded Matrix Multiplication

21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC-MAIN-LOOP(A, x, y,n,i.i’)

1 ifi==i'

2 for j = 1ton

3 Yi = yitaix;

4 elsemid = [(i +1i')/2]

5 spawn MAT-VEC-MAIN-LOOP (A, x, y,n, i, mid)
6 MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i')

7 sync

,,E oy 1. Matrix Multiplication Multithreaded Matrix Multiplication

21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC-MAIN-LOOP(A, x, y,n,i,i’)
ifi==i'
for j = 1ton
Yi = yitaix;
else mid = [(i +1i')/2]
spawn MAT-VEC-MAIN-LOOP (A, x, y,n, i, mid)
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i')
sync

N AW~

MAT-VEC(4, x)

1 n = A.rows

2 let y be a new vector of length n
3 parallelfori = 1ton

4 yi=0

5 parallelfori = I ton

6 for j = 1ton

7 Vi = yitajjx;

8 returny

.,E Sy 1. Matrix Multiplication Multithreaded Matrix Multiplication

21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC-MAIN-LOOP(A, x, y,n,i.i’)

1 ifi==i
2 for j = 1ton
3 Yi = yi +ai;x;

4 elsemid = [(i +1i')/2]

spawn MAT-VEC-MAIN-LOOP (A, x, y,n, i, mid)
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i')
sync

<o wn

Ti(n) =

MAT-VEC(4, x)

1 n = A.rows

2 let y be a new vector of length n
3 parallelfori = 1ton

4 yi=0

5 parallelfori = I ton

6 for j = 1ton

7 Vi = yitajjx;

8 returny

.,E Sy 1. Matrix Multiplication Multithreaded Matrix Multiplication

21

Implementing parallel for based on Divide-and-Conquer

@@@b

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP(A, x, y,n,i,i’)

1 n = A.rows
1 ifi==i' 2 let y be a new vector of length n
2 forj =lton 3 parallel fori = 1ton
3 Yi = yi +aiXx; 4 yi =0
4 else mid = LG +i"/2] 5 parallel fori = I ton
5 spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid) 6 for j = 1ton
6 MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 i = yi+ajx;
7 sync 8 return y
T Work is equal to running time of its serialization; overhead
1(n) = of recursive spawning does not change asymptotics.
it

;,E.-n Il. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

@@@b

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP(A, x, y,n,i,i’)

1 n = A.rows
1 ifi==i' 2 let y be a new vector of length n
2 forj =lton 3 parallel fori = 1ton
3 yi = yi+aix; 4 yi=0
4 else mid = LG +i"/2] 5 parallel fori = I ton
5 spawn MAT-VEC-MAIN-LOOP (4, x, y,n,i, mid) 6 for j = 1ton
6 MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 Vi = yi +a;x;
7 sync 8 return y

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

;,E.-n Il. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC-MAIN-LOOP(A, x, y,n,i,i’)

N AW —

@@@b

MAT-VEC(4, x)

ifi ==i'
forj =lton
= Yi +ajx;
else mzd = L(z +i")/2]

spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid)
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i')

sync

1 n = Arows

2 let y be a new vector of length n
3 parallel fori = 1ton

4 yi=0

5 parallelfori = 1ton

6 for j = 1ton

7 Yi = yi +aix;

8 returny

Work is equal to running time of its serialization; overhead

of recursive spawning does not change asymptotics.

Multithreaded Matrix Multiplication

21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP (4, x, y,n,i,i’") n = A.rows

1

ifi ==i' 2 let y be a new vector of length n

for j = 1ton 3 parallel fori = 1ton
Yi = yi +aix; 4 yi=0

else mid = | (i +1')/2] 5 parallel fori = I ton
spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid) 6 for j = 1ton
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 Vi = yi +a;x;
sync 8 returny

N AW —

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Too(n) = Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

;,E.;n Il. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP (4, x, y,n,i,i’") n = A.rows

1

ifi ==i' 2 let y be a new vector of length n

for j = 1ton 3 parallel fori = 1ton
Yi = yi +aix; 4 yi=0

else mid = | (i +1')/2] 5 parallel fori = I ton
spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid) 6 for j = 1ton
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 Vi = yi +a;x;
sync 8 returny

N AW —

Work is equal to running time of its serialization; overhead

_ 2
Ti(n) = () of recursive spawning does not change asymptotics.

T.o(n) = ©(log n) + max iter(n) Span is the depth of recursive callings plus
1<i<n the maximum span of any of the n iterations.

;,E.;n Il. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP (4, x, y,n,i,i’") n = A.rows

1

ifi ==i' 2 let y be a new vector of length n

for j = 1ton 3 parallel fori = 1ton
Yi = yi +aix; 4 yi=0

else mid = | (i +1')/2] 5 parallel fori = I ton
spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid) 6 for j = 1ton
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 Vi = yi +a;x;
sync 8 returny

N AW —

Work is equal to running time of its serialization; overhead

_ 2
Ti(n) = () of recursive spawning does not change asymptotics.

T.o(n) = ©(log n) + max iter(n) Span is the depth of recursive callings plus
1<i<n the maximum span of any of the n iterations.

= 0O(n).

;,E.;n Il. Matrix Multiplication Multithreaded Matrix Multiplication 21

Naive Algorithm in Parallel

P-SQUARE-MATRIX-MULTIPLY (A, B)

1 n = A.rows

2 let C be anew n X n matrix

3 parallelfori = 1ton

4 parallel for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = ¢jj +aix - by
8 return C

Il. Matrix Multiplication Multithreaded Matrix Multiplication

22

Naive Algorithm in Parallel

P-SQUARE-MATRIX-MULTIPLY (A, B)

1 n = A.rows

2 let C be anew n X n matrix

3 parallelfori = 1ton

4 parallel for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = cij + aik - by; With a more careful implementation,

8 return C T (n) = O(log n) (CLRS, Exercise 27.2-3)

P-SQUARE-MATRIX-MULTIPLY(A, B) has work T;(n) = ©(n®) and span T..(n) = ©(n).

[The first two nested for-loops parallelise perfectly.j

".,E.-n Il. Matrix Multiplication Multithreaded Matrix Multiplication 22

The Simple Divide&Conquer Approach in Parallel

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B)

1 n = A.rows

2 ifn==

3 ¢ = anbn

4 elselet T be anew n x n matrix

5 partition A, B, C,and 7 into n/2 x n/2 submatrices
A1, Az, Az1, A2z Bii, Bia, Bary Baas Cri, Ciz, o, Caas
and Ty, Tha., Tay, Tay: respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cyy, A1y, By)
7 spawn P-MATRIX-MULTIPLY-RECURSIVE(C,, A1y, Bj2)
8 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy;, Ay, Byy)
9 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy,, Ay, Bi2)
10 spawn P-MATRIX-MULTIPLY-RECURSIVE (T}, A1z, Ba1)
11 spawn P-MATRIX-MULTIPLY-RECURSIVE(7T1,, A12, Bas)
12 spawn P-MATRIX-MULTIPLY-RECURSIVE (7%, A2, Bsy)
13 P-MATRIX-MULTIPLY-RECURSIVE (T5,, A23, By,)
14 sync
15 parallel fori = 1ton
16 parallel for j = 1ton
17 Cij = ¢ij + b

Il. Matrix Multiplication Multithreaded Matrix Multiplication

The Simple Divide&Conquer Approach in Parallel

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B)

1

n = A.rows

2 ifn==
3 c1 = anby
4 elselet T be anew n x n matrix
5 partition A, B, C,and 7 into n/2 x n/2 submatrices
Ay1, Ay, Ay Asss By, Bra, Bay, By Cry, Cra, Cop, oo
and Ty, T2, Ty, T, ; respectively
6 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cyy, A1y, By)
7 spawn P-MATRIX-MULTIPLY-RECURSIVE(C,, A1y, Bj2)
8 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy;, Ay, Byy)
9 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy,, Ay, Bi2)
10 spawn P-MATRIX-MULTIPLY-RECURSIVE (T}, A1z, Ba1)
11 spawn P-MATRIX-MULTIPLY-RECURSIVE(7T1,, A12, Bas)
12 spawn P-MATRIX-MULTIPLY-RECURSIVE (7%, A2, Bsy)
13 P-MATRIX-MULTIPLY-RECURSIVE (T5,, A23, By,)
14 sync
15 parallel fori = 1ton
16 parallel for j = 1ton
17 €y = ¢y iy [The same as before.]
74

P-MATRIX-MULTIPLY-RECURSIVE has work T;(n) = ©(n®) and span T..(n) =

Il. Matrix Multiplication Multithreaded Matrix Multiplication

23

The Simple Divide&Conquer Approach in Parallel

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B)

1

n = A.rows

2 ifn==
3 c1 = anby
4 elselet T be anew n x n matrix
5 partition A, B, C,and 7 into n/2 x n/2 submatrices
Ay1, Ay, Ay Asss By, Bra, Bay, By Cry, Cra, Cop, oo
and Ty, T2, Ty, T, ; respectively
6 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cyy, A1y, By)
7 spawn P-MATRIX-MULTIPLY-RECURSIVE(C,, A1y, Bj2)
8 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy;, Ay, Byy)
9 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy,, Ay, Bi2)
10 spawn P-MATRIX-MULTIPLY-RECURSIVE (T}, A1z, Ba1)
11 spawn P-MATRIX-MULTIPLY-RECURSIVE(7T1,, A12, Bas)
12 spawn P-MATRIX-MULTIPLY-RECURSIVE (7%, A2, Bsy)
13 P-MATRIX-MULTIPLY-RECURSIVE (T5,, A23, By,)
14 sync
15 parallel fori = 1ton
16 parallel for j = 1ton
17 €y = ¢y iy [The same as before.]
74

P-MATRIX-MULTIPLY-RECURSIVE has work T;(n) = ©(n®) and span T..(n) =

—

(7(m = Ttn/2) + O(log)|

Il. Matrix Multiplication Multithreaded Matrix Multiplication

23

The Simple Divide&Conquer Approach in Parallel

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B)

I n = A.rows

2 ifn==

3 cn = anbn

4 else let 7 be a new n X n matrix

5 partition A, B, C,and 7 into n/2 x n/2 submatrices
A1, Az, Az1, A2z Bii, Bia, Bary Baas Cri, Ciz, o, Caas
and Ty, Tha., Tay, Tay: respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cyy, A1y, By)
7 spawn P-MATRIX-MULTIPLY-RECURSIVE(C,, A1y, Bj2)
8 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy;, Ay, Byy)
9 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy,, Ay, Bi2)
10 spawn P-MATRIX-MULTIPLY-RECURSIVE (T}, A1z, Ba1)
11 spawn P-MATRIX-MULTIPLY-RECURSIVE(7T1,, A12, Bas)
12 spawn P-MATRIX-MULTIPLY-RECURSIVE (7%, A2, Bsy)
13 P-MATRIX-MULTIPLY-RECURSIVE (T5,, A23, By,)
14 sync

15 parallel fori = 1ton
16 parallel for j = 1ton

17 € = i+ [The same as before.]

74

P-MATRIX-MULTIPLY-RECURSIVE has work Ty(n) = ©(n®) and span T..(n) = ©(log?® n).

—

(7(m = Ttn/2) + O(log)|

Il. Matrix Multiplication Multithreaded Matrix Multiplication 28

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

‘;‘E.-n Il. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised) N\
1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

;,E.-n II. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.}

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

;,E.;n II. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

,',E.;n II. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

,',E.;n II. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

[Recursively spawn the computation of the seven products.]

\.

Rl
E;E II. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

[Recursively spawn the computation of the seven products.]

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

Rl
II. Matrix Multiplication Multithreaded Matrix Multiplication

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

[Recursively spawn the computation of the seven products.]

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

this takes ©(n?) work and ©(log n) span.

[Using doubly nested parallel for }

(85 Il. Matrix Multiplication Multithreaded Matrix Multiplication

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)
1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

[Recursively spawn the computation of the seven products.]

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

this takes ©(n?) work and ©(log n) span.

[Using doubly nested parallel for } Ti(n) = ©(n'°97)

Rl
Il. Matrix Multiplication Multithreaded Matrix Multiplication 24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)
1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

[Recursively spawn the computation of the seven products.]

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

Using doubly nested parallel for Ti(n) = ©(n'°97)
this takes ©(n?) work and ©(log n) span. To(n) = ©(log? n)

\. J

Rl
Il. Matrix Multiplication Multithreaded Matrix Multiplication 24

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

bl e

Il. Matrix Multiplication Multithreaded Matrix Multiplication

25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

~——— Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

\

Il. Matrix Multiplication Multithreaded Matrix Multiplication

25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

~——— Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

\

Proof:

Il. Matrix Multiplication Multithreaded Matrix Multiplication

25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

~——— Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

\

Proof:
= Define a 3n x 3n matrix D by:

Ih A O
D=0 I, B
0 0 I

«.‘E.h Il. Matrix Multiplication Multithreaded Matrix Multiplication

25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

~——— Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

\

Proof:
= Define a 3n x 3n matrix D by:

L A 0 I, —A AB
D=|0 I, B = p"=(o0 1 -B].
0 0 /n 0 0 /n

Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

~——— Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

\

Proof:
= Define a 3n x 3n matrix D by:

L A 0 L —-A AB
D=|0 I, B = p"=(o0 1 -B].
0 0 /n 0 0 /n

Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

~——— Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

\

Proof:
= Define a 3n x 3n matrix D by:

L A 0 L —-A AB
D=|0 I, B = p"=(o0 1 -B].
0 0 /n 0 0 /n

= Matrix D can be constructed in ©(n?) = O(I(n)) time,

Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

~——— Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

\

Proof:
= Define a 3n x 3n matrix D by:

L A 0 L —-A AB
D=|0 I, B = p"=(o0 1 -B].
0 0 /n 0 0 /n

= Matrix D can be constructed in ©(n?) = O(I(n)) time,
= and we can invert D in O(/(3n)) = O(I(n)) time.

Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

~——— Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

\

Proof:
= Define a 3n x 3n matrix D by:

L A 0 L —-A AB
D=|0 I, B = p"=(o0 1 -B].
0 0 /n 0 0 /n

= Matrix D can be constructed in ©(n?) = O(I(n)) time,
= and we can invert D in O(/(3n)) = O(I(n)) time.
= We can compute ABin O(/(n)) time. O

Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

The Other Direction

Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and /(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

Theorem 28.2 (Inversion is no harder than Multiplication)
Suppose we can multiply two n x n real matrices in time M(n) and M(n)
satisfies the two regularity conditions M(n + k) = O(M(n)) for any 0 <
k < nand M(n/2) < c- M(n) for some constant ¢ < 1/2. Then we can
compute the inverse of any real nonsingular nx n matrix in time O(M(n)).

;,E.;n Il. Matrix Multiplication Multithreaded Matrix Multiplication

26

The Other Direction

Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and /(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

Theorem 28.2 (Inversion is no harder than Multiplication)

Suppose we can multiply two n x n real matrices in time M(n) and M(n)

satisfies the two regularity conditions M(n + k) = O(M(n)) for any 0 <

k < nand M(n/2) < c- M(n) for some constant ¢ < 1/2. Then we can

compute the inverse of any real nonsingular nx n matrix in time O(M(n)).
/)

L

[Proof of this directon much harder (CLRS) — relies on properties of SPD matrices.]

Rl

,',E.;n Il. Matrix Multiplication Multithreaded Matrix Multiplication 26

The Other Direction

Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and /(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

[Allows us to use Strassen’s Algorithm to invert a matrix!]

~NJ
Theorem 28.2 (Inversion is no harder than Multiplication)
Suppose we can multiply two n x n real matrices in time M(n) and M(n)
satisfies the two regularity conditions M(n + k) = O(M(n)) for any 0 <
k < nand M(n/2) < c¢- M(n) for some constant ¢ < 1/2. Then we can

compute the inverse of any real nonsingular nx n matrix in time O(M(n)).
/)

L

[Proof of this directon much harder (CLRS) — relies on properties of SPD matrices.]

Rl
E;E Il. Matrix Multiplication Multithreaded Matrix Multiplication 26

	Introduction
	Serial Matrix Multiplication
	Reminder: Multithreading
	Multithreaded Matrix Multiplication

