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Performance Ratios for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost C of the returned solution and

optimal cost C™ satisfy:
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max ( -, ) < p(n)
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[Call such an algorithm randomised p(n)-approximation algorithm. ]

extends in the natural way to randomised algorithms ]

7

Approximation Schemes L
An approximation scheme is an approximation algorithm, which given
any input and € > 0, is a (1 + ¢)-approximation algorithm.
= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
€ > 0, the runtime is polynomial in n. (For example, O(n?/<).
= |tis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/¢ and n. G:or example, O((1/¢)? - nS)_)
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MAX-3-CNF Satisfiability

Assume that no literal (including its negation)
appears more than once in the same clause.

—— MAX-3-CNF Satisfiability
= Given: 3-CNF formula, e.g.: (x1 VXs VXa) A (X2 VX3V X5) A - - -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible. ~

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Example:

v

(I VXaVX)A (X1 VXV X)A (X VXV Xs) A (X1 V X2V X3)
N
[x1 =1,x%=0,x =1, x4 =0and xs = 1 satisfies 3 (out of 4 cIauses)]

Idea: What about assigning each variable independently at random?

Sl
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Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1 1 1
Pr[clause i is not satisfied] = = - = - = = -
2 2 8
. e 1 7
= Pr[clause i is satisfied] =1 — = = =
8 8
= E[V] =PV =1]1=.

= Let Y := 37", V; be the number of satisfied clauses. Then,

m m m 7 7
D Vil =D ElVil=3 g=gm O
— — — 8 8
i=1 ] =1 i=1

(Linearity of Expectations) (maximum number of satisfiable clauses is m)
o 5 VII. Randomisation and Rounding MAX-3-CNF

E[Y] =E
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Interesting Implications

——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables xy, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\. J

~

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least % of all clauses.

1 . -
[There is w € Q such that Y(w) > E| Y]{ Probabilistic Method: powerful tool to ]

show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

[

[Follows from the previous Corollary.]

bl bl
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Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

o [l
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Expected Approximation Ratio

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8 /7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)J
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Expected Approximation Ratio

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8 /7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

E[Y]:%~E[Y|x1:1]+%-E[Y|x1:O].

#{
Y is defined as in
the previous proof.
_J

VII. Randomisation and Rounding MAX-3-CNF



Expected Approximation Ratio

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8 /7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)J

;
E[Y]= EIY | x=1]+5-E[Y | x=0].
g 2 2

) .
[ Y is defined as in

the previous proof. [One of the two conditional expectations is at least E [ Y]!]
J
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Expected Approximation Ratio

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8 /7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)J

;
E[Y]= EIY | x=1]+5-E[Y | x=0].
g 2 2

) .
[ Y is defined as in

the previous proof. [One of the two conditional expectations is at least E [ Y]!]
J

/1

Algorithm: Assign x; so that the conditional
expectation is maximized and recurse.
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Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8 /7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)J

;
E[Y]= EIY | x=1]+5-E[Y | x=0].
g 2 2

) .
[ Y is defined as in

the previous proof. [One of the two conditional expectations is at least E [ Y]!]
J

GREEDY-3-CNF(¢, n, m)
1: forj=1,2,...,n

2: Compute E[Y | i =vi...,X_1=Vi_1,x=1]
3: Compute E[Y | x1 = v1,...,X—1 = Vj—1, X, = 0]
4: Let x; = v; so that the conditional expectation is maximized
5: return the assignment vy, vo,..., vy
i
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Analysis of GREEDY-3-CNF(¢, n, m)

Theorem
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

o [l
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

S
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]
Proof:

bl bl
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]
Proof:

= Step 1: polynomial-time algorithm

sl
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

Proof:
= Step 1: polynomial-time algorithm
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

Proof:
= Step 1: polynomial-time algorithm
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

E[Y|X1 :V1,...,Xj_1 :Vj—hxj:‘l}

bl bl
E:'E' VII. Randomisation and Rounding MAX-3-CNF



Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

Proof:
= Step 1: polynomial-time algorithm
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[Y|X1 :v1’,“’)(j_1 :Vj_hxj:'l} :ZE[Y,‘X] :V1,...,X/'_1 :\/j_17X/':1:|
i=1

5
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

Proof:
= Step 1: polynomial-time algorithm
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[Y|X1 :v1’,“’)(j_1 :Vj_hxj:'l} :ZE[Y,‘X] :V1,...,X/'_1 :\/j_17X/':1:|
i=1

computable in O(1)
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

Proof:
= Step 1: polynomial-time algorithm v
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIx=Vv,...,X_1=V_q,5=1] :ZE[YI\M =Vi,oL X = Vg, X =1]
i=1

= Step 2: satisfies at least 7/8 - m clauses

S
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]
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m
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= Step 2: satisfies at least 7/8 - m clauses
= Due to the greedy choice in each iterationj =1,2,...,n,
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

Proof:
= Step 1: polynomial-time algorithm v
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIx=Vv,...,X_1=V_q,5=1] :ZE[YI\M =Vi,oL X = Vg, X =1]
i=1

= Step 2: satisfies at least 7/8 - m clauses
= Due to the greedy choice in each iterationj =1,2,...,n,

E[YIxi=Vi,...,X_1=V_1,5=V| 2E[Y[Xx=wy,...,X_1=Vj_1]

i
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

Proof:
= Step 1: polynomial-time algorithm v
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIx=Vv,...,X_1=V_q,5=1] :ZE[YI\M =Vi,oL X = Vg, X =1]
i=1

= Step 2: satisfies at least 7/8 - m clauses

= Due to the greedy choice in each iterationj =1,2,...,n,
E[YIxi=Vi,...,X_1=V_1,5=V| 2E[Y[Xx=wy,...,X_1=Vj_1]
>E[Y|xi=wv,....,X_2=V_2]
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

Proof:
= Step 1: polynomial-time algorithm v
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIx=Vv,...,X_1=V_q,5=1] :ZE[YI\M =Vi,oL X = Vg, X =1]
i=1

= Step 2: satisfies at least 7/8 - m clauses

= Due to the greedy choice in each iterationj =1,2,...,n,
E[YIxi=Vi,...,X_1=V_1,5=V| 2E[Y[Xx=wy,...,X_1=Vj_1]
>E[Y|xi=wv,....,X_2=V_2]
>E[Y]
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Analysis of GREEDY-3-CNF(¢, n, m)
[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

Proof:
= Step 1: polynomial-time algorithm v
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIx=Vv,...,X_1=V_q,5=1] :ZE[YI\M =Vi,oL X = Vg, X =1]
i=

= Step 2: satisfies at least 7/8 - m clauses

= Due to the greedy choice in each iterationj =1,2,...,n,
E[YIxi=Vi,...,X_1=V_1,5=V| 2E[Y[Xx=wy,...,X_1=Vj_1]
>E[Y|xi=wv,....,X_2=V_2]
7
>E[Y]==-m
8
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Analysis of GREEDY-3-CNF(¢, n, m)
[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

Proof:
= Step 1: polynomial-time algorithm v
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIx=Vv,...,X_1=V_q,5=1] :ZE[YI\M =Vi,oL X = Vg, X =1]
i=

= Step 2: satisfies at least 7/8 - m clauses v’

= Due to the greedy choice in each iterationj =1,2,...,n,
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i
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Run of GREEDY-3-CNF (¢, n, m)

(X1 Vxe VX)) A(xi VX VX) A (X1 VX VX)) AT VXV X)) A VX VXa) ATV XV Xs) A(XTV XeV Xa) A(XT VX2V X3) A(Xi VX3V Xa) A (Xe VX3V Xa)
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Run of GREEDY-3-CNF (¢, n, m)
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Run of GREEDY-3-CNF (¢, n, m)

(MR A T TG A (XN Ta) A RV Xa V Xa) A (a NxX 2 Ta) ARV X VXa) ARV xe V Xa) A GV Xz V Xa) A (X Mo Ra) A (X V X V Xa)
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Run of GREEDY-3-CNF (¢, n, m)

TATATAGGY X)) ATARVXE) A (X VXs)A(XaVX3) ATA (X2 VX5V Xa)
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Run of GREEDY-3-CNF (¢, n, m)

TATATAGGY X)) ATARVXE) A (X VXs)A(XaVX3) ATA (X2 VX5V Xa)
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Run of GREEDY-3-CNF (¢, n, m)

TATATAGGY X)) ATARVXE) A (X VXs)A(XaVX3) ATA (X2 VX5V Xa)
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Run of GREEDY-3-CNF (¢, n, m)

TATATAGY X)) ATA K RG) A (Y X3) A (X K3) AT A (VX5 V Xs)
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Run of GREEDY-3-CNF (¢, n, m)

TAATAGGY X)ATATA(G)ATATA(GV Xa)
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Run of GREEDY-3-CNF (¢, n, m)

TAATAGGY X)ATATA(G)ATATA(GV Xa)
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Run of GREEDY-3-CNF (¢, n, m)

TAATAGGY X)ATATA(G)ATATA(GV Xa)
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Run of GREEDY-3-CNF (¢, n, m)

TATATACEY T ATATA ) AT AT AGEV Xs)

£ VII. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF (¢, n, m)

TATATATATATAOATATAL
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Run of GREEDY-3-CNF (¢, n, m)

TATATATATATAOATATAL

£ VII. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF (¢, n, m)

TATATATATATAOATATAL
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Run of GREEDY-3-CNF (¢, n, m)

TATATATATATAOATATAL

?72?| 8.75
x1 =0
0?7?| 8.625
X2 =0 X2 =1
007?| 8 01??| 9.25
x3 =0 X3 =1 x3 =0 x3 =1
000?| 8 001?| 8 010?| 9 011?] 9.5 100?
NTAYS NFAYS NFATS NTAYS <

S\ o\ g\ Y\
8 8 9 7 9 9 9

9 10

x3 =0

9

x1 =1
X2:0
10??| 9

X3=1

K

4
-+ o

9

1017

1???| 8.875
Xo = 1
11??| 8.75
x3 =0 x3 =1

9 110?] 9 111?] 8.5

SFATS NTARS

I \ Il \

S - [} =
9 9 8 9
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Run of GREEDY-3-CNF (¢, n, m)

TATATATATATAOATATAL

>

A\ 4\
9 9 8 9

[ Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable. ]

?72?| 8.75
x1 =0 x; =1
0?7?| 8.625 17?7 8.875

X2 =0 X2 =1 X2 =0 X2 =1

00??| 8 01??| 9.25 10??] 9 11??] 8.75
x3 =0 X3 =1 x3 =0 x3 =1 x3 =0 X3 =1 x3 =0 x3 =1

000?| 8 001?| 8 010?| 9 011?] 9.5 100?| 9 101?] 9 110?| 9 111?| 8.5

AV A V- A V- AV AV A vy A VR A V2
Il \ 4 \ l \ Il

S} - o - o - o \\» Q// \\) Q// ! . !
)]
8 8 9 7 9 9 9 9

9 9

9 10
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MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, X2, ..., x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

i
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MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, X2, ..., x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.
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MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, X2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad’97)

For any ¢ > 0, there is no polynomial time 8/7 — ¢ approximation algo-
rithm of MAX3-SAT unless P=NP.
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Given an instance of MAX-3-CNF with n variables xy, X2, ..., x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad’97)

For any ¢ > 0, there is no polynomial time 8/7 — ¢ approximation algo-
rithm of MAX3-SAT unless P=NP.

N

\
[Essentially there is nothing smarter than just guessing!]

i
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The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.

S

(=)
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w

@ ()
~(2)
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The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.

S

(2)®
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w

@
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The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.
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The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.
N

(This is (still) an NP-hard problem.]

(20>
NG‘
w

@ ()
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The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.
N

[This is (still) an NP-hard problem.]

Applications:

(20>
NG‘
w

@ ()
~(2)
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The Weighted Vertex-Cover Problem

w

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.
N

[This is (still) an NP-hard problem.]

el

@ ()
~(2)

Applications:

= Every edge forms a task, and every vertex represents a person/machine
which can execute that task

i
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The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.
N

(This is (still) an NP-hard problem.]

Applications:

w

4
()
2
(O—@
3 1

= Every edge forms a task, and every vertex represents a person/machine

which can execute that task
= Weight of a vertex could be salary of a person
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The Weighted Vertex-Cover Problem

3
4
Vertex Cover Problem
= Given: Undirected, vertex-weighted graph G = (V, E) e‘
= Goal: Find a minimum-weight subset V' C V such that e
if (u,v) € E(G),thenue V' orve V. 5
N

[This is (still) an NP-hard problem.] ° 0
3 1

Applications:
= Every edge forms a task, and every vertex represents a person/machine
which can execute that task

= Weight of a vertex could be salary of a person
= Perform all tasks with the minimal amount of resources

i
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The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

i
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The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

O ©© O ©
T 1t 1 1

i
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The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

® © O ©
1 1 1 1
)
[Computed solution has weight 101]
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The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

© ©© O ©
1 1 1 1
)
[Optimal solution has weight 4]

s
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Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.
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Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

——— 0-1 Integer Program

minimize > w(v)x(v)
veVv
subject to x(u)+x(v) > 1 foreach (u,v) € E

x(v) € {0,1} foreachv e V
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Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.
——— 0-1 Integer Program
minimize > w(v)x(v)
veVv
subject to x(u)+x(v) > 1 foreach (u,v) € E
x(v) € {0,1} foreachv e V
Linear Program
minimize > w(v)x(v)
veV
subject to x(u) +x(v) > 1 for each (u,v) € E
x(v) € [0,1] foreachv e V
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Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.
——— 0-1 Integer Program
minimize > w(v)x(v)
veV
subject to x(u)+x(v) > 1 foreach (u,v) € E
x(v) € {0,1} foreachv e V
optimum is a lower bound on the optimal
) weight of a minimum weight-cover.
Linear Program
/
minimize > w(v)x(v)
veV
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € [0,1] foreachv e V

e
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Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

——— 0-1 Integer Program

minimize > w(v)x(v)
veVv
subject to x(u)+x(v) > 1 foreach (u,v) € E

x(v) € {0,1} foreachv e V

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Linear Program

—
minimize > w(v)x(v)
veV
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € [0,1] foreachv e V

2

Rounding Rule: if x(v) > 1/2 then round up, otherwise round down.]_

i
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The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)

1 C=90
2 compute X, an optimal solution to the linear program
3 foreachv eV
4 if x(v) > 1/2
5 C =CU{v}
6 return C
m!';.' VII. Randomisation and Rounding Weighted Vertex Cover




The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)
cC=9
compute X, an optimal solution to the linear program
for eachv € V
if x(v) > 1/2
C =CuU{y}
return C

W =

N N

Theorem 35.7

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algo-
rithm for the minimum-weight vertex-cover problem.

i
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The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)
c=9
compute X, an optimal solution to the linear program
for eachv € V
if x(v) > 1/2
C =CU{v}
return C

[ O R S

N

Theorem 35.7
APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algo-
rithm for the minimum-weight vertex-cover problem.

)

L
[is polynomial-time because we can solve the linear program in polynomial time]
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Example of APPROX-MIN-WEIGHT-VC

[Y(a) =X(b) =X(e) = 3, X(d) =1,%(c) = o]
|4

3
b

4
(@)
()
2

@

3

fractional solution of LP
with weight = 5.5
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Example of APPROX-MIN-WEIGHT-VC

[Y(a) =X(b) = X(€) = 3, X(d) = 1,%(c) = o] [x(a) = x(b) = x(e) = 1, x(d) = 1, x(c) = o]
|4

3 3
b b

4 4
(&) (@)
Rounding
N °

()
2

2

3 1 3

fractional solution of LP rounded solution of LP
with weight = 5.5 with weight = 10
E
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Example of APPROX-MIN-WEIGHT-VC

[Y(a) =X(b) = X(€) = 3, X(d) = 1,%(c) = o] [x(a) = x(b) = x(e) = 1, x(d) = 1, x(c) = o]
|4

3 3 3
b b b

4 4 4
(&) (@) (@)
Rounding
N °

() ()
2 2

2

3 1 3 1 3

fractional solution of LP rounded solution of LP optimal solution
with weight = 5.5 with weight = 10 with weight = 6

B3
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Approximation Ratio

Proof (Approximation Ratio is 2):
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Approximation Ratio

Proof (Approximation Ratio is 2):
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Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
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Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

i
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Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)

i
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Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)

= Step 1: The computed set C covers all vertices:

S
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Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
zZ* <w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1

S
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Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2

S
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Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

S
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Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:

i
E:';.' VII. Randomisation and Rounding Weighted Vertex Cover



Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
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Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
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Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
w(C*)>2z" = Z w(v)x(v)

veV
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Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
_ 1
C* > * — > -
w(C) 2z =Y wwx(v) = Y w3

veV veV:x(v)>1/2
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Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
_ 1 1
C>z" = > T .
w(C*) >z Z w(v)x(v) > Z w(v) 5 2W(C)

veV veV:x(v)>1/2
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Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
. " - 1_1
) > = > —- = = .
w(C") >z E w(v)x(v) > E w(v) 5 2W(C)

veV veV:x(v)>1/2
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Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
_ 1 1
CHhY>z"= > - = = .
w(C*) > z Zw(v)x(v) > Z w(v) 2 2W(C) O

veV veV:x(v)>1/2
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Outline

Weighted Set Cover
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The Weighted Set-Covering Problem

Set Cover Problem

= Given: set X and a family of subsets F,

and a cost function ¢ : F — R*

= Goal: Find a minimum-cost subset C C F

st X= U S.

SecC
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The Weighted Set-Covering Problem

[ ]
Set Cover Problem Sy
= Given: set X and a family of subsets F, d
and a cost function ¢ : F — R*
= Goal: Find a minimum-cost subset C C F ®
Sum over the costs |  S:t X = U S.
of all sets in C sec d
' (S

. bl

Sz

@’)0 ko__o) °
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The Weighted Set-Covering Problem

[ ] [ ] [ ]
Set Cover Problem St |
= Given: set X and a family of subsets F, d d L
and a cost function ¢ : F — R* s
= Goal: Find a minimum-cost subset C C F ® ® 2 ()
Sum over the costs |  S:t X = U S.

of all sets in C sec et o ®

L S Ss

S1 Sz Ss S4 SS SG
c:2 3 3 5 1 2

i
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The Weighted Set-Covering Problem

[ ] [ ] [ ]
Set Cover Problem St ]
= Given: set X and a family of subsets F, d d LA
and a cost function ¢ : F — R* s
= Goal: Find a minimum-cost subset C C F ® e e
Sum over the costs |  S:t X = U S.

of all sets in C sec et o ®

L S Ss

81 Sz Sa S4 SS SG
Remarks: c:2 3 3 5 1 2
= generalisation of the weighted vertex-cover problem

= models resource allocation problems

s
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Setting up an Integer Program

i
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Setting up an Integer Program

——— 0-1 Integer Program

minimize > e(S)y(S)
SeF
subject to SToys) = 1
SeF: xeS
y(8) e {01}

foreach x € X

foreach S e F

VII. Randomisation and Rounding Weighted Set Cover
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Setting up an Integer Program

——— 0-1 Integer Program

minimize > e(S)y(S)
seF
subject to SToys) = 1 for each x € X
SeF: xeS
y(S) € {0,1} foreach Se F
Linear Program
minimize > e(S)y(S)
ser
subject to dToys) = for each x € X
SeF: xeS
y(S) € [0,1] foreach S e F
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Back to the Example

Sy

e

[ ]
[ ] [ ] [ ]
Ss3 Ss
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Back to the Example

y(): 1/2 1)2

[ J [ J [ J
Si
o| (0 o
S
. Q_ZJ
[ J [ J [ J
S3 Ss
S1 Sg 83 S4 85 86
c: 2 3 3 5 1 2

1/2 12 1 1/2
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Back to the Example

i
o |

[ ] [ ] [ ]
Ss3 Ss

S1 Sz 83 S4 85 86
c: 2 3 3 5 1 2
y(): 1/2 1/2 1/2 1/2 1 1)2

Cost equals 8.5
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Back to the Example

i
o |

[ ] [ ] [ ]
Ss3 Ss

S1 Sg 83 S4 85 86
c: 2 3 3 5 1 2
y(): 1/2 1/2 1/2 1/2 1 1)2
TAY
[The strategy employed for Vertex-Cover would take all 6 sets!j

Cost equals 8.5
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Back to the Example

[ ] [ [
Sy

[
&

[

Sy Ss S3 S S5 S
c: 2 3 3 5 1 2
y(): 1/2 1/2 1/2 1/2 1 1)2
TAY
[The strategy employed for Vertex-Cover would take all 6 sets!j
N\

7 X

[Even worse: If all y’s were below 1/2, we would not even return a valid cover!]

Cost equals 8.5

i
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Randomised Rounding

S1 Sg Ss 34 SS SG
c: 2 3 3 5 1 2
y(): 1/2 1/2 1/2 1/2 1 1/2
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Randomised Rounding

S1 Sz Ss 84 SS SG
c: 2 3 3 5 1 2
y(): 1/2 12 1/2 1/2 1 1)2

Idea: Interpret the y-values as probabilities for picking the respective set.

VII. Randomisation and Rounding Weighted Set Cover
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Randomised Rounding

S1 Sz 83 84 85 SG
c: 2 3 3 5 1 2
y(): 1/2 12 1/2 1/2 1 1)2

Idea: Interpret the y-values as probabilities for picking the respective set.

Randomised Rounding

= Let C C F be a random set with each set S being included
independently with probability y(S).

= More precisely, if y denotes the optimal solution of the LP, then we
compute an integral solution y by:

1 with probability y(S
($={ p y ¥(S)

) forall S e F.
0 otherwise.

y

S
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Randomised Rounding

81 Sz Ss 34 85 SG
c: 2 3 3 5 1 2
y(): 1/2 1/2 1/2 1/2 1 1/2

Idea: Interpret the y-values as probabilities for picking the respective set.

Randomised Rounding

= Let C C F be a random set with each set S being included
independently with probability y(S).

= More precisely, if y denotes the optimal solution of the LP, then we
compute an integral solution y by:

1 with probability y(S
(S) { p y ¥(S)

) forall S € F.
0 otherwise.

y

= Therefore, E[y(S)] = y(S).

VII. Randomisation and Rounding Weighted Set Cover
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Randomised Rounding

S1 Sz Ss 84 SS SG
c: 2 3 3 5 1 2
y(): 1/2 12 1/2 1/2 1 1)2

Idea: Interpret the y-values as probabilities for picking the respective set.

Lemma
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Randomised Rounding

C:

y():

S S S S S
2 3 3 5 1
12 1/2 1/2 1/2 1

Se
2
1/2

Idea: Interpret the y-values as probabilities for picking the respective set.

Lemma

» The expected cost

satisfies

E[c(C)]=)_ c(S)-¥(S)

SeF
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Randomised Rounding

S1 Sz Ss 84 SS SG
c: 2 3 3 5 1 2
y(): 1/2 12 1/2 1/2 1 1)2

Idea: Interpret the y-values as probabilities for picking the respective set.

Lemma

= The expected cost satisfies

E[c(C)]=)_ c(S)-¥(S)

SeF
= The probability that an element x € X is covered satisfies

Pr{erS]21—1E.

Sec
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Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

VII. Randomisation and Rounding Weighted Set Cover
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Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).
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The Final Step

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = Y g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — le
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Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = Y g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — 19

Z;

[Problem: Need to make sure that every element is covered!j
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Idea: Amplify this probability by taking the union of Q(log n) random sets C.
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Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = Y g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — 19
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[Problem: Need to make sure that every element is covered!j

Idea: Amplify this probability by taking the union of Q(log n) random sets C.

WEIGHTED SET COVER-LP(X, F, c¢)

1: compute y, an optimal solution to the linear program
22C=10

3: repeat 2In ntimes

4: foreach Se F

5 let C = C U {S} with probability y(S)

6: return C
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The Final Step

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = Y g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — :—9

Z“;

[Problem: Need to make sure that every element is covered!j

Idea: Amplify this probability by taking the union of Q(log n) random sets C.

WEIGHTED SET COVER-LP(X, F, c¢)

1: compute y, an optimal solution to the linear program
22C=10

3: repeat 2In ntimes

4: foreach Se F

5 let C = C U {S} with probability y(S) -
6: return C

[clearly runs in polynomial—time!]
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that

1 2lnn 1
Pr[X€U36C8]§ (g) :ﬁ

= This implies for the event that all elements are covered:
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

Proof:
= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that
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= This implies for the event that all elements are covered:

Pr(X =UsccS]=1-Pr { U x QUSECS}:|
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= Step 2: The expected approximation ratio
= By previous lemma, the expected cost of one iteration is } g » ¢(S) - y(S).
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iterations with probability at least 1 — 13 so that
1 2lnn 1
Pr[X€U36C8]§ (g) :ﬁ
= This implies for the event that all elements are covered:

Pr(X =UsccS]=1-Pr { U x QUSECS}:|

xeX

(Priavs) < Pria]+Pr(8] o 1 - S prixgusecs] > 1-n 11
n? n
xeX
= Step 2: The expected approximation ratio v/
= By previous lemma, the expected cost of one iteration is } g » ¢(S) - y(S).
* Linearity = E[c(C)] < 2In(n) - >"gc 7 ¢(S) - ¥(S) < 2In(n) - ¢(C*)
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

[By Markov's inequality, Pr [ c(C) < 4In(n) - ¢(C*)] > 1/2. ]
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

A\
[By Markov's inequality, Pr [ c(C) < 4In(n) - ¢(C*)] > 1/2. ]

Hence with probability at least 1 — 1 — 1 > 1,
solution is within a factor of 4 In(n) of the optimum.
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= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

A\
[By Markov's inequality, Pr [ c(C) < 4In(n) - ¢(C*)] > 1/2. ]

Hence with probability at least 1 — 1 — 1 > 1, probability could be further
solution is within a factor of 4 In(n) of the optimum. increased by repeating
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

A\
[By Markov's inequality, Pr [ c(C) < 4In(n) - ¢(C*)] > 1/2. ]

Hence with probability at least 1 — 1 — 1 > 1, probability could be further
solution is within a factor of 4 In(n) of the optimum. increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs
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[ Thank you and Best Wishes for the Exam!
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