V. Approximation Algorithms via Exact
Algorithms

Thomas Sauerwald

Easter 2016

UNIVERSITY OF
% CAMBRIDGE

Outline

The Subset-Sum Problem

55 V. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢
* Goal: Find a subset S C S which maximizes 3, , .5 xi < t.

V. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢

* Goal: Find a subset S C S which maximizes 3, , .5 xi < t.
N

This problem is NP-hardj

i

.-,.E:,, V. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢

» Goal: Find a subset S C S which maximizes 3, , .o Xi < t.

t =13 tons

x
I
—
o

R
I
A~

X &
Il I
o)l u

55 V. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢

» Goal: Find a subset S C S which maximizes 3, , .o Xi < t.

t =13 tons

x
I
—
o

R
I
A~

X &
Il I
o)l u

55 V. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢
» Goal: Find a subset S C S which maximizes 3, , .o Xi < t.

t =13 tons
()
[
X3:5
X4:6
| >
X5=1

55 V. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢

» Goal: Find a subset S C S which maximizes 3, , .o Xi < t.

t =13 tons
X1:1O r 1
[
Xo =4
| >
X5=1

55 V. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢
» Goal: Find a subset S C S which maximizes 3, , .o Xi < t.

t =13 tons
[)
[
X3:5
| >
X4:6
| >
X5=1

55 V. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢
» Goal: Find a subset S C S which maximizes 3, , .o Xi < t.

t =13 tons

>
RRIE:
I I
-
»lo

| _—>

X3=25 X3+ X4+ X5 =12
| _—>

X4:6
| _—>

X5=1

55 V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

i
»'-.E =

V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1
2
3
4
5
6

el b

n =S|
Lo = {0)
fori = 1ton
L; = MERGE-LISTS(L;—y, Li—1 + x;)
remove from L; every element that is greater than ¢
return the largest element in L,

V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1
2
3
4
5
6

n =S|

Lo = {0)

fori = 1ton
L; = MERGE-LISTS(L;_1, Li, + x;) (S+x:={st+x:s€ S}
remove from L; every element that is greater than ¢

return the largest element in L,

V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

n =[S Returns the merged list (in sorted
Lo = {0) order and without duplicates)

1

2

3 fori =1ton P

4 L; = MERGE-LISTS(L;_,, Li_, + x;) (Stx:={st+x:s€ S}
5

6

remove from L; every element that is greater than ¢
return the largest element in L,

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1
2
3
4
5
6

Sl
SR

[implementable in time O(|Li_1|) (like Merge-Sort)]

n =[S Returns the merged list (in sorted
Lo = {0) order and without duplicates)
fori = 1ton

Vo
L; = MERGE-LISTS(L;_y, Li_1 + X;) (S+x:={st+x:s€8}
remove from L; every element that is greater than ¢
return the largest element in L,

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + x;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:

el b

\-,‘E o V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + x;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:
= S={1,4,5},t=10

el b

\-,‘E o V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + x;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:
= S={1,4,5},t=10
* Lo=(0)

i

\-,‘E o V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + x;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:

= S={1,45},t=10
= Lo =(0)

= [y =(0,1)

i

\-,‘E o V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1
2
3
4
5
6

i

n =S|
Lo = {0)
fori = 1ton
L; = MERGE-LISTS(L;—y, Li—1 + x;)
remove from L; every element that is greater than ¢
return the largest element in L,

Example:
S={1,4,5},t=10
Lo = (0)
Ly =(0,1)
L, =(0,1,4,5)
V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + x;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:

= S={1,4,5},t=10
" Lo:<0>

= Li=(0,1)

= [, =(0,1,4,5)

= [3=(0,1,4,5,6,9,10)

V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + x;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:

= S={1,4,5},t=10
" Lo:<0>

= Li=(0,1)

= [, =(0,1,4,5)

= [3=(0,1,4,5,6,9,10)

V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n =S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + x;)
5 remove from L; every element that is greater than ¢
6 return the largest element in L,

= Correctness: L, contains all sums of {xi,X,...,Xn}

Example:

* §={1,4,5} 1

= Lo = <0>

" Li=(0,1)

. =(0,1,4,5)

- =(0,1,4,5,6,9,10)

i

.-,.E;, V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + x;)
5 remove from L; every element that is greater than ¢
6 return the largest element in L, [can be shown by induction on n]
= Correctness: L, contains all sums of {xi,X,...,Xn}
Example:
= S={1,45},t1
= Lo = <0>
= Li=(0,1)
. =(0,1,4,5)
- =(0,1,4,5,6,9,10)

S

.-,.E:,, V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|
2 Lo = (0)
3 fori =1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + x;)
5 remove from L; every element that is greater than ¢
6 return the largest element in L,
= Correctness: L, contains all sums of {xi,X,...,Xn}
s Runti 02" + 22 2" =0(2"
= Runtime: 000 =
- 5={1,4,5), ¢/ @ +2+ - +29=02)
= Lo = <0>
" Li=(0,1)
. =(0,1,4,5)
. =(0,1,4,5,6,9,10)

S

.-,.E;, V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + x;)
5 remove from L; every element that is greater than ¢
6 return the largest element in L,
= Correctness: L, contains all sums of {xi,X,...,Xn}
Example: Runtime: O(2' + 22 2" — 0(2")
= Runtime: FET e qE =
= S={1,45},t1 -
. Lo =

= (0,
=
=

0) [There are 2' subsets of {x, Xz, .. ., x,}.]
1)

0,1,4,5)

0,1,4,5,6,9,10)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

I n=|S|
2 Lo =(0)
3 fori = 1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + x;)
5 remove from L; every element that is greater than ¢
6 return the largest element in L,
= Correctness: L, contains all sums of {xi,X,...,Xn}
manele Runtime: O(2' + 22 + 2") = O(2"
= Runtime: =
- S={1,4,5), 1 e 2+ +2)=02)
* Lo =(0) (There are 2/ subsets of {X1, X, ..., X}] Better runtime if t
= [1 =(0,1) and/or |L;| are small.
* L2 =(0,1,4,5)
= [3=(0,1,4,5,6,9,10)

s
E:';.' V. Approximation via Exact Algorithms The Subset-Sum Problem 4

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

V. Approximation via Exact Algorithms The Subset-Sum Problem

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1

i

-'-.E 5

V. Approximation via Exact Algorithms The Subset-Sum Problem

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

y
— < z<y.
1+6_z_y

e

"nﬂ 5

V. Approximation via Exact Algorithms The Subset-Sum Problem

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

v
144

z<y

AN

<z
[= [=(10,11,12, 15,20, 21,22, 23, 24, 29)

S
V. Approximation via Exact Algorithms The Subset-Sum Problem

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

Yy
— < z<y.

(10,11, 12, 15,20, 21, 22, 23, 24, 29)
0.1

(.,
L

S
V. Approximation via Exact Algorithms The Subset-Sum Problem

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

——<z<y
(. L = (10,11,12,15,20, 21,22, 23, 24, 29)
"= 5=0.1
L = [’ =(10,12,15, 20, 23, 29)

S
E:';.' V. Approximation via Exact Algorithms The Subset-Sum Problem

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

y
— < z<y.
1+6_z_y

TRIM(L, §)

let m be the length of L

L' = (n)

last = y,

fori =2tom

if y; > last - (1 + 9) // y;i > last because L is sorted

append y; onto the end of L’
last = y;

return L’

=R B S I

V. Approximation via Exact Algorithms The Subset-Sum Problem

VB
God
il

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

1446
TRIM(L, §)
1 let m be the length of L
2 L= {n)
3 last = y;
4 fori =2tom
5 if y; > last - (1 + 9) // y;i > last because L is sorted
6 append y; onto the end of L’
7 last = y;
8 return L’
(TRIM works in time ©(m), if L is given in sorted order.]
iﬂﬁ V. Approximation via Exact Algorithms The Subset-Sum Problem

¥
God
¥

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

. bl

.-,.E:,, V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

L={10,11,12,15,20,21,22,23, 24, 29)

L=

i
E:';.! V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

L={10,11,12,15,20,21,22,23, 24, 29)

L' = (10)

i
E:';.! V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

L' = (10)

i
E:';.! V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

|

L' = (10)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

[i
L' = (10)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)
1 let m be the length of L
2 L'={n)
3 last = y,
4 fori =2tom
5 if y; > last- (1 +6) // y; > last because L is sorted
6 append y; onto the end of L’
7 last = y;
8 return L’

6=01

last
L=(10,11,12,15,20,21,22,23,24,29)
L
!
L"={10,12)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)
1 let m be the length of L
2 L'={n)
3 last = y,
4 fori =2tom
5 if y; > last- (1 +6) // y; > last because L is sorted
6 append y; onto the end of L’
7 last = y;
8 return L’

6=01

last
L=(10,11,12,15,20,21,22,23,24,29)
L
!
L"={10,12)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)
1 let m be the length of L
2 L'={n)
3 last = y,
4 fori =2tom
5 if y; > last- (1 +6) // y; > last because L is sorted
6 append y; onto the end of L’
7 last = y;
8 return L’

6=01

last
L=(10,11,12,15,20,21,22,23,24,29)
L
!
L"={10,12)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

L
L' = (10,12, 15)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

L
L' = (10,12, 15)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

]i
L' = (10,12, 15)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

L' = (10,12, 15, 20)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

L' = (10,12, 15, 20)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

[
L' =(10,12,15,20)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

[
L' =(10,12,15,20)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

|
L' =(10,12,15,20)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

|
L'=(10,12,15,20,23)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

|
L'=(10,12,15,20,23)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

[
L'=(10,12,15,20,23)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

L'=(10,12,15,20,23)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

'={10,12,15, 20,23, 29)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

'={10,12,15, 20,23, 29)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

The FPTAS

APPROX-SUBSET-SUM(S, t,€)

W N =

4
5
6
7
8

n = |S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L + Xx;)
L; = TRIM(L;,€/2n)
remove from L; every element that is greater than ¢
let z* be the largest value in L,
return z*

V. Approximation via Exact Algorithms

The Subset-Sum Problem

The FPTAS

APPROX-SUBSET-SUM(S, t,€) EXACT-SUBSET-SUM(S, 1)
1 n=|S| I n=|S|
2 Lo=(0) 2 Lo =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS (L;—y, Li—1 + X;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
| 5 L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than7 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z*

V. Approximation via Exact Algorithms The Subset-Sum Problem 7

The FPTAS

APPROX-SUBSET-SUM(S, t,€)

EXACT-SUBSET-SUM(S, 1)

1 n=|S| I n=|S|
2 Lo =(0) 2 Lo =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS (L;—y, Li—1 + X;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
5 L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than7 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z* o~
Repeated application of TRIM

to make sure L;’s remain short.

5y V. Approximation via Exact Algorithms The Subset-Sum Problem 7

The FPTAS

APPROX-SUBSET-SUM(S, t,€) EXACT-SUBSET-SUM(S, 1)
1 n=|S| I n=|S|
2 Lo =(0) 2 Lo =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS (L;—y, Li—1 + X;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
| 5 L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than7 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z*

S

Repeated application of TRIM
to make sure L;’s remain short.

= We must bound the inaccuracy introduced by repeated trimming

i
V. Approximation via Exact Algorithms The Subset-Sum Problem 7

The FPTAS

APPROX-SUBSET-SUM(S, t,€) EXACT-SUBSET-SUM(S, 1)
1 n=|S| I n=|S|
2 Lo =(0) 2 Lo =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS (L;—y, Li—1 + X;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
| 5 L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than7 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z*

S

Repeated application of TRIM
to make sure L;’s remain short.

= We must bound the inaccuracy introduced by repeated trimming
* We must show that the algorithm is polynomial time

i
E:';.' V. Approximation via Exact Algorithms The Subset-Sum Problem 7

The FPTAS

APPROX-SUBSET-SUM(S, t,€) EXACT-SUBSET-SUM(S, 1)
1 n=|S| I n=|S|
2 Lo =(0) 2 Lo =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS (L;—y, Li—1 + X;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
| 5 L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than7 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z*

S

Repeated application of TRIM
to make sure L;’s remain short.

= We must bound the inaccuracy introduced by repeated trimming
* We must show that the algorithm is polynomial time

AN

[Solution is a careful choice of 5!]

i
E:';.! V. Approximation via Exact Algorithms The Subset-Sum Problem 7

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 =S|

2 Loy =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

V. Approximation via Exact Algorithms

The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4

V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

V. Approximation via Exact Algorithms

The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

= line 2: Ly = (0)

= line 4: Ly = (0,104)

i

.-,.E:,, V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)
*= line 4: L, = (0,102, 104, 206)

i
E:';.' V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

* line 4: L, = (0,102, 104, 206)
*= line 5: L, = (0,102, 206)

i
E:';.' V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

* line 4: L, = (0,102, 104, 206)
= line 5: L, = (0,102, 206)

= line 6: L, = (0,102,206)

i
E:';.! V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)

= line 5: L, = (0,102, 206)
= line 6: L, = (0,102,206)

(
(
(
* line 4: L, = (0,102, 104, 206)
(
(
= line 4: Ly = (0,102,201, 206, 303, 407)

i
E:';.! V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

* line 4: L, = (0,102, 104, 206)

= line 5: L, = (0,102, 206)

= line 6: L, = (0,102,206)

= line 4: L3 = (0,102,201, 206, 303, 407)
= line 5: L3 = (0,102,201, 303, 407)

i
E:';.! V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

* line 4: L, = (0,102, 104, 206)

= line 5: L, = (0,102, 206)

= line 6: L, = (0,102,206)

= line 4: L3 = (0,102,201, 206, 303, 407)
= line 5: Ly = (0,102,201, 303 407)

= line 6: L3 = (0,102,201 303)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

* line 4: L, = (0,102, 104, 206)

= line 5: L, = (0,102, 206)

= line 6: L, = (0,102,206)

= line 4: L3 = (0,102,201, 206, 303, 407)

= line 5: Ly = (0,102,201, 303 407)

= line 6: L3 = (0,102,201 303)

*= line 4: Ly = (0,101, 102,201, 203, 302, 303, 404)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|
2 Loy =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
5 L; = TRIM(L;,€/2n)
6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,
8 return z*
= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)
= line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)
* line 4: L = (0,102, 104, 206)
* line 5: Lp = (0. 102, 206)
= line 6: L, = (0,102,206)
= line 4: L3 = (0,102,201, 206, 303, 407)
= line 5: Ly = (0,102,201, 303 407)
= line 6: Lg = (0,102, 201, 303)
= line 4: L4 = (0,101,102,201,203, 302, 303, 404)
= line 5: Ly = (0,101,201, 302, 404)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

= line 2:
= line 4:
= line 5:
= line 6:

= line 4:
= line 5:
= line 6:
= line 4:
= line 5:
= line 6:
= line 4:
= |line 5:
= line 6:

Lo = (0)

Ly = (0,104)

Ly = (0,104)

Ly = (0,104)

Lo = (0,102,104, 206)

L5 = (0,102, 206)

L5 = (0,102, 206)

Ls = (0,102, 201,206, 303, 407)
Ls = (0,102,201, 303, 407)

Ls = (0,102,201, 303)

L4 =(0,101,102,201,203, 302, 303, 404)
L, =(0,101,201,302, 404>
L, = (0,101,201, 302)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

* line 4: L, = (0,102, 104, 206)

= line 5: L, = (0,102,206)

= line 6: L, = (0,102,206)

* line 4: Ly = (0,102, 201, 206, 303, 407)

* line 5: Ly = (0,102, 201, 303, 407)

* line 6: Ly = (0,102,201, 303)

= line 4: Ly = (0,101,102,201, 203, 302, 303, 404)

* line 5: Ly = (0,101,201, 302, 404) Returned solution z* = 302, which is 2%
- line 6: Ly = (0,101,201,302) <{within the optimum 307 = 104 + 102 + 101

5
E:';.' V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

i
E:';.! V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

= Returned solution z* is a valid solution v*

i
E:';.! V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution

i
E:';.! V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution
= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution
= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:

y

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution
= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:

Yy
(1+¢/(2n)y

N

(Can be shown by induction on ij

<z<y

5
E:';.' V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
e

(1+¢/(2n)y
N
(Can be shown by induction on ij

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
<y T L csqy
(1+¢/(2m) (1+¢/(2n)"
1

(Can be shown by induction on ij

5
E:';.' V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
<y T L csqy
(1+¢/(2m) (1+¢/(2n)"
1 y* e\”
(Can be shown by induction on ij 7S (1 + E) ’

5
E:';.' V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
<y T L csqy
(1+¢/(2m) (1+¢/(2n)"
1 y* e\”
. . ; — < —
(Can be shown by induction on /j z = (1 + gn) ’

n
and now using the fact that (1 + ﬁ) nge

L % e¢/2 yields

5
E:';.' V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
<y T L csqy
(1+¢/(2m) (1+¢/(2n)"
1 y* e\”
. . ; — < —
(Can be shown by induction on /j z = (1 + gn) ’

n
and now using the fact that (1 + ﬁ) nge

L % e¢/2 yields

.
AP
— <

sl
EEE V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
<y T L csqy
(1+¢/(2m) (1+¢/(2n)"
* n
L ; o1+ 2,
(Can be shown by induction on /j z 2n

n
and now using the fact that (1 + ﬁ) nge

L % e¢/2 yields

K < g/? (Taylor approximation of ej
z =

sl
EEE V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
<y T L csqy
(1+¢/(2m) (1+¢/(2n)"
* n
L ; o1+ 2,
(Can be shown by induction on /j z 2n

n
and now using the fact that (1 + ﬁ) nge

L % e¢/2 yields

IN

K e/ (Taylor approximation of ej
z =

<14e/24(e/2)?

sl
EEE V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
<y T L csqy
(1+¢/(2m) (1+¢/(2n)"
* n
L ; o1+ 2,
(Can be shown by induction on /j z 2n

n
and now using the fact that (1 + ﬁ) nge

L % e¢/2 yields

IN

K e/ (Taylor approximation of ej
z =

<T14e/2+4 (/22 <14¢

i
EEE V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

i
E:';.! V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is linear in |L;])

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [log . /(25 t] additional values.

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [log . /(25 t] additional values.
Hence,

Iog1+5/(2,,) t+2=

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [log . /(25 t] additional values.
Hence,
Int

lo tp2=—t Lo
9t-+e/(2n) In(1 + ¢/(2n))

i
V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [log . /(25 t] additional values.
Hence,
Int

lo tp2=—t Lo
9t-+e/(2n) In(1 + ¢/(2n))

[Forx> —1,In(1 +x) > ﬁ

s
E:';.' V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is linear in |L;])

= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [log . /(25 t] additional values.

Hence,
Int
“in(1 + ¢/(2n))
2n(1+¢/(2n)) Int 42

€

Iog1+5/(2n) t+2

[Forx> —1,In(1 +x) > ﬁ

5
E:';.' V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is linear in |L;])

= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [log . /(25 t] additional values.

Hence,
Int
“in(1 + ¢/(2n))
2n(1+¢/(2n)) Int 42

€

Iog1+5/(2n) t+2

3nint
€

+2.

[Forx> —1,In(1 + x) > ﬁ

i
EEE V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is linear in |L;])

= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [log . /(25 t] additional values.

Hence,
Int
“in(1 + ¢/(2n))
2n(1+¢/(2n)) Int 42

€

Iog1+5/(2n) t+2

3nint
€

+2.

[Forx> —1,In(1 + x) > ﬁ

= This bound on |L;| is polynomial in the size of the input and in 1/e.

5
E:';.' V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is linear in |L;])

= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [log . /(25 t] additional values.

Hence,
Int
~ (1 + ¢/(2n))
2n(1+¢/(2n)) Int 42

€

Iog1+5/(2n) t+2

[Forx>f1,ln(1+x)2ﬁ 3n|nt+2.
€
= This bound on |L;| is polynomial in the size of the input and in 1/e. O
g

[Need log(t) bits to represent t and n bits to represent S]

5
EEE V. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢
» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.

V. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢
» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.
——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

. bl

.-,.E:,, V. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢

= Goal: Find a subset S’ C S which maximizes)", wes Xi <t

——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

\

The Knapsack Problem

= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t

i

‘-,.E;, V. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢

= Goal: Find a subset S’ C S which maximizes)", wes Xi <t

——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

\

The Knapsack Problem

= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

i

‘-,.E;, V. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢

= Goal: Find a subset S’ C S which maximizes)", wes Xi < L.

——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

\

The Knapsack Problem

= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes). g Vi

2. satisfies Y ;cq W <t

e

.-,.E;, V. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., Xo} and positive integer

» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.

t

~——— Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

\

)

[A more general problem than Subset-Sum]

The Knapsack Problem

V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes). g Vi

2. satisfies Y ;cq W <t

. b

.-,.E:,, V. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., Xo} and positive integer

= Goal: Find a subset S’ C S which maximizes > g Xi <t

i x;€

t

~——— Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

\

)

[A more general problem than Subset-Sum]

The Knapsack Problem

V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes). g Vi

2. satisfies Y ;cq W <t

— Theorem

There is a FPTAS for the Knapsack problem.

\

i
E:';.' V. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢
* Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.
~——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

[A more general problem than Subset-Sum]
V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which
1. maximizes). g Vi
2. satisfies 3, cq w; < t

The Knapsack Problem

pe
LAIgorithm very similar to APPROX-SUBSET-SUM

— Theorem -

There is a FPTAS for the Knapsack problem.]

i
E:';.! V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Outline

Parallel Machine Scheduling

55 V. Approximation via Exact Algorithms

Parallel Machine Scheduling

Parallel Machine Scheduling

Machine Scheduling Problem

m identical machines My, Mx, ..., Mn,

= Given: njobs Ji, s, ..., Jn with processing times p1, po, . . .

, Pn, and

V. Approximation via Exact Algorithms Parallel Machine Scheduling

Parallel Machine Scheduling

Machine Scheduling Problem
= Given: njobs Ji, J, ..., Jy with processing times p1, po, . . ., pn, and
m identical machines My, Mx, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cx is the completion time of job Jk.

i

.-,.E;, V. Approximation via Exact Algorithms Parallel Machine Scheduling

Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, J, ..., Jy with processing times p1, po, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cx is the completion time of job Jk.

. bl

.-,.E:,, V. Approximation via Exact Algorithms Parallel Machine Scheduling

Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jn With processing times py, pe, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cx is the completion time of job Jk.

Jo]

T T T T
T T T T T

6 7 8 9 10 11 12 13 14 15

Parallel Machine Scheduling

Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jn With processing times py, pe, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cx is the completion time of job Jk.

i)

T T
T T T

6 7 8 9 10 11 12 13 14 15

Parallel Machine Scheduling

Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jn With processing times py, pe, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cx is the completion time of job Jk.

For the analysis, it will be convenient to denote
by C; the completion time of a machine i.

« D O)
w(e)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 12

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

5
V. Approximation via Exact Algorithms Parallel Machine Scheduling

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

w (e)

M, [| J |)

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

w (e)

m N |)

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LIST SCHEDULING(J1, U, . . ., Jn, M)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load

5
EEE V. Approximation via Exact Algorithms Parallel Machine Scheduling

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

w (e)

M1.[_ J2 - ji

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

[
LIST SCHEDULING(J1, U, . . ., Jn, M)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load

%) V. Approximation via Exact Algorithms Parallel Machine Scheduling 13

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

w (e)

M1.[_ J2 -]i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

[
LIST SCHEDULING(J1, U, . . ., Jn, M)
1: while there exists an unassigned job

2: Schedule job on the machine with the least load
[N

[How good is this most basic Greedy Approach?j

%) V. Approximation via Exact Algorithms Parallel Machine Scheduling 13

List Scheduling Analysis (Observations)

i
E:';.' V. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Crax > max py.
max = 1§k§np

«,‘E o V. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Crax > max py.
max = 1§k§np

b. The optimal makespan is at least as large as the average machine
load, that is,

. o1
Cmax Z Ezpk

k=1

el b

«,‘E o V. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Crax > max py.
max = 1§k§np

b. The optimal makespan is at least as large as the average machine
load, that is,

. o1
Cmax Z Ezpk

k=1

Proof:

el b

«,‘E o V. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Crax > max pg.
max = 1§k§np

b. The optimal makespan is at least as large as the average machine
load, that is,

. o1
Cmax 2 Ezpk

k=1

Proof:
b. The total processing times of all n jobs equals Y ;_, p«

i

‘-,‘E',‘ V. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Crax > max pg.
max = 1§k§np

b. The optimal makespan is at least as large as the average machine
load, that is,

. o1
Cmax 2 Ezpk

k=1

Proof:
b. The total processing times of all n jobs equals Y ;_, p«
= One machine must have a load of at least X - S°7_, p«

V. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

1 n
Cinax < E;pk + max pg.

1<k<n

\

Hence list scheduling is a poly-time 2-approximation algorithm.

i
E:';.! V. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

1 n
Cinax < E;pk + max pg.

1<k<n

\

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

i
E:';.! V. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

1<k<n

1 n
Cinax < E;pk + max pg.

Hence list scheduling is a poly-time 2-approximation algorithm.

\

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;

i
V. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that
n

1
Cinax < EZ,D;(+ max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;

@ E&EEnC

M; Ji

A L p—

D
| C——
En 0

Cmax

,,ﬂ % V. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966) N\
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

@ E&EEnC
(O S
S e —

M; Ji

A L p—

Cmax

,.E % V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966) N\
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

CCOO@mEEEC
(O
U S v —

M; Ji

A L p—

Cmax

,.E % V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966) N\
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.
Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
= Averaging over K yields:

(R G R) S G
(O
U S v —

M; Ji

A L p—

Cmax

,.E % V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966) N\
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

= Let J; be the last job scheduled on machine M; with Crnax = C;

= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
= Averaging over K yields:

1 m
Ci—p<— C
di i n];é; k
(O G/ S) D
Ty
e EEEEnC)
i 0 Gi—pi

M; Ji

A L p—

Cmax

,.E % V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966) N\
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

= Let J; be the last job scheduled on machine M; with Crnax = C;

= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
= Averaging over K yields:

1 m 1 n
C—-p < EZCkZ Ezpk
k=1 k=1
(S S G G
T
e EEEEnC)
i 0 Ci—pi

M; Ji

A L p—

Cmax

,.E % V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that
n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

\

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
= Averaging over K yields:

1 & 1< 1¢
G- G=pdop = G pct maxp
k=1 k=1 k=1 -
(S S G G
D
aammmhaEmmTnc)
_ 0 Ci — pi

M; Ji

A L p—

Cmax

"E % V. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966) <\
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < Ezpk + max pg.

1<k<n
k=1 -

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

= Averaging over k yields: [Using Ex 35542 &b.]

n

1 m 1 n 1 ~NJ
Cj—P/‘SE;Ck:E;Pk = Cjémkzz;pk+1r2[§§xnpk
)

T

D)
) G|

Cj — Pi Crmax

- P - - -

[
" I
;[7

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966) <\
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < Ezpk + max pg.

1<k<n
k=1 -

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

= Averaging over K yields: [Using Ex 355 a. &b.]

n

1 1 o 1 N
Cj_pISE;Ck:E;pK = C/SE;Pk+1f2ka§)(npk§2'Cmax

D)
) G|

Cj — Pi Cmax

o)
)

- P - - -

(
" I
%[F

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

Improving Greedy

Analysis can be shown to be almost tight. Is there a better algorithm?

V. Approximation via Exact Algorithms Parallel Machine Scheduling

Improving Greedy

(The problem of the List-Scheduling Approach were the large jobs]

—
[Analysis can be shown to be almost tight. Is there a better algorithm?

V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

(The problem of the List-Scheduling Approach were the large jobs]

—
[Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Js, . . ., Jp, M)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=0
: end for
cforj=1ton
i =argmin, ., Ck
Si=SuU{j},C=Ci+p
: end for
creturn Sy, ..., Sy

1

V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

(The problem of the List-Scheduling Approach were the large jobs]

—
[Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Js, . . ., Jp, M)
1: Sort jobs decreasingly in their processing times
2. fori=1tom

3: Ci=0
4: S,' =0
5. end for
6: forj=1ton
7: i =argmin, ., Ck
8: S,':S,'U{j}, C,-:C,'erj
9: end for
10: return Sy, ..., Sp
O
Runtime:

V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

(The problem of the List-Scheduling Approach were the large jobs]

—
[Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Js, . . ., Jp, M)
1: Sort jobs decreasingly in their processing times
2. fori=1tom

3: Ci=0
4: S,' =0
5. end for
6: forj=1ton
7: i =argmin, ., Ck
8: S,':S,'U{j}, C,-:C,'erj
9: end for
10: return Sy, ..., Sp
O
Runtime:

= O(nlog n) for sorting

V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

(The problem of the List-Scheduling Approach were the large jobs]

—
[Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Js, . . ., Jp, M)
1: Sort jobs decreasingly in their processing times
2. fori=1tom

3: Ci=0
4: S,' =0
5. end for
6: forj=1ton
7: i =argmin, ., Ck
8: S,':S,'U{j}, C,-:C,'erj
9: end for
10: return Sy, ..., Sp
O
Runtime:

= O(nlog n) for sorting
= O(nlog m) for extracting (and re-inserting) the minimum (use priority queue).

5
EEE V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]
N

[This can be shown to be tight (see next inde).J

5
EE? V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).

i
E:';.! V. Approximation via Exact Algorithms Parallel Machine Scheduling

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.

i
E:';.! V. Approximation via Exact Algorithms Parallel Machine Scheduling

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Crax > 2 - Pm1-

i
E:';.! V. Approximation via Exact Algorithms Parallel Machine Scheduling

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).

= Observation 1: If there are at most m jobs, then the solution is optimal.

= Observation 2: If there are more than m jobs, then Crax > 2 - Pm1-
= As in the analysis for list scheduling

,,ﬂ % V. Approximation via Exact Algorithms Parallel Machine Scheduling

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).]

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Crax > 2 - Pm1-
= As in the analysis for list scheduling, we have

Cmax = Cj = (C]—P:)+P:

,,ﬂ % V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Crax > 2 - Pm1-
= As in the analysis for list scheduling, we have

* 1 >k
Cmax - Cj - (C/ - ,0/) + Pi < Cmax + Ecmax
NN

(This is for the case i > m + 1 (otherwise, an even stronger inequality holds))

X
O 17—)
1)
—
=2l
<~
N5

i
EEE V. Approximation via Exact Algorithms Parallel Machine Scheduling

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Crax > 2 - Pm1-
= As in the analysis for list scheduling, we have

* 1 * 3
Cmax = G = (Cj— pi) + pi < Crmax + Ecmax = Ecmax- O

,,ﬂ % V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

i
V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof of an instance which shows tightness:

S
E:';.' V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof of an instance which shows tightness:
= m machines

S
E:';.! V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

S
V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11:

01234567 8 91011121314151617181920

i
V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11: T P

T .

T .

L e e

otig o e

\9\\9\\ I TRY ‘\ :\ ! !
Vs BBl
M, Conon e \\6:\6:\ e

[T :\ :\ I T N SR NS N
Ms 't i trliry
My R
M1 |G L U SO L LN LSS GRS WL R

01234567 8 91011121314151617181920

5
EEE V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11:

9) -
123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11:

9)
9) -
123 456 7 8 91011121314151617 181920

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11:

8)
9)
5) ot
123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11:

1
l
9) !
9] L L Y O L L
123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11:

‘\
|
9) !
9] __‘l_;‘l_/‘__“__“__
123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11:

9)
9) -
123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m—1,2m—-2,...

m=5n=11:

,m and one job of length m

123 456 7 8 9101112183

14 1516 17 18 19 20

V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11:

e {1
8) 6) {1
8 X 6) :5::5::5:
9) 1
9] e

123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11:

A S—— i
8 6) 515
8) 6) oS
9 5) 2
9] !

123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11:

)
)
)
)

9) 5) -~

123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11:
7 J 7)
8 X 6)
8 X 6)
9 I 5)
9) 5) 5)

123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11:

Crnax =19

U

9) 5 X 5)

123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11: W 1=~ LPTgives Crax =19
T .
1111t
(T :\ :\ neonT
R T H H T H i PR
| | | 2
M SRR EEEEEEE
M A APPSR
" R R I A Y
3 \HH:\:\HH:\:\HH‘
M, AR
M1 |G L U SO L LN LSS GRS WL R

01234567 8 91011121314151617181920

5
EEE V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11:

9) -
123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11:

9)
9) -
123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11:

8)
9)
5) ot
123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11: LPT gives Cmnax = 19

)

] - e

I
I
I
I
M

123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms

Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11: LPT gives Cmnax = 19

9)
9)
123 456 7 8 91011121314151617 181920

8 X 7] BB

V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11: LPT gives Cmnax = 19

8) 7)

9) -
123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11: LPT gives Cmnax = 19

8) 7) e

— o R A
5 T o
9] L N

123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11: LPT gives Cmnax = 19

8) 7)
8 X 7)
9)(6)
9) 6)
123456 7 8 91011121314151617181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= m machines

= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11: LPT gives Cnax = 19
M5) L
M. 8 7 Lon
i X) Be
Ms(8 X 7) §
Mo 9 I 6) o

ES

(9) 6)
0123 4546 7 8 91011121314 151617 18 1920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11: LPT gives Cmnax = 19

)
8) 7)
)

9) 6) -
1234567 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11: LPT gives Cmnax = 19

)
)
8) 7)
)
)

123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11: LPT gives Cmnax = 19

Crax = 15

)
)
8) 7)
)
)

f

123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11: LPT gives Cmnax = 19
Optimum is Cra = 15

Crax = 15

)
)
8) 7)
)
)

f

123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11: LPT gives Cmnax = 19
Optimum is Cra = 15

Crax = 15

123 456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact px’s.

el b

V. Approximation via Exact Algorithms Parallel Machine Scheduling

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, J2, ..., Jn,m, T)
1. Either: Return a solution with Cmax < (1 +€) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

e
V. Approximation via Exact Algorithms Parallel Machine Scheduling

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, J2, ..., Jn,m, T)
1. Either: Return a solution with Cmax < (1 +€) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Key Lemma
‘ SUBROUTINE can be implemented in time n®(/<").]

e
E:';.! V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, J2, ..., Jn,m, T)
1. Either: Return a solution with Cmax < (1 +€) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U
‘ SUBROUTINE can be implemented in time n®(/<").

e
V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, J2, ..., Jn,m, T)
1. Either: Return a solution with Cmax < (1 +€) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U~
. . . 2
SUBROUTINE can be implemented in time n°(/<).

\. J

~——— Theorem (Hochbaum, Shmoys’87) N\
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°(/¥) . log P), where P := 3"7_, px.

\. J

i
V. Approximation via Exact Algorithms Parallel Machine Scheduling

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, J2, ..., Jn,m, T)
1. Either: Return a solution with Cmax < (1 +€) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U~
. . . 2
SUBROUTINE can be implemented in time n°(/<).

\. J

~——— Theorem (Hochbaum, Shmoys’87) N\
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°(/¥) . log P), where P := 3"7_, px.

\. J

Proof (using Key Lemma):
PTAS(J1, 2, ..., Jdn,m)
1: Do binary search to find smallest T s.t. Cnax < (1 +¢€) - max{T, Cnax}-
2: Return solution computed by SUBROUTINE(J1, Jo, ..., Jn,m, T)

5
V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, J2, ..., Jn,m, T)
1. Either: Return a solution with Cmax < (1 +€) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U~
. . . 2
SUBROUTINE can be implemented in time n°(/<).

\. J

~——— Theorem (Hochbaum, Shmoys’87) N\
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°(/¥) . log P), where P := 3"7_, px.

Proof (using Key Lemma): | binary search terminates after O(log P) steps.
PTAS(i, o, ..., dn,m) ==
1: Do binary search to find smallest T s.t. Cnax < (1 +¢€) - max{T, Cnax}-
2: Return solution computed by SUBROUTINE(J1, Jo, ..., Jn,m, T)

Since 0 < Ciax < P and Cia is integral, J

i
EEE V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, J2, ..., Jn,m, T)
1. Either: Return a solution with Cmax < (1 +€) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U~
. . . 2
SUBROUTINE can be implemented in time n°(/<).

\. J

~——— Theorem (Hochbaum, Shmoys’87) N\
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°/¥) . log P), where P := 3-7_, px.

Proof (using Key Lemma): | binary search terminates after O(log P) steps.
PTAS(i, o, ..., dn,m) ==
1: Do binary search to find smallest T s.t. Cnax < (1 +¢€) - max{T, Cnax}-
2: Return solution computed by SUBROUTINE(J1, Jo, ..., Jn,m, T)

Since 0 < Ciax < P and Cia is integral, J

i
EEE V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, J2, ..., Jn,m, T)
1. Either: Return a solution with Cmax < (1 +€) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U~
. . . 2
SUBROUTINE can be implemented in time n°(/<).

\. J

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°/¥) . log P), where P := 3-7_, px.

Cpolynomial in the size of the input Since 0 < Chax < P and Cly is integral, J

~

Proof (using Key Lemma): | binary search terminates after O(log P) steps.
PTAS(i, o, ..., dn,m) ==
1: Do binary search to find smallest T s.t. Cnax < (1 +¢€) - max{T, Cnax}-
2: Return solution computed by SUBROUTINE(J1, Jo, ..., Jn,m, T)

i
EEE V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

5
E:';.' V. Approximation via Exact Algorithms Parallel Machine Scheduling

20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

i
E:';.' V. Approximation via Exact Algorithms Parallel Machine Scheduling

20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:

i
E:';.' V. Approximation via Exact Algorithms Parallel Machine Scheduling

20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load

i
E:';.' V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.

i
E:';.! V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

i
E:';.! V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 n
Ci—p < mzpk
A k=1

(the “well-known” formula)

i
V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 n
Cj_piﬁmzpk =
A k=1

(the “well-known” formula)

i
V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 o 1 &
Cj—PISEZPk = C/SP"'_EZ'D"
N k=1 k=1

(the “well-known” formula)

i
V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 < 1<
Cj—PISEZPk = C/SP"'_EZ'D"
N k=1 k=1
(the “well-known” formula) <e- T+ Cra

i
V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 o 1 &
Cj—PISEZPk = C/SP"'_EZ'D"
N k=1 k=1

(the “well-known” formula) <e- T+ Cra
<(1+e¢)-max{T,Crax} O

S
V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + €) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 o 1 &
Cj—PISEZPk = C/SP"'_EZ'D"
N k=1 k=1

(the “well-known” formula) <e- T+ Cra
<(1+e¢)-max{T,Crax} O

S
V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

«,‘E o V. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

= Let b be the smallest integer with 1/b < e.

i

\-,‘E o V. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

h2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [%] .

i

T

b2

.-,.E;, V. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

. ib?
= Let b be the smallest integer with 1/b < e. Define processing times p; = ['J’T] . b—TZ

P1
P2
Ps
Illﬁaa

.-,.E;. V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2

15.T " e=05
125.T

1.7 "b=2
0.75- T + |ps

05.T H
0.25-3

. b

.-,.E:,, V. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2

15.T cc=05
125.7

1.7 rh=2
0.75- T +|p

05T +i- % ————————
0257

. b

.-,.E:,, V. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2

1.5

5T "e=05
125-T
[] — 2
1-T b
0.75-T + |P1
0.5-T+{-{PeLf) - -
025-T Ds
0
Jlarge lJsma\ll

i
V. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jiarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2

15.-T " e=05 15.-T
125 T . h— 125-T
1.7 b=2 1.7
0.75-T + [P 0.75-T
0.5-T+{-{PeLf) - - 05T
025-T Ps 025-T
0 0
Jlarge lJsma\ll

V. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jiarge With makespan (1 +¢) - T.

)

2

= Let b be the smallest integer with 1/b < e. Define processing times p; = [@] . b—T2
15.T = e=05 15.-T
1.25-T 125.T
[= 2
1.T b 1.-T
0.75-T + |Ps 0.75- T 1 |p}
0.5-T+{-{PeLf) - - 05T ph
025-T Ps 025-T Ps
0 0-———
Jlarge lJsma\ll Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [’J’T] L

b2
= Every pI{ = - b_T2 fora=b,b+1,..., b2 {Can assume there are no jobs with p; > T!J

15.T " e¢=05 1.5.T
125.T o 125.T
1T b=2 1T
0.75- T + |pi 0.75- T +|p}
0.5-T+{-{PeLf) - - 05T ph
025-T s 0.25-T e
0 0-—— —
Jlarge Jsmall Jlarge

i
V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’—] L

T b2
N
= Everyp,f:a~§fora:b,b+1,...,b2

= LetCbe all (Sp, Sp1,-- -, Sye) with S5 - - L<rT
15.T " e¢=05 1.5.T
125-T 125-T
L] = 2
1.T b 1-T
0.75- T + |pi > 0.75.T +|p,
0.5-T+{-{PeLf) - - 05T ph
025-T s 0.25-T P
0 0-—— —
Jlarge Jsmall Jlarge

i
E:';.! V. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’—] L

T b2
N
= Everyp,f:owﬁforoz:b,b—H,...,b2

2 T n
= LetCbe all (Sp, Spy1, - - - » Sp2) With 32 s j- L < T. JAssignments to one machine
(S0, St S2) Z'_j / b2 = with makespan < T.

15.T " e¢=05 1.5.T
125.T o 125.T
1T b=2 1T
0.75- T + |pi 0.75- T +|p}
0.5-T+{-{PeLf) - - 05T ph
025-T s 0.25-T e
0 0-—— —
Jlarge Jsmall Jlarge

i
V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
= Everyp/ =a- b—T2 fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:

15.T - =05
125.T

1.7 nh=2
0.75- T + |pi

05-T % 77777777
0257

Jlarge

lJsmall

—_

15.
1.25.
1.
0.75 -
0.5
0.25.

o~~~ —=49-

.'a"n
V. Approximation via Exact Algorithms

Parallel Machine Scheduling

21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
= Everyp/ =a- b—T2 fora=bb+1,...,b?
. 2 .
-mcmwwm%mmﬁwmngqpégr
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:

£(0,0,...,0) =0

15T - =05
125.T

1.7 nh=2
0.75- T + |pr

05-T+f- % 77777777
0257

Jlarge

lJsmall

15.
1.25.
1.
0.75 -
0.5
0.25.

o~~~ —=4-

.'a"n
V. Approximation via Exact Algorithms

Parallel Machine Scheduling

21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [’J’T] .

= Everyp,f:opb—rzfora:b,b—H,...,b2

. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - b—T2 <T.
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(Np, N1, -, M) =1+ min f(Np — Spy N1 — Spts -+ M2 — Sp2)-

(SbsSp415---,5,2)EC

15.T " e¢=05 1.5.T
125.T o 125.T
1T b=2 1T
0.75- T + |pi 0.75- T +|p}
0.5-T+{-{PeLf) - - 05T ph
025-T s 0.25-T
0 0-—— —
Jlarge Jsmall Jlarge

i
V. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
Let b be the smallest integer with 1/b < . Define processing times p; = [p’—] .

&
= Evel’yplf:a~b—T2f0roz:b,b+1,...,b2

Let C be all (Sp, Sp.1, -, Sy) with S5 s - - L<rT

= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T: [assign some jobs to one machine, and then
£(0,0,...,0)=0 use as few machines as possible for the rest.

. /
f(Nps Nty Mp2) =1+ min f(Np — Spy N1 — Spts -+ M2 — Sp2)-

(SbsSp415---,5,2)EC

15.T " e¢=05 1.5.T
125.T o 125.T
1T b=2 1T
0.75- T + |pi 0.75- T +|p}
0.5-T+{-{PeLf) - - 05T ph
025-T s 0.25-T
0 0-—— —
Jlarge Jsmall Jlarge

i
V. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.]

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
= Let C be all (Sp, Spi1,- - - » Sp2) With zf’:js,- - b—Tz <T.
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+11""nb2):1+ min f(nb_sb’nb+1_sb+15"'7nb2_sb2)‘
(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)

. b

.-,.E:,. V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
Let b be the smallest integer with 1/b < . Define processing times p; = [p’—] .

&
= Evel’yp;:a~b—2f0ra:b,b+1,...,b2

Let C be all (sb,sb+1,...,sb2)withZ,‘-’:zjsj~j~b—Tz <T.

= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+11""nb2):1+ min f(nb_sbanb+1_sb+15"'7nb2_sb2)‘

(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

i
V. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [”’T] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
= Let C be all (Sp, Spi1,- - - » Sp2) With zf’:js,- - b—Tz <T.
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+17""nb2):1+ min f(nb_sbanb+1_sb+15"'7nb2_sb2)‘
(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

= As every machine is assigned at most b jobs (p; > %) and the makespanis < T,

i
E:';.' V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jiarge With makespan (1 +¢) - T.

)

b2
Let b be the smallest integer with 1/b < . Define processing times p; = [p’—] .

&
= Evel’yp;:a~b—2f0ra:b,b+1,...,b2

Let C be all (Sp, Sp.1, -, Sy) with S5 s - - L<rT

= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+17""nb2):1+ min f(nb_sbanb+1_sb+15"'7nb2_sb2)‘

(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

= As every machine is assigned at most b jobs (p; > %) and the makespanis < T,

Cmax < T+ b- max (p; — pj)

i€ Jiarge

i
E:';.' V. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jiarge With makespan (1 +¢) - T.

)

b2
Let b be the smallest integer with 1/b < . Define processing times p; = [p’—] .

&
= Evel’yp;:a~b—2f0ra:b,b+1,...,b2

Let C be all (Sp, Sp.1.-- . Spe) With % 5/ - L < T.

= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+17""nb2):1+ min f(nb_sbanb+1_sb+15"'7nb2_sb2)‘

(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

= As every machine is assigned at most b jobs (p; > %

Cmax < T+ b- max (p; — pj)

i€ Jiarge

<T+b L
b2

) and the makespanis < T,

i
E:';.' V. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jiarge With makespan (1 +¢) - T.

)

b2
Let b be the smallest integer with 1/b < . Define processing times p; = [p’—] .

&
= Evel’yp;:a~b—2f0ra:b,b+1,...,b2

Let C be all (Sp, Sp.1.-- . Spe) With % 5/ - L < T.

= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+17""nb2):1+ min f(nb_sbanb+1_sb+15"'7nb2_sb2)‘

(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

= As every machine is assigned at most b jobs (p; > %

Cmax < T+ b- max (p; — pj)

i€ Jiarge

.
STHb o <(+a:T. O

) and the makespanis < T,

i
E:';.' V. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Final Remarks

[— Graham 1966
L

ist scheduling has an approximation ratio of 2.

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

s
Sl

V. Approximation via Exact Algorithms Parallel Machine Scheduling

22

Final Remarks

——— Graham 1966

List scheduling has an approximation ratio of 2.

——— Graham 1966

The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

\.

~——— Theorem (Hochbaum, Shmoys’87)

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°(1/¥) . log P), where P := "7 px.

\.

i
V. Approximation via Exact Algorithms Parallel Machine Scheduling

22

Final Remarks

——— Graham 1966

List scheduling has an approximation ratio of 2.

\.

——— Graham 1966

The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

\.

~——— Theorem (Hochbaum, Shmoys’87)

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°(1/¥) . log P), where P := "7 px.

\.

Can we find a FPTAS (for polynomially bounded processing times)?

\

i
E:';.' V. Approximation via Exact Algorithms Parallel Machine Scheduling

Final Remarks

——— Graham 1966

List scheduling has an approximation ratio of 2.

\.

——— Graham 1966

The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

\.

~——— Theorem (Hochbaum, Shmoys’87)

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°(1/¥) . log P), where P := "7 px.

\.

Can we find a FPTAS (for polynomially bounded processing times)? No!

\

i
E:';.! V. Approximation via Exact Algorithms Parallel Machine Scheduling

Final Remarks

——— Graham 1966 N
List scheduling has an approximation ratio of 2.

~— Graham 1966 N\
The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

~——— Theorem (Hochbaum, Shmoys’87) N\
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°(1/¥) . log P), where P := "7 px.

Can we find a FPTAS (for polynomially bounded processing times)? No!
e

Because for sufficiently small approximation ratio
1 + ¢, the computed solution has to be optimal, and
Parallel Machine Scheduling is strongly NP-hard.

5
V. Approximation via Exact Algorithms Parallel Machine Scheduling

22

	The Subset-Sum Problem
	Parallel Machine Scheduling

