V. Approximation Algorithms via Exact
Algorithms

Thomas Sauerwald

Easter 2016

UNIVERSITY OF
% CAMBRIDGE




Outline

The Subset-Sum Problem

55 V. Approximation via Exact Algorithms The Subset-Sum Problem




The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢
* Goal: Find a subset S C S which maximizes 3, , .5 xi < t.
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The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢

* Goal: Find a subset S C S which maximizes 3, , .5 xi < t.
N

This problem is NP-hardj
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The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢

» Goal: Find a subset S C S which maximizes 3, , .o Xi < t.
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The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢
» Goal: Find a subset S C S which maximizes 3, , .o Xi < t.

t =13 tons
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The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢

» Goal: Find a subset S C S which maximizes 3, , .o Xi < t.
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The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢
» Goal: Find a subset S C S which maximizes 3, , .o Xi < t.
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1
2
3
4
5
6

el b

n =S|
Lo = {0)
fori = 1ton
L; = MERGE-LISTS(L;—y, Li—1 + x;)
remove from L; every element that is greater than ¢
return the largest element in L,
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

n =[S Returns the merged list (in sorted
Lo = {0) order and without duplicates)

1

2

3 fori =1ton P

4 L; = MERGE-LISTS(L;_,, Li_, + x;) (Stx:={st+x:s€ S}
5

6

remove from L; every element that is greater than ¢
return the largest element in L,
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1
2
3
4
5
6

Sl
SR

[ implementable in time O(|Li_1|) (like Merge-Sort) ]

n =[S Returns the merged list (in sorted
Lo = {0) order and without duplicates)
fori = 1ton

Vo
L; = MERGE-LISTS(L;_y, Li_1 + X;) (S+x:={st+x:s€8}
remove from L; every element that is greater than ¢
return the largest element in L,
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + x;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:

el b
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + x;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:
= S={1,4,5},t=10

el b
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + x;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:
= S={1,4,5},t=10
* Lo=(0)
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + x;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:

= S={1,45},t=10
= Lo =(0)

= [y =(0,1)
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1
2
3
4
5
6

i

n =S|
Lo = {0)
fori = 1ton
L; = MERGE-LISTS(L;—y, Li—1 + x;)
remove from L; every element that is greater than ¢
return the largest element in L,

Example:
S={1,4,5},t=10
Lo = (0)
Ly =(0,1)
L, =(0,1,4,5)
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n =S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + x;)
5 remove from L; every element that is greater than ¢
6 return the largest element in L,

= Correctness: L, contains all sums of {xi,X,...,Xn}

Example:

* §={1,4,5} 1

= Lo = <0>

" Li=(0,1)

. =(0,1,4,5)

- =(0,1,4,5,6,9,10)

i

.-,.E;, V. Approximation via Exact Algorithms The Subset-Sum Problem




An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + x;)
5 remove from L; every element that is greater than ¢
6 return the largest element in L, [can be shown by induction on n]
= Correctness: L, contains all sums of {xi,X,...,Xn}
Example:
= S={1,45},t1
= Lo = <0>
= Li=(0,1)
. =(0,1,4,5)
- =(0,1,4,5,6,9,10)
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|
2 Lo = (0)
3 fori =1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + x;)
5 remove from L; every element that is greater than ¢
6 return the largest element in L,
= Correctness: L, contains all sums of {xi,X,...,Xn}
s Runti 02" + 22 2" =0(2"
= Runtime: 000 =
- 5={1,4,5), ¢/ @ +2+ - +29=02)
= Lo = <0>
" Li=(0,1)
. =(0,1,4,5)
. =(0,1,4,5,6,9,10)
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + x;)
5 remove from L; every element that is greater than ¢
6 return the largest element in L,
= Correctness: L, contains all sums of {xi,X,...,Xn}
Example: Runtime: O(2' + 22 2" — 0(2")
= Runtime: FET e qE =
= S={1,45},t1 -
. Lo =

= (0,
=
=

0) [There are 2' subsets of {x, Xz, .. ., x,}.]
1)

0,1,4,5)

0,1,4,5,6,9,10)
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

I n=|S|
2 Lo =(0)
3 fori = 1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + x;)
5 remove from L; every element that is greater than ¢
6 return the largest element in L,
= Correctness: L, contains all sums of {xi,X,...,Xn}
manele Runtime: O(2' + 22 + 2") = O(2"
= Runtime: =
- S={1,4,5), 1 e 2+ +2)=02)
* Lo =(0) (There are 2/ subsets of {X1, X, ..., X} ] Better runtime if t
= [1 =(0,1) and/or |L;| are small.
* L2 =(0,1,4,5)
= [3=(0,1,4,5,6,9,10)
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Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.
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Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1

i
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Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

y
— < z<y.
1+6_z_y

e
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Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

v
144

z<y

AN

<z
[ = [ =(10,11,12, 15,20, 21,22, 23, 24, 29)

S
V. Approximation via Exact Algorithms The Subset-Sum Problem



Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

Yy
— < z<y.

(10,11, 12, 15,20, 21, 22, 23, 24, 29)
0.1

(.,
L
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Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

——<z<y
(. L = (10,11,12,15,20, 21,22, 23, 24, 29)
"= 5=0.1
L = [’ =(10,12,15, 20, 23, 29)
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Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

y
— < z<y.
1+6_z_y

TRIM(L, §)

let m be the length of L

L' = (n)

last = y,

fori =2tom

if y; > last - (1 + 9) // y;i > last because L is sorted

append y; onto the end of L’
last = y;

return L’

=R B S I

V. Approximation via Exact Algorithms The Subset-Sum Problem

VB
God
il



Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

1446
TRIM(L, §)
1 let m be the length of L
2 L= {n)
3 last = y;
4 fori =2tom
5 if y; > last - (1 + 9) // y;i > last because L is sorted
6 append y; onto the end of L’
7 last = y;
8 return L’
(TRIM works in time ©(m), if L is given in sorted order. ]
iﬂﬁ V. Approximation via Exact Algorithms The Subset-Sum Problem
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

L={10,11,12,15,20,21,22,23, 24, 29)

L=
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

L={10,11,12,15,20,21,22,23, 24, 29)

L' = (10)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

L' = (10)
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lllustration of the Trim Operation
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let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’
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L' = (10)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

[i
L' = (10)
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lllustration of the Trim Operation

TRIM(L, §)
1 let m be the length of L
2 L'={n)
3 last = y,
4 fori =2tom
5 if y; > last- (1 +6) // y; > last because L is sorted
6 append y; onto the end of L’
7 last = y;
8 return L’

6=01

last
L=(10,11,12,15,20,21,22,23,24,29)
L
!
L"={10,12)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1
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L={10,11,12,15,20,21,22,23, 24, 29)

L
L' = (10,12, 15)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

L' = (10,12, 15, 20)
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let m be the length of L
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append y; onto the end of L’
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

|
L'=(10,12,15,20,23)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

|
L'=(10,12,15,20,23)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

[
L'=(10,12,15,20,23)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

L'=(10,12,15,20,23)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~
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last

L={10,11,12,15,20,21,22,23, 24, 29)
|

'={10,12,15, 20,23, 29)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

00O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

'={10,12,15, 20,23, 29)
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The FPTAS

APPROX-SUBSET-SUM(S, t,€)

W N =

4
5
6
7
8

n = |S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L + Xx;)
L; = TRIM(L;,€/2n)
remove from L; every element that is greater than ¢
let z* be the largest value in L,
return z*
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The FPTAS

APPROX-SUBSET-SUM(S, t,€) EXACT-SUBSET-SUM(S, 1)
1 n=|S| I n=|S|
2 Lo=(0) 2 Lo =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS (L;—y, Li—1 + X;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
| 5 L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than7 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z*
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The FPTAS

APPROX-SUBSET-SUM(S, t,€)

EXACT-SUBSET-SUM(S, 1)

1 n=|S| I n=|S|
2 Lo =(0) 2 Lo =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS (L;—y, Li—1 + X;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
5 L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than7 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z* o~
Repeated application of TRIM

to make sure L;’s remain short.
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The FPTAS

APPROX-SUBSET-SUM(S, t,€) EXACT-SUBSET-SUM(S, 1)
1 n=|S| I n=|S|
2 Lo =(0) 2 Lo =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS (L;—y, Li—1 + X;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
| 5 L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than7 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z*

S

Repeated application of TRIM
to make sure L;’s remain short.

= We must bound the inaccuracy introduced by repeated trimming
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The FPTAS

APPROX-SUBSET-SUM(S, t,€) EXACT-SUBSET-SUM(S, 1)
1 n=|S| I n=|S|
2 Lo =(0) 2 Lo =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS (L;—y, Li—1 + X;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
| 5 L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than7 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z*

S

Repeated application of TRIM
to make sure L;’s remain short.

= We must bound the inaccuracy introduced by repeated trimming
* We must show that the algorithm is polynomial time
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The FPTAS

APPROX-SUBSET-SUM(S, t,€) EXACT-SUBSET-SUM(S, 1)
1 n=|S| I n=|S|
2 Lo =(0) 2 Lo =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS (L;—y, Li—1 + X;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
| 5 L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than7 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z*

S

Repeated application of TRIM
to make sure L;’s remain short.

= We must bound the inaccuracy introduced by repeated trimming
* We must show that the algorithm is polynomial time

AN

[Solution is a careful choice of 5!]

i
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 =S|

2 Loy =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

V. Approximation via Exact Algorithms

The Subset-Sum Problem



Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

= line 2: Ly = (0)

= line 4: Ly = (0,104)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)
*= line 4: L, = (0,102, 104, 206)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

* line 4: L, = (0,102, 104, 206)
*= line 5: L, = (0,102, 206)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

* line 4: L, = (0,102, 104, 206)
= line 5: L, = (0,102, 206)

= line 6: L, = (0,102,206)
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Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)

= line 5: L, = (0,102, 206)
= line 6: L, = (0,102,206)

(
(
(
* line 4: L, = (0,102, 104, 206)
(
(
= line 4: Ly = (0,102,201, 206, 303, 407)
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Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

* line 4: L, = (0,102, 104, 206)

= line 5: L, = (0,102, 206)

= line 6: L, = (0,102,206)

= line 4: L3 = (0,102,201, 206, 303, 407)
= line 5: L3 = (0,102,201, 303, 407)
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Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

* line 4: L, = (0,102, 104, 206)

= line 5: L, = (0,102, 206)

= line 6: L, = (0,102,206)

= line 4: L3 = (0,102,201, 206, 303, 407)
= line 5: Ly = (0,102,201, 303 407)

= line 6: L3 = (0,102,201 303)
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Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

* line 4: L, = (0,102, 104, 206)

= line 5: L, = (0,102, 206)

= line 6: L, = (0,102,206)

= line 4: L3 = (0,102,201, 206, 303, 407)

= line 5: Ly = (0,102,201, 303 407)

= line 6: L3 = (0,102,201 303)

*= line 4: Ly = (0,101, 102,201, 203, 302, 303, 404)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|
2 Loy =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
5 L; = TRIM(L;,€/2n)
6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,
8 return z*
= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)
= line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)
* line 4: L = (0,102, 104, 206)
* line 5: Lp = (0. 102, 206)
= line 6: L, = (0,102,206)
= line 4: L3 = (0,102,201, 206, 303, 407)
= line 5: Ly = (0,102,201, 303 407)
= line 6: Lg = (0,102, 201, 303)
= line 4: L4 = (0,101,102,201,203, 302, 303, 404)
= line 5: Ly = (0,101,201, 302, 404)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

= line 2:
= line 4:
= line 5:
= line 6:

= line 4:
= line 5:
= line 6:
= line 4:
= line 5:
= line 6:
= line 4:
= |line 5:
= line 6:

Lo = (0)

Ly = (0,104)

Ly = (0,104)

Ly = (0,104)

Lo = (0,102,104, 206)

L5 = (0,102, 206)

L5 = (0,102, 206)

Ls = (0,102, 201,206, 303, 407)
Ls = (0,102,201, 303, 407)

Ls = (0,102,201, 303)

L4 =(0,101,102,201,203, 302, 303, 404)
L, =(0,101,201,302, 404>
L, = (0,101,201, 302)

i
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Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

* line 4: L, = (0,102, 104, 206)

= line 5: L, = (0,102,206)

= line 6: L, = (0,102,206)

* line 4: Ly = (0,102, 201, 206, 303, 407)

* line 5: Ly = (0,102, 201, 303, 407)

* line 6: Ly = (0,102,201, 303)

= line 4: Ly = (0,101,102,201, 203, 302, 303, 404)

* line 5: Ly = (0,101,201, 302, 404) Returned solution z* = 302, which is 2%
- line 6: Ly = (0,101,201,302) <{within the optimum 307 = 104 + 102 + 101
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

i
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

= Returned solution z* is a valid solution v*
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution
= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution
= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:

y
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution
= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:

Yy
(1+¢/(2n)y

N

(Can be shown by induction on ij

<z<y
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
e

(1+¢/(2n)y
N
(Can be shown by induction on ij
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
<y T L csqy
(1+¢/(2m) (1+¢/(2n)"
1 y* e\”
. . ; — < —
(Can be shown by induction on /j z = (1 + gn) ’
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and now using the fact that (1 + ﬁ) nge
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= Returned solution z* is a valid solution v
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
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= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
<y T L csqy
(1+¢/(2m) (1+¢/(2n)"
* n
L ; o1+ 2,
(Can be shown by induction on /j z 2n

n
and now using the fact that (1 + ﬁ) nge

L % e¢/2 yields
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):
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Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is linear in |L;])
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Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)
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| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [log . /(25 t] additional values.

i
V. Approximation via Exact Algorithms The Subset-Sum Problem



Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [log . /(25 t] additional values.
Hence,

Iog1+5/(2,,) t+2=
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [log . /(25 t] additional values.
Hence,
Int

lo tp2=—t Lo
9t-+e/(2n) In(1 + ¢/(2n))
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [log . /(25 t] additional values.
Hence,
Int

lo tp2=—t Lo
9t-+e/(2n) In(1 + ¢/(2n))

[Forx> —1,In(1 +x) > ﬁ
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Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is linear in |L;])

= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [log . /(25 t] additional values.

Hence,
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“in(1 + ¢/(2n))
2n(1+¢/(2n)) Int 42

€

Iog1+5/(2n) t+2

[Forx> —1,In(1 +x) > ﬁ
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is linear in |L;])

= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [log . /(25 t] additional values.

Hence,
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2n(1+¢/(2n)) Int 42

€

Iog1+5/(2n) t+2
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is linear in |L;])

= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [log . /(25 t] additional values.

Hence,
Int
“in(1 + ¢/(2n))
2n(1+¢/(2n)) Int 42

€

Iog1+5/(2n) t+2

3nint
€

+2.

[Forx> —1,In(1 + x) > ﬁ

= This bound on |L;| is polynomial in the size of the input and in 1/e.
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is linear in |L;])

= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [log . /(25 t] additional values.

Hence,
Int
~ (1 + ¢/(2n))
2n(1+¢/(2n)) Int 42

€

Iog1+5/(2n) t+2

[Forx>f1,ln(1+x)2ﬁ 3n|nt+2.
€
= This bound on |L;| is polynomial in the size of the input and in 1/e. O
g

[Need log(t) bits to represent t and n bits to represent S]
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Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢
» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.
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——— Theorem 35.8
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. bl

.-,.E:,, V. Approximation via Exact Algorithms The Subset-Sum Problem



Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢

= Goal: Find a subset S’ C S which maximizes )", wes Xi <t

——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

\

The Knapsack Problem

= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
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Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢

= Goal: Find a subset S’ C S which maximizes )", wes Xi < L.

——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

\

The Knapsack Problem

= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes ). g Vi

2. satisfies Y ;cq W <t
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Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., Xo} and positive integer

» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.

t

~——— Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

\

)

[A more general problem than Subset-Sum]

The Knapsack Problem

V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes ). g Vi

2. satisfies Y ;cq W <t
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Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., Xo} and positive integer

= Goal: Find a subset S’ C S which maximizes > g Xi <t

i x;€

t

~——— Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

\

)

[A more general problem than Subset-Sum]

The Knapsack Problem

V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes ). g Vi

2. satisfies Y ;cq W <t

— Theorem

There is a FPTAS for the Knapsack problem.

\
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Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢
* Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.
~——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

[A more general problem than Subset-Sum]
V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which
1. maximizes ). g Vi
2. satisfies 3, cq w; < t

The Knapsack Problem

pe
LAIgorithm very similar to APPROX-SUBSET-SUM

— Theorem -

There is a FPTAS for the Knapsack problem. ]
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Parallel Machine Scheduling

Machine Scheduling Problem

m identical machines My, Mx, ..., Mn,

= Given: njobs Ji, s, ..., Jn with processing times p1, po, . . .

, Pn, and
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Parallel Machine Scheduling

Machine Scheduling Problem
= Given: njobs Ji, J, ..., Jy with processing times p1, po, . . ., pn, and
m identical machines My, Mx, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cx is the completion time of job Jk.
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Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, J, ..., Jy with processing times p1, po, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cx is the completion time of job Jk.
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Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jn With processing times py, pe, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cx is the completion time of job Jk.
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Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jn With processing times py, pe, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cx is the completion time of job Jk.

For the analysis, it will be convenient to denote
by C; the completion time of a machine i.

« D O )
w( e )
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.
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Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

w (e )

M, [ | J | )
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NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

w (e )

m N | )

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LIST SCHEDULING(J1, U, . . ., Jn, M)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load
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NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

w (e )

M1.[ _ J2 - ji

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

[
LIST SCHEDULING(J1, U, . . ., Jn, M)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load
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NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

w (e )

M1.[ _ J2 - ]i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

[
LIST SCHEDULING(J1, U, . . ., Jn, M)
1: while there exists an unassigned job

2: Schedule job on the machine with the least load
[N

[How good is this most basic Greedy Approach?j
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List Scheduling Analysis (Observations)
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List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Crax > max py.
max = 1§k§np
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List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Crax > max py.
max = 1§k§np

b. The optimal makespan is at least as large as the average machine
load, that is,

. o1
Cmax Z Ezpk

k=1

el b
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List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Crax > max pg.
max = 1§k§np

b. The optimal makespan is at least as large as the average machine
load, that is,

. o1
Cmax 2 Ezpk

k=1

Proof:
b. The total processing times of all n jobs equals Y ;_, p«
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List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Crax > max pg.
max = 1§k§np

b. The optimal makespan is at least as large as the average machine
load, that is,

. o1
Cmax 2 Ezpk

k=1

Proof:
b. The total processing times of all n jobs equals Y ;_, p«
= One machine must have a load of at least X - S°7_, p«
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List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

1 n
Cinax < E;pk + max pg.

1<k<n

\

Hence list scheduling is a poly-time 2-approximation algorithm.

i
E:';.! V. Approximation via Exact Algorithms Parallel Machine Scheduling



List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)
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Hence list scheduling is a poly-time 2-approximation algorithm.
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List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

1<k<n

1 n
Cinax < E;pk + max pg.

Hence list scheduling is a poly-time 2-approximation algorithm.

\

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
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List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that
n

1
Cinax < EZ,D;( + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;

@ E&EEnC

M; Ji

A L p—

D
| C——
En 0

Cmax
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List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966) N\
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

@ E&EEnC
(O S
S e —
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For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
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List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966) N\
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.
Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
= Averaging over K yields:
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List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that
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1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

\

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
= Averaging over K yields:
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List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966) <\
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < Ezpk + max pg.

1<k<n
k=1 -

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

= Averaging over k yields: [Using Ex 35542 &b.]

n

1 m 1 n 1 ~NJ
Cj—P/‘SE;Ck:E;Pk = Cjémkzz;pk+1r2[§§xnpk
)

T

D)
) G|

Cj — Pi Crmax

- P - - -

[
" I
;[ 7

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15



List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966) <\
For the schedule returned by the greedy algorithm it holds that
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Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

= Averaging over K yields: [Using Ex 355 a. &b.]
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Improving Greedy

Analysis can be shown to be almost tight. Is there a better algorithm?
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Improving Greedy

(The problem of the List-Scheduling Approach were the large jobs]

—
[ Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Js, . . ., Jp, M)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=0
: end for
cforj=1ton
i =argmin, ., Ck
Si=SuU{j},C=Ci+p
: end for
creturn Sy, ..., Sy

1
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Improving Greedy

(The problem of the List-Scheduling Approach were the large jobs]

—
[ Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Js, . . ., Jp, M)
1: Sort jobs decreasingly in their processing times
2. fori=1tom

3: Ci=0
4: S,' =0
5. end for
6: forj=1ton
7: i =argmin, ., Ck
8: S,':S,'U{j}, C,-:C,'erj
9: end for
10: return Sy, ..., Sp
O
Runtime:
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(The problem of the List-Scheduling Approach were the large jobs]

—
[ Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Js, . . ., Jp, M)
1: Sort jobs decreasingly in their processing times
2. fori=1tom

3: Ci=0
4: S,' =0
5. end for
6: forj=1ton
7: i =argmin, ., Ck
8: S,':S,'U{j}, C,-:C,'erj
9: end for
10: return Sy, ..., Sp
O
Runtime:

= O(nlog n) for sorting
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Improving Greedy

(The problem of the List-Scheduling Approach were the large jobs]

—
[ Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Js, . . ., Jp, M)
1: Sort jobs decreasingly in their processing times
2. fori=1tom

3: Ci=0
4: S,' =0
5. end for
6: forj=1ton
7: i =argmin, ., Ck
8: S,':S,'U{j}, C,-:C,'erj
9: end for
10: return Sy, ..., Sp
O
Runtime:

= O(nlog n) for sorting
= O(nlog m) for extracting (and re-inserting) the minimum (use priority queue).
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Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]
N

[This can be shown to be tight (see next inde).J
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Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).
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Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
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Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Crax > 2 - Pm1-
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Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).

= Observation 1: If there are at most m jobs, then the solution is optimal.

= Observation 2: If there are more than m jobs, then Crax > 2 - Pm1-
= As in the analysis for list scheduling
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Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m). ]

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Crax > 2 - Pm1-
= As in the analysis for list scheduling, we have

Cmax = Cj = (C]—P:)+P:
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Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Crax > 2 - Pm1-
= As in the analysis for list scheduling, we have

* 1 >k
Cmax - Cj - (C/ - ,0/) + Pi < Cmax + Ecmax
NN

(This is for the case i > m + 1 (otherwise, an even stronger inequality holds))
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Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Crax > 2 - Pm1-
= As in the analysis for list scheduling, we have

* 1 * 3
Cmax = G = (Cj— pi) + pi < Crmax + Ecmax = Ecmax- O
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof of an instance which shows tightness:
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| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof of an instance which shows tightness:
= m machines
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m). ]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11:

01234567 8 91011121314151617181920
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11:
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]

Proof of an instance which shows tightness:
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Tightness of the Bound for LPT
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Proof of an instance which shows tightness:
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof of an instance which shows tightness:

= m machines
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Tightness of the Bound for LPT
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| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]

Proof of an instance which shows tightness:

= m machines
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Tightness of the Bound for LPT
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11:
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof of an instance which shows tightness:
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Tightness of the Bound for LPT

Graham 1966
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Proof of an instance which shows tightness:
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]

Proof of an instance which shows tightness:
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]

Proof of an instance which shows tightness:
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11: LPT gives Cmnax = 19
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Tightness of the Bound for LPT
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Proof of an instance which shows tightness:
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11: LPT gives Cmnax = 19

Crax = 15
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11: LPT gives Cmnax = 19
Optimum is Cra = 15

Crax = 15
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof of an instance which shows tightness:

= m machines
= n=2m+1jobs of length2m —1,2m —2,..., m and one job of length m

m=5n=11: LPT gives Cmnax = 19
Optimum is Cra = 15

Crax = 15
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A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact px’s.
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A PTAS for Parallel Machine Scheduling
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~——— Theorem (Hochbaum, Shmoys’87) N\
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°(/¥) . log P), where P := 3"7_, px.

\. J

Proof (using Key Lemma):
PTAS(J1, 2, ..., Jdn,m)
1: Do binary search to find smallest T s.t. Cnax < (1 +¢€) - max{T, Cnax}-
2: Return solution computed by SUBROUTINE(J1, Jo, ..., Jn,m, T)
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~——— Theorem (Hochbaum, Shmoys’87) N\
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Since 0 < Ciax < P and Cia is integral, J
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1. Either: Return a solution with Cmax < (1 +€) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U~
. . . 2
SUBROUTINE can be implemented in time n°(/<).

\. J

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°/¥) . log P), where P := 3-7_, px.

Cpolynomial in the size of the input Since 0 < Chax < P and Cly is integral, J

~

Proof (using Key Lemma): | binary search terminates after O(log P) steps.
PTAS(i, o, ..., dn,m) ==
1: Do binary search to find smallest T s.t. Cnax < (1 +¢€) - max{T, Cnax}-
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Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T
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Implementation of Subroutine
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Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

i
E:';.' V. Approximation via Exact Algorithms Parallel Machine Scheduling

20



Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:

i
E:';.' V. Approximation via Exact Algorithms Parallel Machine Scheduling

20



Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load

i
E:';.' V. Approximation via Exact Algorithms Parallel Machine Scheduling 20



Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.

i
E:';.! V. Approximation via Exact Algorithms Parallel Machine Scheduling 20



Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

i
E:';.! V. Approximation via Exact Algorithms Parallel Machine Scheduling 20



Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 n
Ci—p < mzpk
A k=1

(the “well-known” formula)

i
V. Approximation via Exact Algorithms Parallel Machine Scheduling 20



Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 n
Cj_piﬁmzpk =
A k=1

(the “well-known” formula)

i
V. Approximation via Exact Algorithms Parallel Machine Scheduling 20



Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 o 1 &
Cj—PISEZPk = C/SP"'_EZ'D"
N k=1 k=1

(the “well-known” formula)

i
V. Approximation via Exact Algorithms Parallel Machine Scheduling 20



Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 < 1<
Cj—PISEZPk = C/SP"'_EZ'D"
N k=1 k=1
(the “well-known” formula) <e- T+ Cra

i
V. Approximation via Exact Algorithms Parallel Machine Scheduling 20



Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 o 1 &
Cj—PISEZPk = C/SP"'_EZ'D"
N k=1 k=1

(the “well-known” formula) <e- T+ Cra
<(1+e¢)-max{T,Crax} O

S
V. Approximation via Exact Algorithms Parallel Machine Scheduling 20



Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + €) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 o 1 &
Cj—PISEZPk = C/SP"'_EZ'D"
N k=1 k=1

(the “well-known” formula) <e- T+ Cra
<(1+e¢)-max{T,Crax} O

S
V. Approximation via Exact Algorithms Parallel Machine Scheduling 20



Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

h2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [%] .

i

T

b2
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

. ib?
= Let b be the smallest integer with 1/b < e. Define processing times p; = ['J’T] . b—TZ

P1
P2
Ps
Illﬁaa

.-,.E;. V. Approximation via Exact Algorithms Parallel Machine Scheduling 21



Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2

15.T " e=05
125.T

1.7 "b=2
0.75- T + |ps

05.T H
0.25-3

. b
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2

15.T cc=05
125.7

1.7 rh=2
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2

1.5

5T "e=05
125-T
[] — 2
1-T b
0.75-T + |P1
0.5-T+{-{PeLf ) - -
025-T Ds
0
Jlarge lJsma\ll
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jiarge With makespan (1 +¢) - T.
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [’J’T] L

b2
= Every pI{ = - b_T2 fora=b,b+1,..., b2 {Can assume there are no jobs with p; > T!J

15.T " e¢=05 1.5.T
125.T o 125.T
1T b=2 1T
0.75- T + |pi 0.75- T +|p}
0.5-T+{-{PeLf ) - - 05T ph
025-T s 0.25-T e
0 0-—— —
Jlarge Jsmall Jlarge
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.
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b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’—] L

T b2
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= Everyp,f:a~§fora:b,b+1,...,b2
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L] = 2
1.T b 1-T
0.75- T + |pi > 0.75.T +|p,
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’—] L

T b2
N
= Everyp,f:owﬁforoz:b,b—H,...,b2

2 T n
= LetCbe all (Sp, Spy1, - - - » Sp2) With 32 s j- L < T. JAssignments to one machine
(S0, St S2) Z'_j / b2 = with makespan < T.
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
= Everyp/ =a- b—T2 fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:

15.T - =05
125.T

1.7 nh=2
0.75- T + |pi

05-T % 77777777
0257

Jlarge

lJsmall

—_

15.
1.25.
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0.25.
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
= Everyp/ =a- b—T2 fora=bb+1,...,b?
. 2 .
-mcmwwm%mmﬁwmngqpégr
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:

£(0,0,...,0) =0

15T - =05
125.T

1.7 nh=2
0.75- T + |pr

05-T+f- % 77777777
0257

Jlarge
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.
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b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [’J’T] .

= Everyp,f:opb—rzfora:b,b—H,...,b2

. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - b—T2 <T.
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(Np, N1, -, M) =1+ min f(Np — Spy N1 — Spts -+ M2 — Sp2)-

(SbsSp415---,5,2)EC
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
Let b be the smallest integer with 1/b < . Define processing times p; = [p’—] .

&
= Evel’yplf:a~b—T2f0roz:b,b+1,...,b2

Let C be all (Sp, Sp.1, -, Sy) with S5 s - - L<rT

= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T: [ assign some jobs to one machine, and then
£(0,0,...,0)=0 use as few machines as possible for the rest.

. /
f(Nps Nty Mp2) =1+ min f(Np — Spy N1 — Spts -+ M2 — Sp2)-

(SbsSp415---,5,2)EC
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T. ]

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
= Let C be all (Sp, Spi1,- - - » Sp2) With zf’:js,- - b—Tz <T.
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+11""nb2):1+ min f(nb_sb’nb+1_sb+15"'7nb2_sb2)‘
(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)

. b
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
Let b be the smallest integer with 1/b < . Define processing times p; = [p’—] .

&
= Evel’yp;:a~b—2f0ra:b,b+1,...,b2

Let C be all (sb,sb+1,...,sb2)withZ,‘-’:zjsj~j~b—Tz <T.

= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+11""nb2):1+ min f(nb_sbanb+1_sb+15"'7nb2_sb2)‘

(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.
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Final Remarks

[— Graham 1966
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ist scheduling has an approximation ratio of 2.

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).
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Final Remarks

——— Graham 1966 N
List scheduling has an approximation ratio of 2.

~— Graham 1966 N\
The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

~——— Theorem (Hochbaum, Shmoys’87) N\
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°(1/¥) . log P), where P := "7 px.

Can we find a FPTAS (for polynomially bounded processing times)? No!
e

Because for sufficiently small approximation ratio
1 + ¢, the computed solution has to be optimal, and
Parallel Machine Scheduling is strongly NP-hard.
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