VI. Approximation Algorithms: Travelling Salesman Problem

Thomas Sauerwald

Outline

Introduction

General TSP

Metric TSP

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

—— Formal Definition –		

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

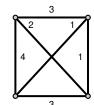
■ Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

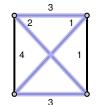
Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.



Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

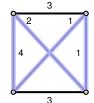
- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.



$$3+2+1+3=9$$

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.



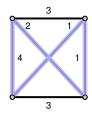
$$2+4+1+1=8$$

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of *G* with minimum cost.

Solution space consists of at most n! possible tours!



$$2+4+1+1=8$$

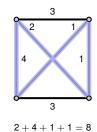
Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

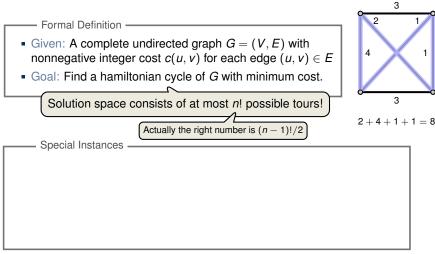
- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of *G* with minimum cost.

Solution space consists of at most n! possible tours!

Actually the right number is (n-1)!/2



Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.



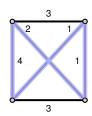
Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of *G* with minimum cost.

Solution space consists of at most n! possible tours!

Actually the right number is (n-1)!/2



$$2+4+1+1=8$$

Special Instances

Metric TSP: costs satisfy triangle inequality:

$$\forall u, v, w \in V$$
: $c(u, w) \leq c(u, v) + c(v, w)$.

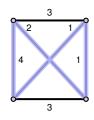
Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Solution space consists of at most n! possible tours!

Actually the right number is (n-1)!/2



$$2+4+1+1=8$$

Special Instances

Metric TSP: costs satisfy triangle inequality:

$$\forall u, v, w \in V$$
: $c(u, w) \leq c(u, v) + c(v, w)$.

 Euclidean TSP: cities are points in the Euclidean space, costs are equal to their (rounded) Euclidean distance

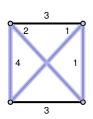
Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of *G* with minimum cost.

Solution space consists of at most n! possible tours!

Actually the right number is (n-1)!/2



$$2+4+1+1=8$$

Special Instances

Metric TSP: costs satisfy triangle inequality:

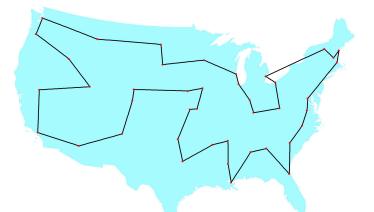
Even this version is NP hard (Ex. 35.2-2)

$$\forall u, v, w \in V:$$
 $c(u, w) \leq c(u, v) + c(v, w).$

 Euclidean TSP: cities are points in the Euclidean space, costs are equal to their (rounded) Euclidean distance

History of the TSP problem (1954)

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

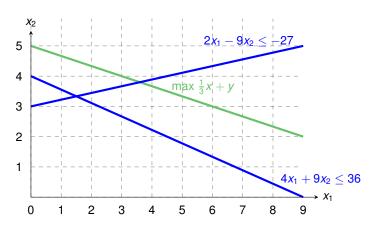


http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html

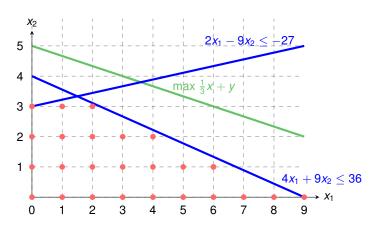
1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)

- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

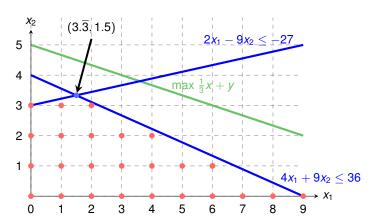
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



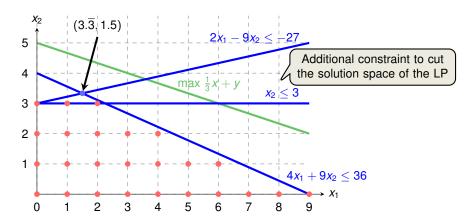
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



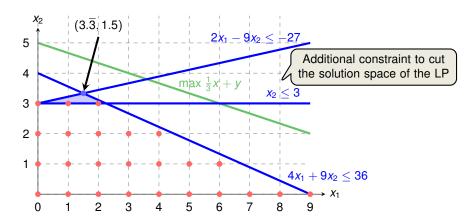
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



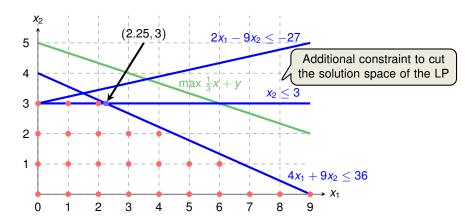
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



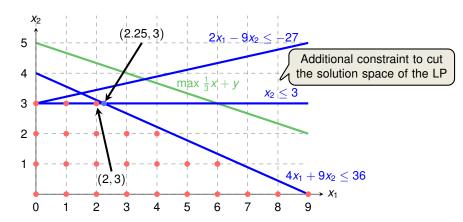
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



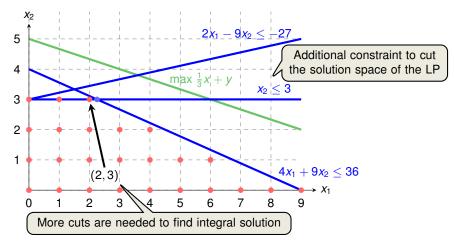
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



Outline

Introduction

General TSP

Metric TSP

Theorem 35.3 -

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3 -

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

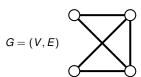
• Let G = (V, E) be an instance of the hamiltonian-cycle problem

Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

• Let G = (V, E) be an instance of the hamiltonian-cycle problem

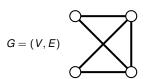


Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:



Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$G = (V, E)$$

G'=(V,E')

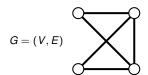
Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$



G'=(V,E')

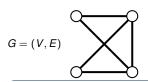
Theorem 35.3

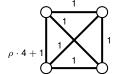
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$





G'=(V,E')

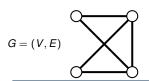
Theorem 35.3

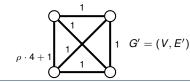
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho|V|+1 & \text{otherwise.} \end{cases}$$





Theorem 35.3

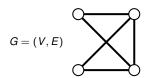
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

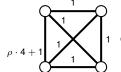
Proof: Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

Can create representations of
$$G'$$
 and c in time polynomial in $|V|$ and $|E|$!

Can create representations of
$$G'$$
 and c in time polynomial in $|V|$ and $|E|!$ $c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho|V|+1 & \text{otherwise.} \end{cases}$





G' = (V, E')

Theorem 35.3

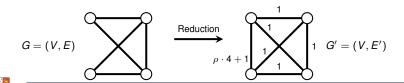
VI. Travelling Salesman Problem

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$



General TSP

7

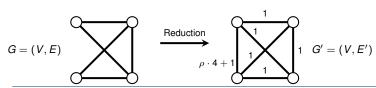
Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$



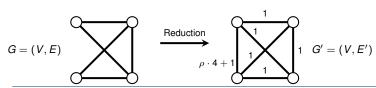
Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$



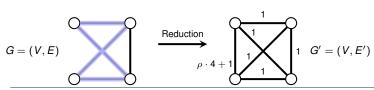
Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho|V|+1 & \text{otherwise.} \end{cases}$$



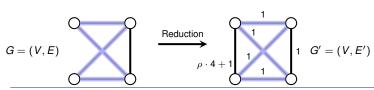
Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$



Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho|V|+1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

Theorem 35.3

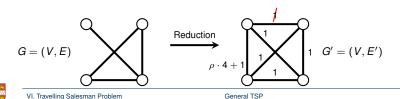
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho|V|+1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$.



General TSP

7

Theorem 35.3

VI. Travelling Salesman Problem

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho|V|+1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

General TSP

7

Theorem 35.3

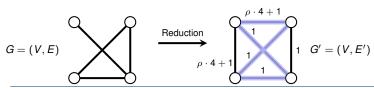
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho|V|+1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,



Theorem 35.3

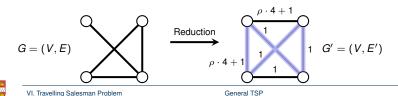
If P \neq NP, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho|V|+1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$.



General TSP

7

Theorem 35.3

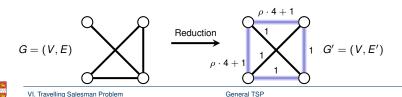
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,



7

Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

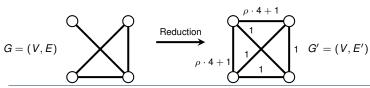
Proof: Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho|V|+1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow$$
 $c(T) \geq (\rho|V|+1)+(|V|-1)$



Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

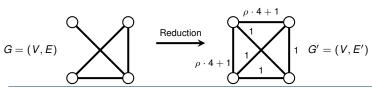
Proof: Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho|V|+1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$$



Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

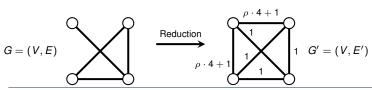
- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho|V|+1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow$$
 $c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$

• Gap of $\rho + 1$ between tours which are using only edges in G and those which don't



Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

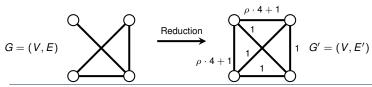
- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$$

- Gap of $\rho + 1$ between tours which are using only edges in G and those which don't
- ρ -Approximation of TSP in G' computes hamiltonian cycle in G (if one exists)



Theorem 35.3

VI. Travelling Salesman Problem

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof: Idea: Reduction from the hamiltonian-cycle problem.

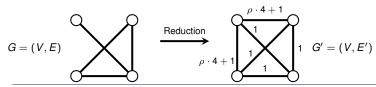
- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho|V|+1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

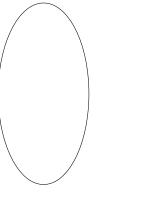
$$\Rightarrow c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$$

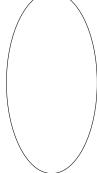
- Gap of $\rho + 1$ between tours which are using only edges in G and those which don't
- ρ -Approximation of TSP in G' computes hamiltonian cycle in G (if one exists)



General TSP

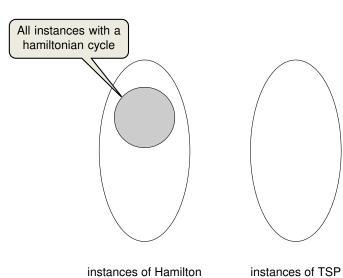
7

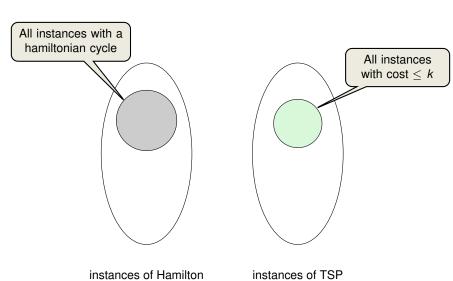


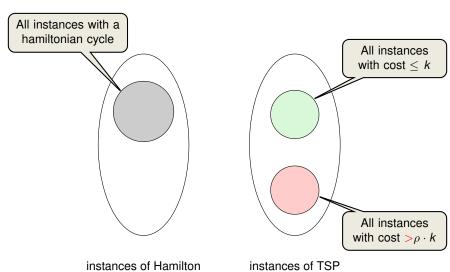


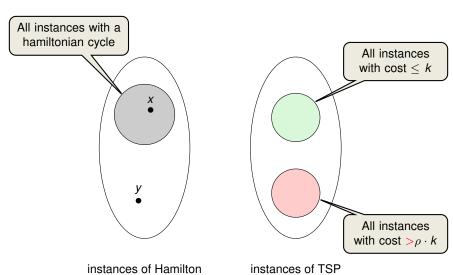
instances of Hamilton

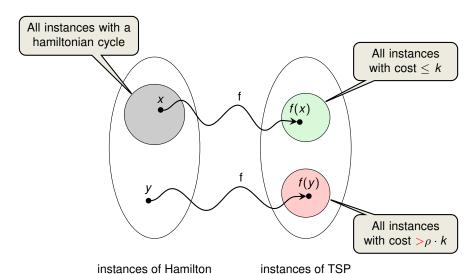
instances of TSP

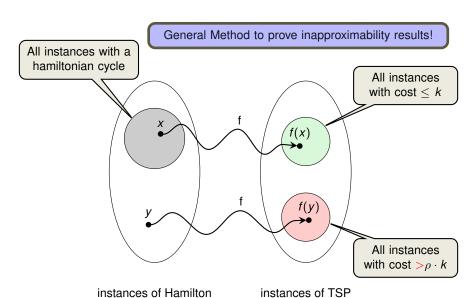












Outline

Introduction

General TSP

Metric TSP

Idea: First compute an MST, and then create a tour based on the tree.

Idea: First compute an MST, and then create a tour based on the tree.

APPROX-TSP-TOUR (G, c)

- 1 select a vertex $r \in G.V$ to be a "root" vertex
- 2 compute a minimum spanning tree T for G from root r using MST-PRIM(G, c, r)
- 3 let H be a list of vertices, ordered according to when they are first visited in a preorder tree walk of T
- 4 **return** the hamiltonian cycle H

Idea: First compute an MST, and then create a tour based on the tree.

APPROX-TSP-TOUR (G, c)

- 1 select a vertex $r \in G.V$ to be a "root" vertex
- 2 compute a minimum spanning tree T for G from root r using MST-PRIM(G, c, r)
- 3 let H be a list of vertices, ordered according to when they are first visited in a preorder tree walk of T
- 4 **return** the hamiltonian cycle H

Runtime is dominated by MST-PRIM, which is $\Theta(V^2)$.

Idea: First compute an MST, and then create a tour based on the tree.

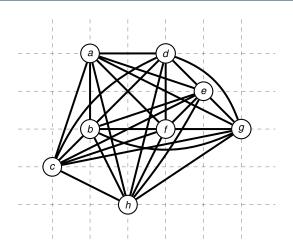
APPROX-TSP-TOUR (G, c)

- 1 select a vertex $r \in G.V$ to be a "root" vertex
- 2 compute a minimum spanning tree T for G from root r using MST-PRIM(G, c, r)
- 3 let H be a list of vertices, ordered according to when they are first visited in a preorder tree walk of T
- 4 **return** the hamiltonian cycle H

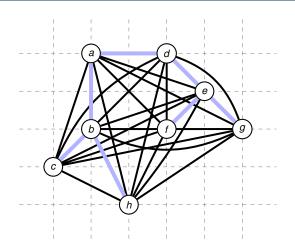
Runtime is dominated by MST-PRIM, which is $\Theta(V^2)$.

Remember: In the Metric-TSP problem, G is a complete graph.

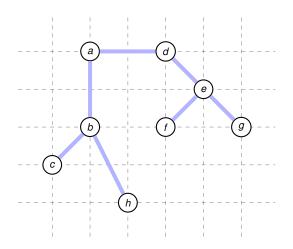




1. Compute MST

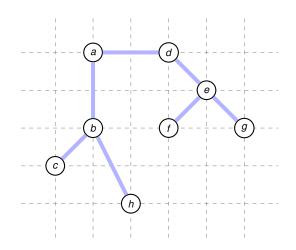


1. Compute MST

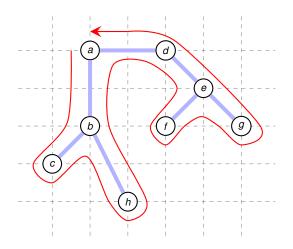


1. Compute MST ✓

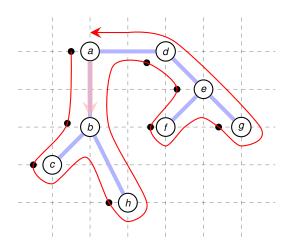
Run of APPROX-TSP-TOUR



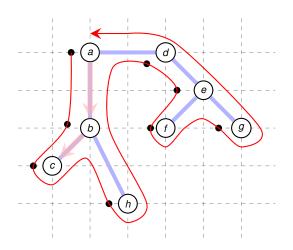
- 1. Compute MST ✓
- 2. Perform preorder walk on MST



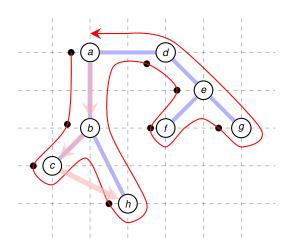
- 1. Compute MST ✓
- 2. Perform preorder walk on MST ✓



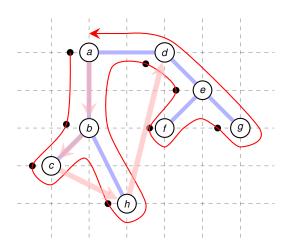
- Compute MST ✓
- 2. Perform preorder walk on MST ✓
- 3. Return list of vertices according to the preorder tree walk



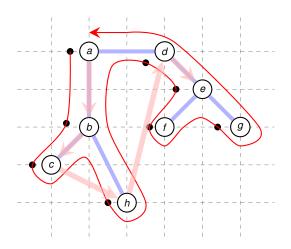
- Compute MST ✓
- 2. Perform preorder walk on MST ✓
- 3. Return list of vertices according to the preorder tree walk



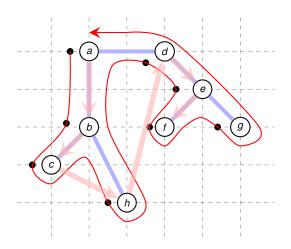
- Compute MST ✓
- 2. Perform preorder walk on MST ✓
- 3. Return list of vertices according to the preorder tree walk



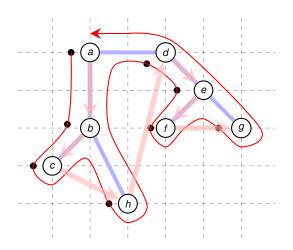
- Compute MST ✓
- 2. Perform preorder walk on MST ✓
- 3. Return list of vertices according to the preorder tree walk



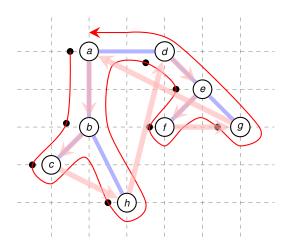
- Compute MST ✓
- 2. Perform preorder walk on MST ✓
- 3. Return list of vertices according to the preorder tree walk



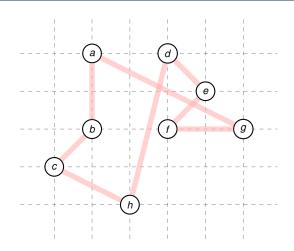
- Compute MST ✓
- 2. Perform preorder walk on MST ✓
- 3. Return list of vertices according to the preorder tree walk



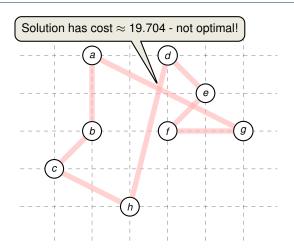
- Compute MST ✓
- 2. Perform preorder walk on MST ✓
- 3. Return list of vertices according to the preorder tree walk



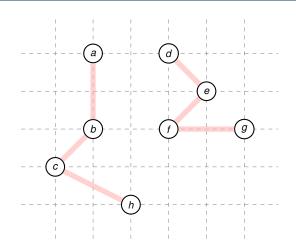
- Compute MST ✓
- 2. Perform preorder walk on MST ✓
- 3. Return list of vertices according to the preorder tree walk



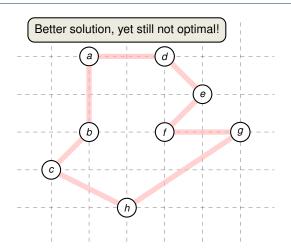
- Compute MST ✓
- 2. Perform preorder walk on MST ✓
- 3. Return list of vertices according to the preorder tree walk ✓



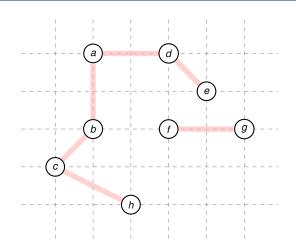
- Compute MST ✓
- 2. Perform preorder walk on MST ✓
- 3. Return list of vertices according to the preorder tree walk ✓



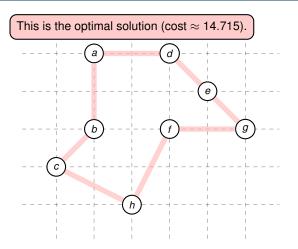
- Compute MST ✓
- 2. Perform preorder walk on MST ✓
- 3. Return list of vertices according to the preorder tree walk ✓



- Compute MST ✓
- 2. Perform preorder walk on MST ✓
- 3. Return list of vertices according to the preorder tree walk ✓

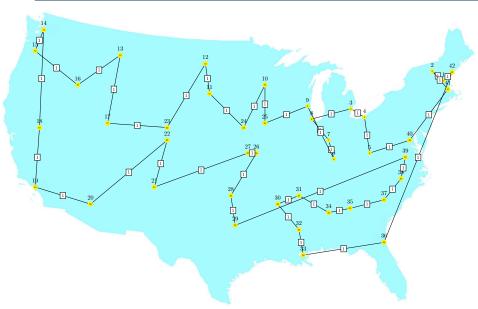


- Compute MST ✓
- 2. Perform preorder walk on MST ✓
- 3. Return list of vertices according to the preorder tree walk ✓



- Compute MST ✓
- 2. Perform preorder walk on MST ✓
- 3. Return list of vertices according to the preorder tree walk ✓

Approximate Solution: Objective 921



Optimal Solution: Objective 699

Theorem 35.2

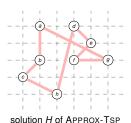
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Theorem 35.2

 $\label{lem:approx} \mbox{APPROX-TSP-TOUR} \ \ \mbox{is a polynomial-time} \ \ \mbox{2-approximation} \ \ \mbox{for the traveling-salesman problem with the triangle inequality.}$

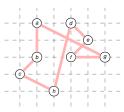
Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

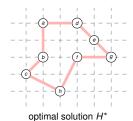


Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.



solution H of APPROX-TSP

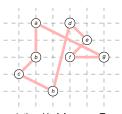


Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

Consider the optimal tour H* and remove an arbitrary edge



solution H of APPROX-TSP

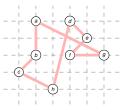
optimal solution H*

Theorem 35.2 -

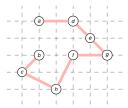
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

■ Consider the optimal tour H* and remove an arbitrary edge



solution H of APPROX-TSP

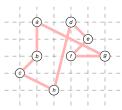


spanning tree T as a subset of H^*

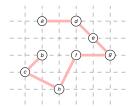
Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and therefore



solution H of APPROX-TSP

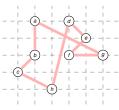


spanning tree T as a subset of H^*

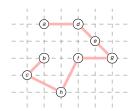
Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and therefore $c(T) \leq c(H^*)$



solution H of APPROX-TSP



spanning tree T as a subset of H^*

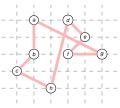
Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

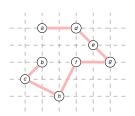
Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and Therefore $c(T) \leq c(H^*)$

exploiting that all edge costs are non-negative!



solution H of APPROX-TSP

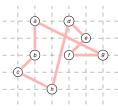


spanning tree T as a subset of H^*

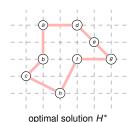
Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and Therefore $c(T) \leq c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)



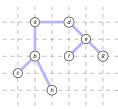
solution H of APPROX-TSP



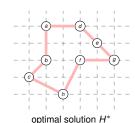
Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and Therefore $c(T) \leq c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)



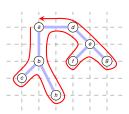
minimum spanning tree T_{min}

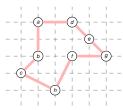


Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H^* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and Therefore $c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)





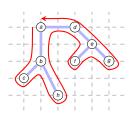
Walk W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)

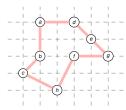
optimal solution H*

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H^* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and Therefore $c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so





Walk W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)

optimal solution H^*

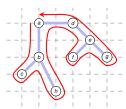
Theorem 35.2 -

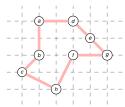
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and Therefore $c(T) \leq c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min})$$





Walk W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)

optimal solution H^*

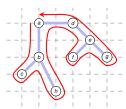
Theorem 35.2 -

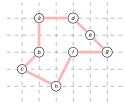
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and Therefore $c(T) \leq c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$





Walk W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)

optimal solution H^*

Theorem 35.2

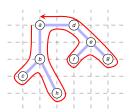
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

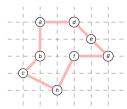
Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and Therefore $c(T) < c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

Deleting duplicate vertices from W yields a tour H





Walk W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)

optimal solution H*

Theorem 35.2 -

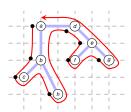
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

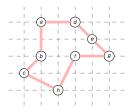
Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and Therefore $c(T) < c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

Deleting duplicate vertices from W yields a tour H





Walk W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)

optimal solution H^*

Theorem 35.2 -

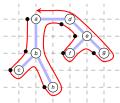
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

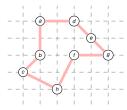
Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and Therefore $c(T) < c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

Deleting duplicate vertices from W yields a tour H





Walk $W = (a, b, c, \not b, h, \not b, \not a, d, e, f, \not e, g, \not e, \not d, a)$

optimal solution H^*

Theorem 35.2

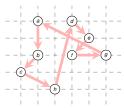
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

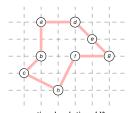
- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and Therefore $c(T) < c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

Deleting duplicate vertices from W yields a tour H



Tour H = (a, b, c, h, d, e, f, g, a)



optimal solution H*

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

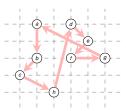
Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and Therefore $c(T) < c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\mathsf{min}}) \le 2c(T) \le 2c(H^*)$$

exploiting triangle inequality!

Deleting duplicate vertices from W yields a tour H with smaller cost:



Tour H = (a, b, c, h, d, e, f, g, a)



optimal solution H*

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

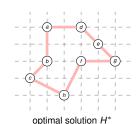
Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and Therefore $c(T) < c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

exploiting triangle inequality!

Tour
$$H = (a, b, c, h, d, e, f, g, a)$$



Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

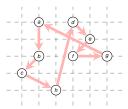
Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and Therefore $c(T) < c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

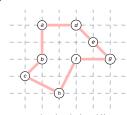
$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

exploiting triangle inequality!

$$c(H) \leq c(W) \leq 2c(H^*)$$



Tour
$$H = (a, b, c, h, d, e, f, g, a)$$



optimal solution H*

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

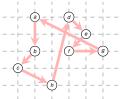
Proof:

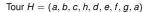
- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and Therefore $c(T) < c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

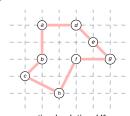
$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

exploiting triangle inequality!

$$c(H) \leq c(W) \leq 2c(H^*)$$







optimal solution H*

Theorem 35.2

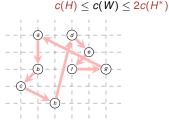
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

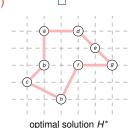
- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and Therefore $c(T) < c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

exploiting triangle inequality!



Tour
$$H = (a, b, c, h, d, e, f, g, a)$$



VI. Travelling Salesman Problem

Theorem 35.2 -

APPROX-TSP-Tour is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

CHRISTOFIDES (G, c)

1: select a vertex $r \in G.V$ to be a "root" vertex

2: compute a minimum spanning tree *T* for *G* from root *r*

3: using MST-PRIM(G, c, r)

4: compute a perfect matching M with minimum weight in the complete graph

5: over the odd-degree vertices in *T*

6: let H be a list of vertices, ordered according to when they are first visited

7: in a Eulearian circuit of $T \cup M$

8: return H

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

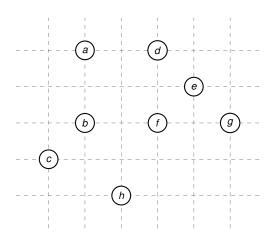
Can we get a better approximation ratio?

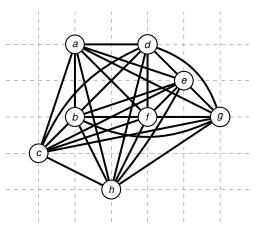
CHRISTOFIDES (G, c)

- 1: select a vertex $r \in G.V$ to be a "root" vertex
- 2: compute a minimum spanning tree T for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: compute a perfect matching M with minimum weight in the complete graph
- 5: over the odd-degree vertices in *T*
- 6: let H be a list of vertices, ordered according to when they are first visited
- 7: in a Eulearian circuit of $T \cup M$
- 8: return H

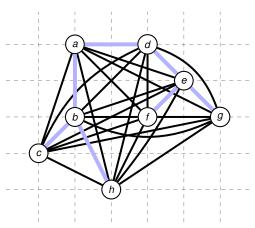
Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

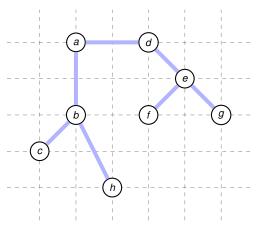




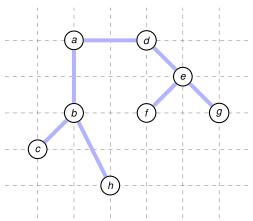
1. Compute MST



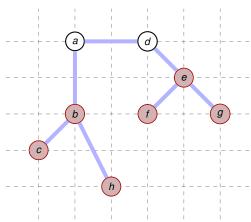
1. Compute MST



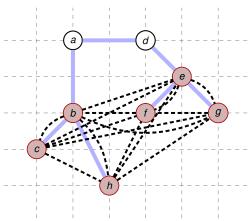
1. Compute MST \checkmark



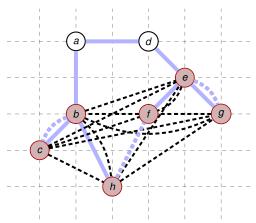
- 1. Compute MST ✓
- 2. Add a minimum-weight perfect matching M of the odd vertices in T



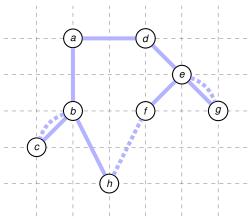
- 1. Compute MST ✓
- 2. Add a minimum-weight perfect matching M of the odd vertices in T



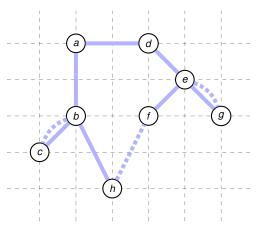
- 1. Compute MST ✓
- 2. Add a minimum-weight perfect matching M of the odd vertices in T



- 1. Compute MST ✓
- 2. Add a minimum-weight perfect matching M of the odd vertices in T

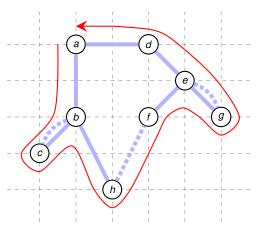


- 1. Compute MST ✓
- 2. Add a minimum-weight perfect matching M of the odd vertices in $T \checkmark$



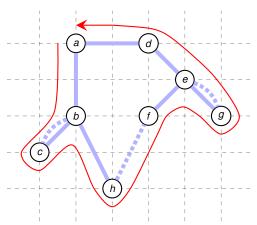
- 1. Compute MST ✓
- 2. Add a minimum-weight perfect matching M of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit

All vertices in $T \cup M$ have even degree!

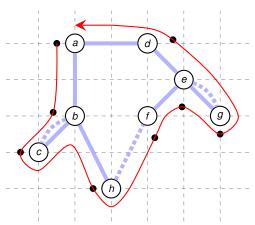


- 1. Compute MST ✓
- 2. Add a minimum-weight perfect matching M of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit 🗸

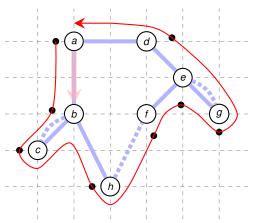
All vertices in $T \cup M$ have even degree!



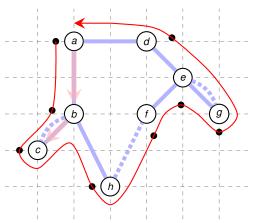
- 1. Compute MST ✓
- 2. Add a minimum-weight perfect matching M of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit ✓
- 4. Transform the Circuit into a Hamiltonian Cycle



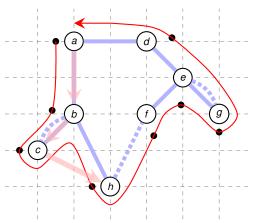
- 1. Compute MST ✓
- 2. Add a minimum-weight perfect matching M of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit ✓
- 4. Transform the Circuit into a Hamiltonian Cycle



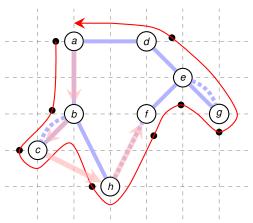
- 1. Compute MST ✓
- 2. Add a minimum-weight perfect matching M of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit ✓
- 4. Transform the Circuit into a Hamiltonian Cycle



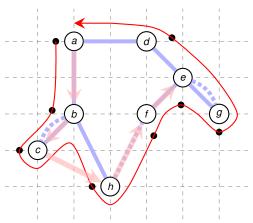
- 1. Compute MST ✓
- 2. Add a minimum-weight perfect matching M of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit ✓
- 4. Transform the Circuit into a Hamiltonian Cycle



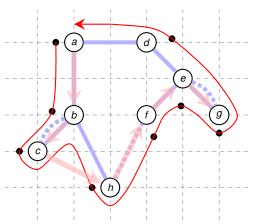
- 1. Compute MST ✓
- 2. Add a minimum-weight perfect matching M of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit ✓
- 4. Transform the Circuit into a Hamiltonian Cycle



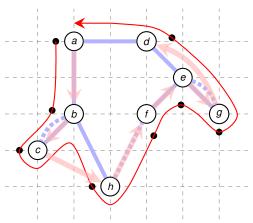
- 1. Compute MST ✓
- 2. Add a minimum-weight perfect matching M of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit ✓
- 4. Transform the Circuit into a Hamiltonian Cycle



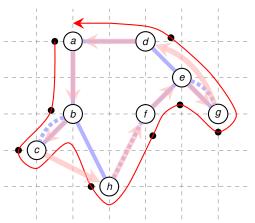
- 1. Compute MST ✓
- 2. Add a minimum-weight perfect matching M of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit ✓
- 4. Transform the Circuit into a Hamiltonian Cycle



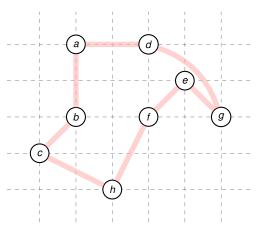
- 1. Compute MST ✓
- 2. Add a minimum-weight perfect matching M of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit ✓
- 4. Transform the Circuit into a Hamiltonian Cycle



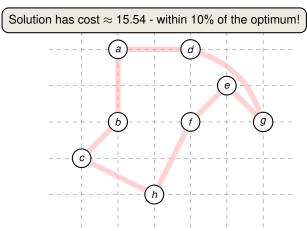
- 1. Compute MST ✓
- 2. Add a minimum-weight perfect matching M of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit ✓
- 4. Transform the Circuit into a Hamiltonian Cycle



- 1. Compute MST ✓
- 2. Add a minimum-weight perfect matching M of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit ✓
- 4. Transform the Circuit into a Hamiltonian Cycle



- 1. Compute MST ✓
- 2. Add a minimum-weight perfect matching M of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit ✓
- 4. Transform the Circuit into a Hamiltonian Cycle ✓



- 1. Compute MST ✓
- 2. Add a minimum-weight perfect matching M of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit ✓
- 4. Transform the Circuit into a Hamiltonian Cycle ✓

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

Theorem (Arora'96, Mitchell'96)

There is a PTAS for the Euclidean TSP Problem.

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Both received the Gödel Award 2010

Theorem (Arora'96, Mitchell'96)

There is a PTAS for the Euclidean TSP Problem.

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Both received the Gödel Award 2010

Theorem (Arora'96, Mitchell'96)

There is a PTAS for the Euclidean TSP Problem.

"Christos Papadimitriou told me that the traveling salesman problem is not a problem. It's an addiction."

Jon Bentley 1991

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Both received the Gödel Award 2010

Theorem (Arora'96, Mitchell'96)

There is a PTAS for the Euclidean TSP Problem.

"Christos Papadimitriou told me that the traveling salesman problem is not a problem. It's an addiction."

Jon Bentley 1991

