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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 92 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)
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History of the TSP problem (1954)

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html
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The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v )

2. Solve the linear program. If the solution is integral and forms a tour, stop.
Otherwise find a new constraint to add (cutting plane)

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

max 1
3 x + y

4x1 + 9x2 ≤ 36

2x1 − 9x2 ≤ −27

x1

x2

x2 ≤ 3

Additional constraint to cut
the solution space of the LP

(3.3, 1.5)
(2.25, 3)

(2, 3)

More cuts are needed to find integral solution
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Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof: Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T ) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1ρ · 4 + 1
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Proof of Theorem 35.3 from a higher perspective
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Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

1112 Chapter 35 Approximation Algorithms

c.A/ D
X

.u;!/2A

c.u; !/ :

In many practical situations, the least costly way to go from a place u to a place w
is to go directly, with no intermediate steps. Put another way, cutting out an inter-
mediate stop never increases the cost. We formalize this notion by saying that the
cost function c satisfies the triangle inequality if, for all vertices u; !; w 2 V ,
c.u; w/ ! c.u; !/C c.!; w/ :

The triangle inequality seems as though it should naturally hold, and it is au-
tomatically satisfied in several applications. For example, if the vertices of the
graph are points in the plane and the cost of traveling between two vertices is the
ordinary euclidean distance between them, then the triangle inequality is satisfied.
Furthermore, many cost functions other than euclidean distance satisfy the triangle
inequality.

As Exercise 35.2-2 shows, the traveling-salesman problem is NP-complete even
if we require that the cost function satisfy the triangle inequality. Thus, we should
not expect to find a polynomial-time algorithm for solving this problem exactly.
Instead, we look for good approximation algorithms.

In Section 35.2.1, we examine a 2-approximation algorithm for the traveling-
salesman problem with the triangle inequality. In Section 35.2.2, we show that
without the triangle inequality, a polynomial-time approximation algorithm with a
constant approximation ratio does not exist unless P D NP.

35.2.1 The traveling-salesman problem with the triangle inequality
Applying the methodology of the previous section, we shall first compute a struc-
ture—a minimum spanning tree—whose weight gives a lower bound on the length
of an optimal traveling-salesman tour. We shall then use the minimum spanning
tree to create a tour whose cost is no more than twice that of the minimum spanning
tree’s weight, as long as the cost function satisfies the triangle inequality. The fol-
lowing algorithm implements this approach, calling the minimum-spanning-tree
algorithm MST-PRIM from Section 23.2 as a subroutine. The parameter G is a
complete undirected graph, and the cost function c satisfies the triangle inequality.
APPROX-TSP-TOUR.G; c/

1 select a vertex r 2 G:V to be a “root” vertex
2 compute a minimum spanning tree T for G from root r

using MST-PRIM.G; c; r/
3 let H be a list of vertices, ordered according to when they are first visited

in a preorder tree walk of T
4 return the hamiltonian cycle H

Runtime is dominated by MST-PRIM, which is Θ(V 2).

Remember: In the Metric-TSP problem, G is a complete graph.
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Run of APPROX-TSP-TOUR
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e
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Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).
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X

2. Perform preorder walk on MST

X

3. Return list of vertices according to the preorder tree walk
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Approximate Solution: Objective 921
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Optimal Solution: Objective 699
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Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:

Consider the optimal tour H∗ and remove an arbitrary edge
⇒ yields a spanning tree T and((((hhhhtherefore

Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)
⇒ Full walk traverses every edge exactly twice, so

c(W ) = 2c(Tmin) ≤ 2c(T ) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W ) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSPminimum spanning tree TminWalk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗spanning tree T as a subset of H∗
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Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and((((hhhhtherefore c(T ) ≤ c(H∗)
Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)

⇒ Full walk traverses every edge exactly twice, so
c(W ) = 2c(Tmin) ≤ 2c(T ) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H with smaller cost:
c(H) ≤ c(W ) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!
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Christofides Algorithm

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Can we get a better approximation ratio?

CHRISTOFIDES(G, c)
1: select a vertex r ∈ G.V to be a “root” vertex
2: compute a minimum spanning tree T for G from root r
3: using MST-PRIM(G, c, r)
4: compute a perfect matching M with minimum weight in the complete graph
5: over the odd-degree vertices in T
6: let H be a list of vertices, ordered according to when they are first visited
7: in a Eulearian circuit of T ∪M
8: return H

There is a polynomial-time 3
2 -approximation algorithm for the travelling salesman

problem with the triangle inequality.

Theorem (Christofides’76)
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Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST

X

2. Add a minimum-weight perfect matching M of the odd vertices in T

X

3. Find an Eulerian Circuit

X

4. Transform the Circuit into a Hamiltonian Cycle

X

All vertices in T ∪M have even degree!
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Concluding Remarks

There is a polynomial-time 3
2 -approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Christofides’76)

There is a PTAS for the Euclidean TSP Problem.
Theorem (Arora’96, Mitchell’96)

Both received the Gödel Award 2010

“Christos Papadimitriou told me that the traveling
salesman problem is not a problem. It’s an addiction.”

Jon Bentley 1991
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