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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.

3+24+14+3=9
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

3
Or—)
Formal Definition 2 1
= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E 4 !

= Goal: Find a hamiltonian cycle of G with minimum cost.

O o o
Solution space consists of at most n! possible tours! 3

244+14+1=8
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

3
Formal Definition 2 1
= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E 4 !
= Goal: Find a hamiltonian cycle of G with minimum cost.
O\

Solution space consists of at most n! possible tours! ° 3 °
1 2+4+141=8

[Actually the right number is (n — 1)!/2]
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.
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= Given: A complete undirected graph G = (V, E) with
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Formal Definition
= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E 4 !

= Goal: Find a hamiltonian cycle of G with minimum cost.
O\

Solution space consists of at most n! possible tours! 3
/1

L
[Actually the right number is (n — 1)!/2J

24+4+1+1=8

Special Instances

= Metric TSP: costs satisfy triangle inequality:

Yu,v,we V: c(u,w) < c(u,v) + c(v, w).
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= Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Formal Definition
= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E 4 !

= Goal: Find a hamiltonian cycle of G with minimum cost.
O\

Solution space consists of at most n! possible tours! 3
/1

L
[Actually the right number is (n — 1)!/2J

24+4+1+1=8

Special Instances

. Even this version is
* Metric TSP: costs satisfy triangle inequality: <\ NP hard (Ex. 35.2-2)

Yu,v,we V: c(u,w) < c(u,v) + c(v, w).

= Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance
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History of the TSP problem (1954)

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html
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http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
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The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.
Otherwise find a new constraint to add (cutting plane)
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The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.
Otherwise find a new constraint to add (cutting plane)

2 @®318

Additional constraint to cut
the solution space of the LP
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g VI. Travelling Salesman Problem

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.
Otherwise find a new constraint to add (cutting plane)

Additional constraint to cut
the solution space of the LP

[ More cuts are needed to find integral solution ]

Introduction 5
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof:
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
= Let G’ = (V, E’) be a complete graph with costs for each (u, v) € E’:

G:(V,E) G/:(V,E/)
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
= Let G’ = (V, E’) be a complete graph with costs for each (u, v) € E’:

o v) = {1 if (u,v) € E,

plV|+1 otherwise.

G=(V,E) G =(V,E)
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
= Let G’ = (V, E’) be a complete graph with costs for each (u, v) € E’:
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plV|+1 otherwise.
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
= Let G’ = (V, E’) be a complete graph with costs for each (u, v) € E’:

o(u, v) 1 if (u,v) € E,
= f Large weight will render
’ p‘ V| + 1 OtherWISe'

;
G=(V,E) E m1 G =(V,F)
p-4+1
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If P # NP, then for any constant p > 1, there is no polynomial-time ap-
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Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
= Let G = (V, E’) be a complete graph with costs for each (u, v) € E’:

Can create representations of G’ and 1 if (u,v) € E,
c(u,v) =

¢ in time polynomial in |V| and |E|! .
plV|+1 otherwise.

;
G=(V,E) E m1 G =(V,F)
p-4+1
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Hardness of Approximation

Theorem 35.3

If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
Let G' = (V, E’) be a complete graph with costs for each (u,v) € E’:

o(u,v) = 1 if (u,v) € E,
"7 1plVI+1  otherwise.

= If G has a hamiltonian cycle H, then (G’, ¢) contains a tour of cost | V|
= |f G does not have a hamiltonian cycle, then any tour T must use some edge ¢ E,

= o(T) 2 (plVI+ )+ (VI=1)=(p+ DIVI.
= Gap of p 4+ 1 between tours which are using only edges in G and those which don’t

p-4+1

Reduction
G=(V,E) > 1 G =(V,E)
p-4+1

a0 VI. Travelling Salesman Problem General TSP



Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
Let G' = (V, E’) be a complete graph with costs for each (u,v) € E’:

o v) = {1 if (u,v) € E,

plV|+1 otherwise.
= If G has a hamiltonian cycle H, then (G’, ¢) contains a tour of cost | V|
= |f G does not have a hamiltonian cycle, then any tour T must use some edge ¢ E,
= o(T) 2 (plVI+ )+ (VI=1)=(p+ DIVI.

= Gap of p 4+ 1 between tours which are using only edges in G and those which don’t
= p-Approximation of TSP in G’ computes hamiltonian cycle in G (if one exists)

p-4+1
Reduction

G=(V.E) E 1 G =(V,E)
p-4+1
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Theorem 35.3
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o v) = {1 if (u,v) € E,

plV|+1 otherwise.
= If G has a hamiltonian cycle H, then (G’, ¢) contains a tour of cost | V|
= |f G does not have a hamiltonian cycle, then any tour T must use some edge ¢ E,
= o(T) 2 (plVI+ )+ (VI=1)=(p+ DIVI.

= Gap of p 4+ 1 between tours which are using only edges in G and those which don’t
= p-Approximation of TSP in G’ computes hamiltonian cycle in G (if one exists) |
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Proof of Theorem 35.3 from a higher perspective

instances of Hamilton instances of TSP
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Proof of Theorem 35.3 from a higher perspective

General Method to prove inapproximability results! )

hamiltonian cycle

{AII instances with a

All instances
with cost < k

All instances
with cost >p - k

instances of Hamilton instances of TSP
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Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.
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Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

APPROX-TSP-TOUR(G, ¢)

1 select a vertex r € G.V to be a “root” vertex

2 compute a minimum spanning tree 7" for G from root r
using MST-PRIM(G, ¢, 1)

3 let H be a list of vertices, ordered according to when they are first visited
in a preorder tree walk of 7"

4 return the hamiltonian cycle H
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Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

APPROX-TSP-TOUR(G, ¢)

1 selectavertex r € G.V to be a “root” vertex

2 compute a minimum spanning tree 7" for G from root r
using MST-PRIM(G, ¢, 1)

3 let H be a list of vertices, ordered according to when they are first visited
in a preorder tree walk of 7"

4 return the hamiltonian cycle H

O\

[Runtime is dominated by MST-PRim, which is e(VZ).]
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Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

APPROX-TSP-TOUR(G, ¢)

1 selectavertex r € G.V to be a “root” vertex

2 compute a minimum spanning tree 7" for G from root r
using MST-PRIM(G, ¢, 1)

3 let H be a list of vertices, ordered according to when they are first visited
in a preorder tree walk of 7"

4 return the hamiltonian cycle H

O\

Runtime is dominated by MST-PRIM, which is e(VZ).]

(Remember: In the Metric-TSP problem, G is a complete graph.)
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Run of APPROX-TSP-TOUR

Metric TSP
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1. Compute MST v/
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2. Perform preorder walk on MST v/
3. Return list of vertices according to the preorder tree walk
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Run of APPROX-TSP-TOUR

1. Compute MST v/
2. Perform preorder walk on MST v/
3. Return list of vertices according to the preorder tree walk v/
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Run of APPROX-TSP-TOUR

[Solution has cost ~ 19.704 - not optimal!]

1. Compute MST v/
2. Perform preorder walk on MST v/
3. Return list of vertices according to the preorder tree walk v/
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Run of APPROX-TSP-TOUR

1. Compute MST v/
2. Perform preorder walk on MST v/
3. Return list of vertices according to the preorder tree walk v/
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Run of APPROX-TSP-TOUR

[This is the optimal solution (cost ~ 14.715).]

1. Compute MST v/
2. Perform preorder walk on MST v/
3. Return list of vertices according to the preorder tree walk v/
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Approximate Solution: Objective 921
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Optimal Solution: Objective 699
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.
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Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
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Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:

solution H of APPROX-TSP
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove an arbitrary edge
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T and Irerefore.
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T andInerefere c(T) < c(H*)
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:

= Consider the optimal tour H* and remove an arbitrary edge

= yields a spanning tree T andInerefere.c(T) < c(H*) #

exploiting that all edge
costs are non-negative!

J

e e Lo
e e
| | | | | | | | | |
B 2O B O
B SRR B AR
B O N i i O
| | | | | | | | | | | |
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T andInerefere c(T) < c(H*)
= Let W be the full walk of the minimum spanning tree Ty, (including repeated visits)
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T andInerefere c(T) < c(H*)
= Let W be the full walk of the minimum spanning tree Ty, (including repeated visits)
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minimum spanning tree Tmin optimal solution H*
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Proof of the Approximation Ratio

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T andInerefere c(T) < c(H*)
= Let W be the full walk of the minimum spanning tree Ty, (including repeated visits)

Walk W = (a, b, c,b,h,b,a,d, e, f, e g,e,d,a) optimal solution H*
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Proof of the Approximation Ratio

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:

= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T andInerefere c(T) < c(H*)

= Let W be the full walk of the minimum spanning tree Ty, (including repeated visits)
= Full walk traverses every edge exactly twice, so

Walk W = (a,b,c,b,h,b,a,d, e, f, e g,e,d,a) optimal solution H*
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Proof of the Approximation Ratio

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:

= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T andInerefere c(T) < c(H*)

= Let W be the full walk of the minimum spanning tree Ty, (including repeated visits)
= Full walk traverses every edge exactly twice, so

C( W) = 2C( 7-min)

Walk W = (a, b, c,b,h,b,a,d, e, f, e g,e,d,a) optimal solution H*
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Theorem 35.2
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Proof:
= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T andInerefere c(T) < c(H*)
= Let W be the full walk of the minimum spanning tree Ty, (including repeated visits)
= Full walk traverses every edge exactly twice, so
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= yields a spanning tree T andInerefere c(T) < c(H*)

= Let W be the full walk of the minimum spanning tree Ty, (including repeated visits)
= Full walk traverses every edge exactly twice, so
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= Deleting duplicate vertices from W yields a tour H
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= Full walk traverses every edge exactly twice, so
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:

= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T andInerefere c(T) < c(H*)

= Let W be the full walk of the minimum spanning tree Ty, (including repeated visits)
= Full walk traverses every edge exactly twice, so

c(W) = 2¢(Tmin) < 2¢(T) < 2¢(H*)

= Deleting duplicate vertices from W yields a tour H
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optimal solution H*

| |
| |
Walk W = (a,b,c.p.h.f.4.d.e.f.f.9. ¢ 4. a)
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:

= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T andInerefere c(T) < c(H*)

= Let W be the full walk of the minimum spanning tree Ty, (including repeated visits)
= Full walk traverses every edge exactly twice, so

c(W) = 2¢(Tmin) < 2¢(T) < 2¢(H*)

= Deleting duplicate vertices from W yields a tour H
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T andInerefere c(T) < c(H*)
= Let W be the full walk of the minimum spanning tree Ty, (including repeated visits)
= Full walk traverses every edge exactly twice, so

c(W) = 2¢(Tmin) < 2¢(T) < 2¢(H*) [exploiting triangle inequality!]

V
= Deleting duplicate vertices from W yields a tour H with smaller cost:
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T andInerefere c(T) < c(H*)
= Let W be the full walk of the minimum spanning tree Ty, (including repeated visits)
= Full walk traverses every edge exactly twice, so

c(W) = 2¢(Tmin) < 2¢(T) < 2¢(H*) [exploiting triangle inequality!]

V
= Deleting duplicate vertices from W yields a tour H with smaller cost:

c(H) < e(W)
Seeel o ean
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Tour H= (a,b,c, h,d,e,f,g,a) optimal solution H*
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APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.
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= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T andInerefere c(T) < c(H*)
= Let W be the full walk of the minimum spanning tree Ty, (including repeated visits)
= Full walk traverses every edge exactly twice, so

c(W) = 2¢(Tmin) < 2¢(T) < 2¢(H*) [exploiting triangle inequality!]

V
= Deleting duplicate vertices from W yields a tour H with smaller cost:
c(H) < c(W) < 2c¢c(H")
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T andInerefere c(T) < c(H*)
= Let W be the full walk of the minimum spanning tree Ty, (including repeated visits)
= Full walk traverses every edge exactly twice, so

c(W) = 2¢(Tmin) < 2¢(T) < 2¢(H*) [exploiting triangle inequality!]

V
= Deleting duplicate vertices from W yields a tour H with smaller cost:
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Christofides Algorithm

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.
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Christofides Algorithm

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?
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Christofides Algorithm

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

CHRISTOFIDES(G, ¢)

: select a vertex r € G.V to be a “root” vertex
: compute a minimum spanning tree T for G from root r

using MST-PRIM(G, c, r)

. compute a perfect matching M with minimum weight in the complete graph

over the odd-degree vertices in T

: let H be a list of vertices, ordered according to when they are first visited

in a Eulearian circuit of TU M

. return H
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Christofides Algorithm

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

CHRISTOFIDES(G, ¢)
: select a vertex r € G.V to be a “root” vertex
: compute a minimum spanning tree T for G from root r
using MST-PRIM(G, ¢, r)
. compute a perfect matching M with minimum weight in the complete graph
over the odd-degree vertices in T
: let H be a list of vertices, ordered according to when they are first visited
in a Eulearian circuit of TU M
: return H

Theorem (Christofides’76)

There is a polynomial-time %—approximation algorithm for the travelling salesman
problem with the triangle inequality.
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Run of CHRISTOFIDES

[Solution has cost ~ 15.54 - within 10% of the optimum!]

1. Compute MST v/

2. Add a minimum-weight perfect matching M of the odd vertices in T v/
3. Find an Eulerian Circuit v/

4. Transform the Circuit into a Hamiltonian Cycle v/
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Concluding Remarks

Theorem (Christofides’76)
3

There is a polynomial-time 3-approximation algorithm for the travelling
salesman problem with the triangle inequality.
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Concluding Remarks

There is a polynomial-time

Theorem (Christofides’76)

3

5-approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Arora’96, Mitchell’96)
| There is a PTAS for the Euclidean TSP Problem.
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Concluding Remarks

Theorem (Christofides’76)

There is a polynomial-time %—approximation algorithm for the travelling
salesman problem with the triangle inequality.

(Both received the Godel Award 2010]
z

Theorem (Arora’96, Mitchell’96)
| There is a PTAS for the Euclidean TSP Problem. ]

“Christos Papadimitriou told me that the traveling
salesman problem is not a problem. It's an addiction.”

Jon Bentley 1991
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