IV. Approximation Algorithms: Covering
Problems

Thomas Sauerwald

Easter 2016

57 UNIVERSITY OF
¥ CAMBRIDGE

Outline

Introduction

S
e r

IV. Covering Problems Introduction

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

IV. Covering Problems Introduction

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

o~

Sl
SR

AN

[Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. .]

IV. Covering Problems Introduction

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

o~

AN

[Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. .]

——— Strategies to cope with NP-complete problems

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

i
IV. Covering Problems Introduction

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

o~

AN

[Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. .]

——— Strategies to cope with NP-complete problems

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

s
.-,.E:,_ IV. Covering Problems Introduction

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

o~

AN

[Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. .]

——— Strategies to cope with NP-complete problems

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

—[We will call these approximation algorithms.]

i
IV. Covering Problems Introduction

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

c Cr
_ < .
max (C*’ c) < p(n)

s

.-,.I,_ IV. Covering Problems Introduction

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

c C
m = Z)< .
ax ()) p(n)

N

\

(This covers both maximization and minimization problems.]

i
IV. Covering Problems Introduction

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

ax (CC’%) <o | Maximization problem: & > 1

N

\] L
1

(This covers both maximization and minimization problems.]

i
IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

Approximation Ratio

el e
SR

* = Maximization problem: & > 1
max <£ C—) < p(n). P © -
¢ C * Minimization problem: & > 1
N\
\ | 4

(This covers both maximization and minimization problems.]

IV. Covering Problems

Introduction 4

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

max(C C*) <o) | Maximization problem: & > 1

cr’ C » Minimization problem: £ > 1

N

\] L
1

(This covers both maximization and minimization problems.]

[For many problems: iradeoff between runtime and approximation ratio.]
vV

i
IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

. <£7 z) <o) | Maximization problem: & > 1
c-' C * Minimization problem: & > 1

N

\] L
1

(This covers both maximization and minimization problems.]

[For many problems: iradeoff between runtime and approximation ratio.]

——— Approximation Schemes

i
IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

max(C C*) <o | Maximization problem: & > 1

cr’ C » Minimization problem: £ > 1

N

\] L
1

(This covers both maximization and minimization problems.]

[For many problems: iradeoff between runtime and approximation ratio.]

Approximation Schemes

An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + ¢)-approximation algorithm.

i
IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

max(C C*) <o | Maximization problem: & > 1

cr’ C » Minimization problem: £ > 1

N

\] L
1

(This covers both maximization and minimization problems.]

[For many problems: iradeoff between runtime and approximation ratio.]

Approximation Schemes

An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + ¢)-approximation algorithm.
= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
€ > 0, the runtime is polynomial in n.

i
IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

max(C C*) <o) | Maximization problem: & > 1

cr’ C » Minimization problem: £ > 1

N

\] L
1

(This covers both maximization and minimization problems.]

[For many problems: iradeoff between runtime and approximation ratio.]

Approximation Schemes

An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + ¢)-approximation algorithm.
= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
e > 0, the runtime is polynomial in n. (For example, o(nZ/E)J

i
IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

max(C C*) <o) | Maximization problem: & > 1

cr’ C » Minimization problem: £ > 1

N

\] L
1

(This covers both maximization and minimization problems.]

[For many problems: iradeoff between runtime and approximation ratio.]

Approximation Schemes

An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + ¢)-approximation algorithm.

= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
e > 0, the runtime is polynomial in n. (For example, o(nZ/E)J

= Itis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/¢ and n.

i
IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

max(C C*) <o) | Maximization problem: & > 1

cr’ C » Minimization problem: £ > 1

N

\] L
1

(This covers both maximization and minimization problems.]

[For many problems: iradeoff between runtime and approximation ratio.]

Approximation Schemes

An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + ¢)-approximation algorithm.

= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
e > 0, the runtime is polynomial in n. (For example, o(nZ/E)J

= Itis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/¢ and n. Gzor example, O((1/€)? - ,,s)_)

i
IV. Covering Problems Introduction 4

Outline

Vertex Cover

S
e r

IV. Covering Problems Vertex Cover

The Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected graph G = (V, E)
= Goal: Find a minimum-cardinality subset V' C V

such that if (u,v) € E(G),thenuec V' orv e V.

. b

.-,.E:,_ IV. Covering Problems Vertex Cover

The Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected graph G = (V, E)
= Goal: Find a minimum-cardinality subset V' C V

such that if (u,v) € E(G),thenuec V' orv e V.

. b

.-,.E:,_ IV. Covering Problems Vertex Cover

The Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected graph G = (V, E)
= Goal: Find a minimum-cardinality subset V' C V

such that if (u,v) € E(G),thenuec V' orv e V.

. b

.-,.E:,_ IV. Covering Problems Vertex Cover

The Vertex-Cover Problem

[We are covering edges by picking vertices!]

Vertex Cover Problem

= Given: Undirected graph G = (V, E)

= Goal: Find a minimum-cardinality subset V' C V
such that if (u,v) € E(G),thenuec V' orv e V.

IV. Covering Problems Vertex Cover

The Vertex-Cover Problem

[We are covering edges by picking vertices!]

Vertex Cover Problem

= Given: Undirected graph G = (V, E)

= Goal: Find a minimum-cardinality subset V' C V
such that if (u,v) € E(G),thenuec V' orv e V.
N\

[This is an NP-hard problem.]

IV. Covering Problems Vertex Cover

The Vertex-Cover Problem

[We are covering edges by picking vertices!]

Vertex Cover Problem

= Given: Undirected graph G = (V, E)
= Goal: Find a minimum-cardinality subset V' C V

N

such that if (u,v) € E(G),thenuec V' orv e V.

[This is an NP-hard problem.]

Applications:

IV. Covering Problems Vertex Cover

The Vertex-Cover Problem

[We are covering edges by picking vertices!]

Vertex Cover Problem
= Given: Undirected graph G = (V, E)

= Goal: Find a minimum-cardinality subset V' C V G
such that if (u,v) € E(G),thenuec V' orv e V.

N

[This is an NP-hard problem.] o

Applications:

= Every edge forms a task, and every vertex represents a person/machine
which can execute that task

IV. Covering Problems Vertex Cover

The Vertex-Cover Problem

[We are covering edges by picking vertices!]

Vertex Cover Problem
= Given: Undirected graph G = (V, E)

= Goal: Find a minimum-cardinality subset V' C V G
such that if (u,v) € E(G),thenuec V' orv e V.
D O
[This is an NP-hard problem.] o
Applications:

= Every edge forms a task, and every vertex represents a person/machine
which can execute that task

= Perform all tasks with the minimal amount of resources

i
IV. Covering Problems Vertex Cover

The Vertex-Cover Problem

[We are covering edges by picking vertices!]

Vertex Cover Problem
= Given: Undirected graph G = (V, E)

= Goal: Find a minimum-cardinality subset V' C V G
such that if (u,v) € E(G),thenuec V' orv e V.
D O
[This is an NP-hard problem.] o
Applications:

= Every edge forms a task, and every vertex represents a person/machine
which can execute that task

= Perform all tasks with the minimal amount of resources
= Extensions: weighted vertices or hypergraphs (~+ Set-Covering Problem)

i
IV. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER (G)

1 C=90

2 E'=G.E

while £’ #£ 0

4 let (u, v) be an arbitrary edge of E’
5 C =CU{u,v}
6
7

[SS)

remove from E’ every edge incident on either u or v
return C

i
IV. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)
C=9
E'=G.E
while £’ # 0
let (u,v) be an arbitrary edge of E’
C =CU{u,v}
remove from E’ every edge incident on either u or v
return C

W N =

~N OB

i
IV. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)
C=9
E'=G.E
while £’ # 0
let (u,v) be an arbitrary edge of E’
C =CU{u,v}
remove from E’ every edge incident on either u or v
return C

W N =

~N OB

i
IV. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u,v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

i
IV. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u,v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

i
IV. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u,v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

S

v
v
’

®d G—0 ©

i
IV. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

S

v
v
’

®d G—0 ©

i
IV. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

S

v
v
’

®d G—0 ©

i
IV. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u,v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

1
1 1
1 1
1 1 ’
1 1
1 1
1

® &—0 W
N

[APPROX-VERTEX-COVER produces a set of size 6.]

5
IV. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)
C=9
E'=G.E
while £’ # 0
let (u,v) be an arbitrary edge of E’
C =CU{u,v}
remove from E’ every edge incident on either u or v
return C

W N =

~N OB

[The optimal solution has size 3.]

5
IV. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Sl

.-,,E:,_ IV. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

i
IV. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:

i
IV. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:
= Running time is O(V + E) (using adjacency lists to represent E’)

i
IV. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:
= Running time is O(V + E) (using adjacency lists to represent E’)
= Let A C E denote the set of edges picked in line 4

i
IV. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:

= Running time is O(V + E) (using adjacency lists to represent E’)

= Let A C E denote the set of edges picked in line 4

= Every optimal cover C* must include at least one endpoint of edges in A,

i
IV. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:

= Running time is O(V + E) (using adjacency lists to represent E’)

= Let A C E denote the set of edges picked in line 4

= Every optimal cover C* must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint:

i
IV. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:

= Running time is O(V + E) (using adjacency lists to represent E’)

= Let A C E denote the set of edges picked in line 4

= Every optimal cover C* must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: | |C*| > |A]

i
IV. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:

= Running time is O(V + E) (using adjacency lists to represent E’)

= Let A C E denote the set of edges picked in line 4

= Every optimal cover C* must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: | |C*| > |A]

= Every edge in A contributes 2 vertices to |C|:

i
IV. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:

= Running time is O(V + E) (using adjacency lists to represent E’)

= Let A C E denote the set of edges picked in line 4

= Every optimal cover C* must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: | |C*| > |A]

= Every edge in A contributes 2 vertices to |C|: ‘ |C| = 2|A| ‘

i
IV. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:

= Running time is O(V + E) (using adjacency lists to represent E’)

= Let A C E denote the set of edges picked in line 4

= Every optimal cover C* must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: | [C*| > |A]|

= Every edge in A contributes 2 vertices to |C|: ‘ |C| = 2|A| Vg 2/C"|. ‘

i
IV. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.]

Proof:

= Running time is O(V + E) (using adjacency lists to represent E’)

= Let A C E denote the set of edges picked in line 4

= Every optimal cover C* must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: | [C*| > |A]|

= Every edge in A contributes 2 vertices to |C|: ‘ |C| = 2|A| Vg 2/C"|. ‘ O

i
IV. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER (G)

1 C=9
2 E =G.E
3 while E' # 0
4 let (u, v) be an arbitrary edge of E’
5 C =CU{u,v}
6 remove from E’ every edge incident on either u or v
7 return C Wi ; -
e can bound the size of the returned solution
_[without knowing the (size of an) optimal solution! J
Theorem 35.1 -
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.]
Proof:

= Running time is O(V + E) (using adjacency lists to represent E’)

= Let A C E denote the set of edges picked in line 4

= Every optimal cover C* must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: | [C*| > |A]|

= Every edge in A contributes 2 vertices to |C|: ‘ |C| = 2|A| Vg 2/C"|. ‘ O

5
IV. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER (G)

1 C, =40 A "vertex-based" Greedy that adds one vertex at each iter-
2 E = G.E ation fails to achieve an approximation ratio of 2 (Exercise)!
3 while E' # 0 o
4 let (1, v) be an arbitrary edge of E’
5 C =CU{u,v}
6 remove from E’ every edge incident on either u or v
7 return C A -
We can bound the size of the returned solution
without knowing the (size of an) optimal solution!
Theorem 35.1 -
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.]
Proof:

= Running time is O(V + E) (using adjacency lists to represent E’)

= Let A C E denote the set of edges picked in line 4

= Every optimal cover C* must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: | [C*| > |A]|

= Every edge in A contributes 2 vertices to |C|: ‘ |C| = 2|A| Vg 2/C"|. ‘ O

s IV. Covering Problems Vertex Cover 8

Solving Special Cases

—— Strategies to cope with NP-complete problems

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

el b

\-,‘E o IV. Covering Problems Vertex Cover

Solving Special Cases

—— Strategies to cope with NP-complete problems

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

el b

\-,‘E o IV. Covering Problems Vertex Cover

Solving Special Cases

—— Strategies to cope with NP-complete problems

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

IV. Covering Problems Vertex Cover

Solving Special Cases

—— Strategies to cope with NP-complete problems

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

IV. Covering Problems Vertex Cover

Solving Special Cases

— Strategies to cope with NP-complete problems

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

i

.-,.E:,_ IV. Covering Problems Vertex Cover

Solving Special Cases

— Strategies to cope with NP-complete problems

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

i

.-,.E:,_ IV. Covering Problems Vertex Cover

Solving Special Cases

— Strategies to cope with NP-complete problems

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

i

.-,.E:,_ IV. Covering Problems Vertex Cover

Solving Special Cases

— Strategies to cope with NP-complete problems

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

i

.-,.E:,_ IV. Covering Problems Vertex Cover

Vertex Cover on Trees

i
5 B IV. Covering Problems

Vertex Cover

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

i

IV. Covering Problems Vertex Cover

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Sl
SR

A
[Exchange-Argument: Replace any leaf in the cover by its parent.]

IV. Covering Problems Vertex Cover

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Sl
SR

A
[Exchange-Argument: Replace any leaf in the cover by its parent.]

IV. Covering Problems Vertex Cover

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Sl
SR

A
[Exchange-Argument: Replace any leaf in the cover by its parent.]

IV. Covering Problems Vertex Cover

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Sl
SR

A
[Exchange-Argument: Replace any leaf in the cover by its parent.]

IV. Covering Problems Vertex Cover

Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

i
»'-.E =

IV. Covering Problems Vertex Cover

Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
1:C=0
2: while 3 leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5. return C

i

.-,,E 5 IV. Covering Problems Vertex Cover

Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

AN S .

VERTEX-COVER-TREES(G)
:C=10
while 3 leaves in G
Add all parents to C
Remove all leaves and their parents from G
return C
N

[Clear: Running time is O(V), and the returned solution is a vertex cover.]

Sl
SR

IV. Covering Problems Vertex Cover

Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
:C=10
while 3 leaves in G
Add all parents to C
Remove all leaves and their parents from G
return C

AN S .

N
[Clear: Running time is O(V), and the returned solution is a vertex cover.]

\
Solution is also optimal. (Use inductively the ex-
istence of an optimal vertex cover without leaves)

i
IV. Covering Problems Vertex Cover

Execution on a Small Example

VERTEX-COVER-TREES(G)
:C=10
while 3 leaves in G
Add all parents to C
Remove all leaves and their parents from G
return C

AN e

IV. Covering Problems Vertex Cover

Execution on a Small Example

VERTEX-COVER-TREES(G)
:C=10
while 3 leaves in G
Add all parents to C
Remove all leaves and their parents from G
return C

AN e

IV. Covering Problems Vertex Cover

Execution on a Small Example

VERTEX-COVER-TREES(G)
:C=10
while 3 leaves in G
Add all parents to C
Remove all leaves and their parents from G
return C

AN e

i
IV. Covering Problems Vertex Cover

Execution on a Small Example

VERTEX-COVER-TREES(G)
:C=10
while 3 leaves in G
Add all parents to C
Remove all leaves and their parents from G
return C

AN e

s IV. Covering Problems Vertex Cover

Execution on a Small Example

VERTEX-COVER-TREES(G)
:C=10
while 3 leaves in G
Add all parents to C
Remove all leaves and their parents from G
return C

AN e

s IV. Covering Problems Vertex Cover

Execution on a Small Example

VERTEX-COVER-TREES(G)
:C=10
while 3 leaves in G
Add all parents to C
Remove all leaves and their parents from G
return C

AN e

S
IV. Covering Problems Vertex Cover

Execution on a Small Example

VERTEX-COVER-TREES(G)
:C=10
while 3 leaves in G
Add all parents to C
Remove all leaves and their parents from G
return C

AN e

s IV. Covering Problems Vertex Cover

Execution on a Small Example

VERTEX-COVER-TREES(G)
:C=10
while 3 leaves in G
Add all parents to C
Remove all leaves and their parents from G
return C

AN e

(Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.]

i
IV. Covering Problems Vertex Cover 12

Exact Algorithms

——— Strategies to cope with NP-complete problems

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

i

\-,‘E o IV. Covering Problems Vertex Cover

Exact Algorithms

——— Strategies to cope with NP-complete problems

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

el b

\-,‘E o IV. Covering Problems Vertex Cover

Exact Algorithms

[Such algorithms are called exact algorithms.j

——— Strategies to cope with NP-complete problems —//

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

IV. Covering Problems Vertex Cover

Exact Algorithms

[Such algorithms are called exact algorithms.j

——— Strategies to cope with NP-complete problems —//

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Focus on instances where the minimum vertex cover is small, that is,
less or equal than some given integer k.

s

.-,.I,. IV. Covering Problems Vertex Cover 13

Exact Algorithms

[Such algorithms are called exact algorithms.j

——— Strategies to cope with NP-complete problems —//

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Focus on instances where the minimum vertex cover is small, that is,
less or equal than some given integer k.

SN\
\

[Simple Brute-Force Search would take = (7) = ©(n*) time.]

S
IV. Covering Problems Vertex Cover 13

Towards a more efficient Search

Substructure Lemma

Consider a graph G = (V, E), edge {u,v} € E(G) and integer k > 1.
Let G, be the graph obtained by deleting v and its incident edges (G, is
defined similarly). Then G has a vertex cover of size k if and only if G,
or Gy (or both) have a vertex cover of size k — 1.

IV. Covering Problems Vertex Cover

Towards a more efficient Search

Substructure Lemma

Consider a graph G = (V, E), edge {u,v} € E(G) and integer k > 1.
Let G, be the graph obtained by deleting v and its incident edges (G, is
defined similarly). Then G has a vertex cover of size k if and only if G,
or Gy (or both) have a vertex cover of size k — 1.

I\

A\

[Reminiscent of Dynamic Programming.]

s

.-,,E 5 IV. Covering Problems Vertex Cover

Towards a more efficient Search

Substructure Lemma

Consider a graph G = (V, E), edge {u,v} € E(G) and integer k > 1.
Let G, be the graph obtained by deleting v and its incident edges (G, is
defined similarly). Then G has a vertex cover of size k if and only if G,
or Gy (or both) have a vertex cover of size k — 1.

Proof:
< Assume G, has a vertex cover C, of size k — 1.

e

.-,,E 5 IV. Covering Problems Vertex Cover

Towards a more efficient Search

Substructure Lemma

Consider a graph G = (V, E), edge {u,v} € E(G) and integer k > 1.
Let G, be the graph obtained by deleting v and its incident edges (G, is
defined similarly). Then G has a vertex cover of size k if and only if G,
or Gy (or both) have a vertex cover of size k — 1.

Proof:
< Assume G, has a vertex cover C, of size k — 1.

e

.-,,E 5 IV. Covering Problems Vertex Cover

Towards a more efficient Search

Substructure Lemma

Consider a graph G = (V, E), edge {u,v} € E(G) and integer k > 1.
Let G, be the graph obtained by deleting v and its incident edges (G, is
defined similarly). Then G has a vertex cover of size k if and only if G,
or Gy (or both) have a vertex cover of size k — 1.

Proof:

< Assume G, has a vertex cover C, of size k — 1.
Adding u yields a vertex cover of G which is of size k

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Substructure Lemma

Consider a graph G = (V, E), edge {u,v} € E(G) and integer k > 1.
Let G, be the graph obtained by deleting v and its incident edges (G, is
defined similarly). Then G has a vertex cover of size k if and only if G,
or Gy (or both) have a vertex cover of size k — 1.

Proof:

< Assume G, has a vertex cover C, of size k — 1.
Adding u yields a vertex cover of G which is of size k

= Assume G has a vertex cover C of size k, which contains, say u.

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Substructure Lemma

Consider a graph G = (V, E), edge {u,v} € E(G) and integer k > 1.
Let G, be the graph obtained by deleting v and its incident edges (G, is
defined similarly). Then G has a vertex cover of size k if and only if G,
or Gy (or both) have a vertex cover of size k — 1.

Proof:

< Assume G, has a vertex cover C, of size k — 1.
Adding u yields a vertex cover of G which is of size k

= Assume G has a vertex cover C of size k, which contains, say u.
Removing u from C yields a vertex cover of G, which is of size k — 1.

O

IV. Covering Problems Vertex Cover

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)

If E=0return

If Kk =0and E # () return L

Pick an arbitrary edge (u,v) € E

S1 = VERTEX-COVER-SEARCH(Gy, k — 1)
S = VERTEX-COVER-SEARCH(Gy, k — 1)
: if St # L return S; U {u}

if S; # L return S; U {v}

: return L

©NQD AN 2

g IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)

If E=0return

If Kk =0and E # () return L

Pick an arbitrary edge (u,v) € E

S1 = VERTEX-COVER-SEARCH(Gy, k — 1)
S = VERTEX-COVER-SEARCH(Gy, k — 1)
if Sy # L return S; U {u}

if S; # L return S; U {v}

return L

©NQD AN 2

O\

[Correctness follows by the Substructure Lemma and induction.]

IV. Covering Problems Vertex Cover

A More Efficient Search Algorithm

©NQD AN 2

VERTEX-COVER-SEARCH(G, k)

If E=0return

If Kk =0and E # () return L

Pick an arbitrary edge (u,v) € E

S1 = VERTEX-COVER-SEARCH(Gy, k — 1)
S = VERTEX-COVER-SEARCH(Gy, k — 1)

: if St # L return S; U {u}

if S; # L return S; U {v}

: return L

Running time:

IV. Covering Problems Vertex Cover

A More Efficient Search Algorithm

©NQD AN 2

VERTEX-COVER-SEARCH(G, k)

If E=0return

If Kk =0and E # () return L

Pick an arbitrary edge (u,v) € E

S1 = VERTEX-COVER-SEARCH(Gy, k — 1)
S = VERTEX-COVER-SEARCH(Gy, k — 1)

: if St # L return S; U {u}

if S; # L return S; U {v}

: return L

Running time:
* Depth k, branching factor 2

IV. Covering Problems Vertex Cover

A More Efficient Search Algorithm

©NQD AN 2

VERTEX-COVER-SEARCH(G, k)

If E=0return

If Kk =0and E # () return L

Pick an arbitrary edge (u,v) € E

S1 = VERTEX-COVER-SEARCH(Gy, k — 1)
S = VERTEX-COVER-SEARCH(Gy, k — 1)

: if St # L return S; U {u}

if S; # L return S; U {v}

: return L

Running time:
» Depth k, branching factor 2 = total number of calls is O(2¥)

IV. Covering Problems Vertex Cover

A More Efficient Search Algorithm

©NQD AN 2

VERTEX-COVER-SEARCH(G, k)

If E=0return

If Kk =0and E # () return L

Pick an arbitrary edge (u,v) € E

S1 = VERTEX-COVER-SEARCH(Gy, k — 1)
S = VERTEX-COVER-SEARCH(Gy, k — 1)

: if St # L return S; U {u}

if S; # L return S; U {v}

: return L

Running time:
» Depth k, branching factor 2 = total number of calls is O(2¥)
= O(E) work per recursive call

IV. Covering Problems Vertex Cover

A More Efficient Search Algorithm

©NQD AN 2

VERTEX-COVER-SEARCH(G, k)

If E=0return

If Kk =0and E # () return L

Pick an arbitrary edge (u,v) € E

S1 = VERTEX-COVER-SEARCH(Gy, k — 1)
S = VERTEX-COVER-SEARCH(Gy, k — 1)

: if St # L return S; U {u}

if S; # L return S; U {v}

: return L

Running time:
» Depth k, branching factor 2 = total number of calls is O(2¥)
= O(E) work per recursive call
« Total runtime: O(2% - E).

IV. Covering Problems Vertex Cover

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)

If E=0return

If Kk =0and E # () return L

Pick an arbitrary edge (u,v) € E

S1 = VERTEX-COVER-SEARCH(Gy, k — 1)
S = VERTEX-COVER-SEARCH(Gy, k — 1)
if Sy # L return S; U {u}

if S; # L return S; U {v}

return L

©NQD AN 2

Running time:
» Depth k, branching factor 2 = total number of calls is O(2¥)
= O(E) work per recursive call
« Total runtime: O(2% - E).
~o

[exponential in k, but much better than ©(n*) (i.e., still polynomial for k = O(log n))]

i
o 5, IV. Covering Problems Vertex Cover 15

	Introduction
	Vertex Cover

