
IV. Approximation Algorithms: Covering
Problems
Thomas Sauerwald

Easter 2016

Outline

Introduction

Vertex Cover

IV. Covering Problems Introduction 2

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. . .

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

We will call these approximation algorithms.

IV. Covering Problems Introduction 3

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. . .

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

We will call these approximation algorithms.

IV. Covering Problems Introduction 3

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. . .

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

We will call these approximation algorithms.

IV. Covering Problems Introduction 3

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. . .

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

We will call these approximation algorithms.

IV. Covering Problems Introduction 3

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. . .

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

We will call these approximation algorithms.

IV. Covering Problems Introduction 3

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Outline

Introduction

Vertex Cover

IV. Covering Problems Vertex Cover 5

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted vertices or hypergraphs (Set-Covering Problem)

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted vertices or hypergraphs (Set-Covering Problem)

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted vertices or hypergraphs (Set-Covering Problem)

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted vertices or hypergraphs (Set-Covering Problem)

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted vertices or hypergraphs (Set-Covering Problem)

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted vertices or hypergraphs (Set-Covering Problem)

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted vertices or hypergraphs (Set-Covering Problem)

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted vertices or hypergraphs (Set-Covering Problem)

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted vertices or hypergraphs (Set-Covering Problem)

IV. Covering Problems Vertex Cover 6

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.

The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.

The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)

Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4

Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint:

|C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|: |C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|: |C| = 2|A| ≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|: |C| = 2|A| ≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|: |C| = 2|A| ≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|: |C| = 2|A| ≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

IV. Covering Problems Vertex Cover 10

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

IV. Covering Problems Vertex Cover 10

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

IV. Covering Problems Vertex Cover 10

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

IV. Covering Problems Vertex Cover 10

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

IV. Covering Problems Vertex Cover 10

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

IV. Covering Problems Vertex Cover 10

Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Clear: Running time is O(V), and the returned solution is a vertex cover.

Solution is also optimal. (Use inductively the ex-
istence of an optimal vertex cover without leaves)

IV. Covering Problems Vertex Cover 11

Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Clear: Running time is O(V), and the returned solution is a vertex cover.

Solution is also optimal. (Use inductively the ex-
istence of an optimal vertex cover without leaves)

IV. Covering Problems Vertex Cover 11

Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Clear: Running time is O(V), and the returned solution is a vertex cover.

Solution is also optimal. (Use inductively the ex-
istence of an optimal vertex cover without leaves)

IV. Covering Problems Vertex Cover 11

Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Clear: Running time is O(V), and the returned solution is a vertex cover.

Solution is also optimal. (Use inductively the ex-
istence of an optimal vertex cover without leaves)

IV. Covering Problems Vertex Cover 11

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Exact Algorithms

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

Such algorithms are called exact algorithms.

Focus on instances where the minimum vertex cover is small, that is,
less or equal than some given integer k .

Simple Brute-Force Search would take ≈
(n

k

)
= Θ(nk) time.

IV. Covering Problems Vertex Cover 13

Exact Algorithms

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

Such algorithms are called exact algorithms.

Focus on instances where the minimum vertex cover is small, that is,
less or equal than some given integer k .

Simple Brute-Force Search would take ≈
(n

k

)
= Θ(nk) time.

IV. Covering Problems Vertex Cover 13

Exact Algorithms

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

Such algorithms are called exact algorithms.

Focus on instances where the minimum vertex cover is small, that is,
less or equal than some given integer k .

Simple Brute-Force Search would take ≈
(n

k

)
= Θ(nk) time.

IV. Covering Problems Vertex Cover 13

Exact Algorithms

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

Such algorithms are called exact algorithms.

Focus on instances where the minimum vertex cover is small, that is,
less or equal than some given integer k .

Simple Brute-Force Search would take ≈
(n

k

)
= Θ(nk) time.

IV. Covering Problems Vertex Cover 13

Exact Algorithms

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

Such algorithms are called exact algorithms.

Focus on instances where the minimum vertex cover is small, that is,
less or equal than some given integer k .

Simple Brute-Force Search would take ≈
(n

k

)
= Θ(nk) time.

IV. Covering Problems Vertex Cover 13

Towards a more efficient Search

Consider a graph G = (V ,E), edge {u, v} ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.
Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.

Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

uu

Gu v

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Consider a graph G = (V ,E), edge {u, v} ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.

Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

uu

Gu v

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Consider a graph G = (V ,E), edge {u, v} ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.

Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

uu

Gu v

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Consider a graph G = (V ,E), edge {u, v} ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.

Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

u

u

Gu v

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Consider a graph G = (V ,E), edge {u, v} ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.
Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

u

u

Gu v

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Consider a graph G = (V ,E), edge {u, v} ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.
Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

u

u

Gu v

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Consider a graph G = (V ,E), edge {u, v} ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.
Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.
Removing u from C yields a vertex cover of Gu which is of size k − 1.

u

u

Gu v

IV. Covering Problems Vertex Cover 14

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return ∅
2: If k = 0 and E 6= ∅ return ⊥
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ⊥ return S1 ∪ {u}
7: if S2 6= ⊥ return S2 ∪ {v}
8: return ⊥

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2

⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return ∅
2: If k = 0 and E 6= ∅ return ⊥
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ⊥ return S1 ∪ {u}
7: if S2 6= ⊥ return S2 ∪ {v}
8: return ⊥

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2

⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return ∅
2: If k = 0 and E 6= ∅ return ⊥
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ⊥ return S1 ∪ {u}
7: if S2 6= ⊥ return S2 ∪ {v}
8: return ⊥

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2

⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return ∅
2: If k = 0 and E 6= ∅ return ⊥
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ⊥ return S1 ∪ {u}
7: if S2 6= ⊥ return S2 ∪ {v}
8: return ⊥

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2

⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return ∅
2: If k = 0 and E 6= ∅ return ⊥
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ⊥ return S1 ∪ {u}
7: if S2 6= ⊥ return S2 ∪ {v}
8: return ⊥

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return ∅
2: If k = 0 and E 6= ∅ return ⊥
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ⊥ return S1 ∪ {u}
7: if S2 6= ⊥ return S2 ∪ {v}
8: return ⊥

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return ∅
2: If k = 0 and E 6= ∅ return ⊥
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ⊥ return S1 ∪ {u}
7: if S2 6= ⊥ return S2 ∪ {v}
8: return ⊥

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return ∅
2: If k = 0 and E 6= ∅ return ⊥
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ⊥ return S1 ∪ {u}
7: if S2 6= ⊥ return S2 ∪ {v}
8: return ⊥

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

	Introduction
	Vertex Cover

