
Artificial Intelligence II

Dr Sean Holden

Computer Laboratory, Room FC06

Telephone extension 63725

Email: sbh11@cl.cam.ac.uk

www.cl.cam.ac.uk/∼sbh11/

Copyright c© Sean Holden 2002-16.

1

Syllabus part I: advanced planning

New things to be looked at include some more advanced material on planning

algorithms:

• Heuristics and GraphPlan: incorporating heuristics into partial-order plan-

ning, planning graphs, the GraphPlan algorithm. [1 lecture]

• Planning using propositional logic: representing planning problems using

propositional logic, and generating plans using satisfiability solvers. [1 lec-

ture]

• Planning using constraint satisfaction: representing planning problems so that

they can be solved using constraint satisfaction solvers. [1 lecture]

There is no warranty attached to the stated lecture timings.

2

Syllabus part II: uncertainty in AI

We then delve into some more modern material which takes account of uncer-

tainty:

• Uncertainty and Bayesian networks: review of probability as applied to AI,

Bayesian networks, inference in Bayesian networks using both exact and ap-

proximate techniques, other ways of dealing with uncertainty. [4 lectures]

• Utility and decision-making: maximising expected utility, decision networks,

the value of information. [1 lecture]

Please read the supplementary notes on probability handout.

3

Syllabus part III: uncertainty and time

We then look at how uncertain reasoning and learning can take place when time is

to be taken into account:

• Markov processes: transition and sensor models.

• Inference in temporal models: filtering, prediction, smoothing and finding the

most likely explanation.

• Hidden Markov models. [2 lectures]

4

Syllabus part IV: learning

Finally, we apply probability to supervised learning to obtain [1 lecture] more

sophisticated models of learning.

• Bayes theorem as applied to supervised learning. [1 lecture]

• The maximum likelihood and maximum a posteriori hypotheses. [1 lecture]

• Applying the Bayesian approach to neural networks. [3 lectures]

We finish the course by taking a brief look at reinforcement learning.

• How can we learn from rewards and punishments?

• The Q-learning algorithm. [1 lecture]

Reinforcement learning can be thought of as combining many of the elements

covered in this course and in AI I, and thus provides a natural place to stop.

5

Books

Once again, the main single text book for the course is:

• Artificial Intelligence: A Modern Approach. Stuart Russell and Peter Norvig,

Prentice Hall.

There is an accompanying web site at

aima.cs.berkeley.edu

Either the second or third edition should be fine, but avoid the first edition as it

does not fit this course so well.

Chapter numbers given in these notes refer to the third edition.

6

Books

For some of the new material on neural networks you might also like to take a

look at:

• Pattern Recognition and Machine Learning. Christopher M. Bishop. Springer,

2006.

For some of the new material on reinforcement learning you might like to consult:

• Machine Learning. Tom Mitchell. McGraw Hill, 1997.

For further material on planning try:

• Automated Planning: Theory and Practice. Malik Ghallab, Dana Nau and

Paolo Traverso. Morgan Kaufmann, 2004.

7

Dire Warning

DIRE WARNING

This course contains quite a lot of:

1. Probability

2. Matrix algebra

3. Calculus

As I am an evil and vindictive person who likes to be unkind to kittens I will

assume that you know everything on these subjects that was covered in earlier

courses.

If you don’t it is essential that you re-visit your old notes and make sure that

you’re at home with that material.

YOU HAVE BEEN WARNED

8

How’s your maths?

To see if you’re up to speed on the maths, have a go at the following:

Evaluate the integral ∫ ∞

−∞
exp(−x2) dx

Hint: this is a pretty standard result. Square the integral and change to polar

coordinates.

9

How’s your maths?

Following on from that, here’s something a bit more challenging.

Evaluate the integral
∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

(

−1
2

(
xTΣx + xTααα + β

)
)

dx1 · · · dxn

where Σ is a symmetric n× n matrix with real elements, ααα ∈ R
n, β ∈ R and

xT =
[
x1 x2 · · · xn

]
∈ R

n

(This second one is a bit tricky. I’ll show you the answer later. . .)

10

Planning II

We now examine:

• The way in which basic heuristics might be defined for use in planning prob-

lems.

• The construction of planning graphs and their use in obtaining more sensible

heuristics.

• Planning graphs as the basis of the GraphPlan algorithm.

• Planning using propositional logic.

• Planning using constraint satisfaction.

Reading: Russell and Norvig, relevant sections of chapter 11.

11

A quick review

We used the following simple example problem.

The intrepid little scamps in the Cambridge University Roof-Climbing Society

wish to attach an inflatable gorilla to the spire of a famous College. To do this

they need to leave home and obtain:

• An inflatable gorilla: these can be purchased from all good joke shops.

• Some rope: available from a hardware store.

• A first-aid kit: also available from a hardware store.

They need to return home after they’ve finished their shopping.

How do they go about planning their jolly escapade?

12

The STRIPS language

STRIPS: “Stanford Research Institute Problem Solver” (1970).

States: are conjunctions of ground literals with no functions.

At(Home) ∧ ¬Have(Gorilla)
∧ ¬Have(Rope)
∧ ¬Have(Kit)

Goals: are conjunctions of literals where variables are assumed existentially

quantified.

At(x) ∧ Sells(x,Gorilla)
A planner finds a sequence of actions that makes the goal true when performed.

13

An example of partial-order planning

Here is the initial plan:

At(Home) ∧ Have(G) ∧ Have(R) ∧ Have(FA)

Finish

Start

At(Home)∧ Sells(JS,G) ∧ Sells(HS,R) ∧ Sells(HS,FA)

Thin arrows denote ordering.

14

An example of partial-order planning

There are two actions available:

Go(y)

At(y),¬At(x)

Buy(y)

At(x),Sells(x, y)

Have(y)

At(x)

15

An example of partial-order planning

Start

Buy(G)

At(JS),Sells(JS,G)

Go(JS)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)

Buy(R)

Sells(HS,R),At(HS)

Go(HS)

At(x)

¬At(x)

At(Home)

The At(HS) precondition is easy to achieve.

But if we introduce a causal link from Start to Go(HS) then we risk invalidating

the precondition for Go(JS).

16

An example of partial-order planning

The planner could backtrack and try to achieve the At(x) precondition using the

existing Go(JS) step.

Start

Buy(G)

At(JS),Sells(JS,G)

Go(JS)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)

Buy(R)

Go(HS)

At(JS)

¬At(JS)

Sells(HS,R),At(HS)

At(Home)

This involves a threat, but one that can be fixed using promotion.

17

Using heuristics in planning

We found in looking at search problems that heuristics were a helpful thing to

have.

Note that now:

• There is no simple representation of a state.

• Consequently it is harder to measure the distance to a goal.

Defining heuristics for planning is therefore more difficult than it was for search

problems.

18

Using heuristics in planning

We can quickly suggest some possibilities.

For example

h = number of unsatisfied preconditions

or

h =number of unsatisfied preconditions

− number satisfied by the start state

These can lead to underestimates or overestimates:

• Underestimates if actions can affect one another in undesirable ways.

• Overestimates if actions achieve many preconditions.

19

Using heuristics in planning

We can go a little further by learning from Constraint Satisfaction Problems and

adopting the most constrained variable heuristic:

• Prefer the precondition satisfiable in the smallest number of ways.

This can be computationally demanding but two special cases are helpful:

• Choose preconditions for which no action will satisfy them.

• Choose preconditions that can only be satisfied in one way.

20

Planning graphs

Planning graphs can be used:

• To compute more sensible heuristics.

• To generate entire plans.

Also, planning graphs are easy to construct.

They apply only when it is possible to work entirely using propositional represen-

tations of plans.

Luckily, STRIPS can always be propositionalized...

21

Planning graphs

For example: the triumphant return of the gorilla-purchasing roof-climbers...

At(y),¬At(x)

Go(y)

At(x)

Predicate

Go(Home)

At(JS)

At(Home)

Go(JS)

and so on...

Propositional

At(Home)

Go(HS)

Go(HS)

At(HS),¬At(Home)

At(Home),¬At(JS)

At(JS)

At(JS),¬At(Home) At(HS),¬At(JS)

22

Planning graphs

A planning graph is constructed in levels:

• Level 0 corresponds to the start state.

• At each level we keep approximate track of all things that could be true at the

corresponding time.

• At each level we keep approximate track of what actions could be applicable

at the corresponding time.

The approximation is due to the fact that not all conflicts between actions are

tracked. So:

• The graph can underestimate how long it might take for a particular proposi-

tion to appear, and therefore . . .

• . . . a heuristic can be extracted.

23

Planning graphs: a simple example

Our intrepid student adventurers will of course need to inflate their gorilla before

attaching it to a distinguished roof . It has to be purchased before it can be inflated.

Start state: Empty.

We assume that anything not mentioned in a state is false. So the state is actually

¬Have(Gorilla) and ¬Inflated(Gorilla)
Actions:

Buy(Gorilla)

¬Have(Gorilla)

Have(Gorilla) Inflated(Gorilla)

Have(Gorilla)

Inflate(Gorilla)

Goal: Have(Gorilla) and Inflated(Gorilla).

24

Planning graphs

Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

¬I(G)

Describe start
state.

All actions available in
start state.

S1

All possibilities for
what might be the

case at time 1.

All actions that might
be available at time

1.

All possibilities for
what might be the

case at time 2.

= a persistence action—what happens if no action is taken.

H(G)

I(G)

An action level Ai contains all actions that could happen given the propositions in Si.

S2

25

Mutex links

We also record, using mutual exclusion (mutex) links which pairs of actions could

not occur together.

Mutex links 1: Effects are inconsistent.

Buy(G)

¬H(G) ¬H(G)

A0S0

H(G)

S1

The effect of one action negates the effect of another.

26

Mutex links

Mutex links 2: The actions interfere.

Inf(G)

¬I(G)

I(G)

¬I(G)

S1 A1 S2

The effect of an action negates the precondition of another.

27

Mutex links

Mutex links 3: Competing for preconditions.

Buy(G)

Inf(G)

¬H(G)

A1

H(G)

S1

The precondition for an action is mutually exclusive with the precondition for

another. (See next slide!)

28

Mutex links

A state level Si contains all propositions that could be true, given the possible

preceding actions.

We also use mutex links to record pairs that can not be true simultaneously:

Possibility 1: pair consists of a proposition and its negation.

¬H(G)

H(G)

S1

29

Mutex links

Possibility 2: all pairs of actions that could achieve the pair of propositions are

mutex.

Buy(G)

Inf(G)

¬H(G)

A1

H(G)

I(G)

S2

The construction of a planning graph is continued until two identical levels are

obtained.

30

Planning graphs

Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

H(G)

I(G)

¬I(G)

S1 S2

31

Obtaining heuristics from a planning graph

To estimate the cost of reaching a single proposition:

• Any proposition not appearing in the final level has infinite cost and can never

be reached.

• The level cost of a proposition is the level at which it first appears but this may

be inaccurate as several actions can apply at each level and this cost does not

count the number of actions. (It is however admissible.)

• A serial planning graph includes mutex links between all pairs of actions ex-

cept persistence actions.

Level cost in serial planning graphs can be quite a good measurement.

32

Obtaining heuristics from a planning graph

How about estimating the cost to achieve a collection of propositions?

• Max-level: use the maximum level in the graph of any proposition in the set.

Admissible but can be inaccurate.

• Level-sum: use the sum of the levels of the propositions. Inadmissible but

sometimes quite accurate if goals tend to be decomposable.

• Set-level: use the level at which all propositions appear with none being mutex.

Can be accurate if goals tend not to be decomposable.

33

Other points about planning graphs

A planning graph guarantees that:

1. If a proposition appears at some level, there may be a way of achieving it.

2. If a proposition does not appear, it can not be achieved.

The first point here is a loose guarantee because only pairs of items are linked by

mutex links.

Looking at larger collections can strengthen the guarantee, but in practice the gains

are outweighed by the increased computation.

34

Graphplan

The GraphPlan algorithm goes beyond using the planning graph as a source of
heuristics.

Start at level 0;

while(true) {

if (all goal propositions appear in the current level

AND no pair has a mutex link) {

attempt to extract a plan;

if (a solution is obtained)

return the solution;

else if (graph indicates there is no solution)

return fail;

expand the graph to the next level;

}

else

expand the graph to the next level;

}

We extract a plan directly from the planning graph. Termination can be proved

but will not be covered here.

35

Graphplan in action

Here, at levels S0 and S1 we do not have both H(G) and I(G) available with no

mutex links, and so we expand first to S1 and then to S2.

Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

H(G)

I(G)

¬I(G)

S1 S2

At S2 we try to extract a solution (plan).

36

Extracting a plan from the graph

Extraction of a plan can be formalised as a search problem.

States contain a level, and a collection of unsatisfied goal propositions.

Start state: the current final level of the graph, along with the relevant goal propo-

sitions.

Goal: a state at level S0 containing the initial propositions.

37

Extracting a plan from the graph

Actions: For a state S with level Si, a valid action is to select any set X of actions

in Ai−1 such that:

1. no pair has a mutex link;

2. no pair of their preconditions has a mutex link;

3. the effects of the actions in X achieve the propositions in S.

The effect of such an action is a state having level Si−1, and containing the pre-

conditions for the actions in X .

Each action has a cost of 1.

38

Graphplan in action

Start state

Action: Action:

Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

H(G)

I(G)

¬I(G)

S1 S2

Buy(G)

H(G)

S0 S1 S2

H(G) I(G)

Inf(G) and ✷

39

Heuristics for plan extraction

We can of course also apply heuristics to this part of the process.

For example, when dealing with a set of propositions:

• Choose the proposition having maximum level cost first.

• For that proposition, attempt to achieve it using the action for which the maxi-

mum/sum level cost of its preconditions is minimum.

40

Planning III: planning using propositional logic

Last year we saw that plans might be extracted from a knowledge base via theorem

proving, using first order logic (FOL) and situation calculus.

BUT: this might be computationally infeasible for realistic problems.

Sophisticated techniques are available for testing satisfiability in propositional

logic, and these have also been applied to planning.

The basic idea is to attempt to find a model of a sentence having the form

description of start state

∧ descriptions of the possible actions

∧ description of goal

41

Propositional logic for planning

We attempt to construct this sentence such that:

• If M is a model of the sentence then M assigns ⊤ to a proposition if and only

if it is in the plan.

• Any assignment denoting an incorrect plan will not be a model as the goal

description will not be ⊤.

• The sentence is unsatisfiable if no plan exists.

42

Propositional logic for planning

Start state:

S =At0(a,spire) ∧ At0(b,ground)

∧ ¬At0(a,ground) ∧ ¬At0(b,spire)

b

The two climbers want to swap places...

a

Remember that an expression such as At0(a,spire) is a proposition. The su-

perscripted number now denotes time.

43

Propositional logic for planning

Goal:

G =Ati(a,ground) ∧ Ati(b,spire)

∧ ¬Ati(a,spire) ∧ ¬Ati(b,ground)

Actions: can be introduced using the equivalent of successor-state axioms

At1(a,ground)↔
(At0(a,ground) ∧ ¬Move0(a,ground,spire))

∨ (At0(a,spire) ∧ Move0(a,spire,ground))

(1)

Denote by A the collection of all such axioms.

44

Propositional logic for planning

We will now find that S∧A∧G has a model in which Move0(a,spire,ground)
and Move0(b,ground,spire) are ⊤ while all remaining actions are ⊥.

In more realistic planning problems we will clearly not know in advance at what

time the goal might expect to be achieved.

We therefore:

• Loop through possible final times T .

• Generate a goal for time T and actions up to time T .

• Try to find a model and extract a plan.

• Until a plan is obtained or we hit some maximum time.

45

Propositional logic for planning

Unfortunately there is a problem—we may, if considerable care is not applied,

also be able to obtain less sensible plans.

In the current example

Move0(b,ground,spire) = ⊤
Move0(a,spire,ground) = ⊤

Move0(a,ground,spire) = ⊤

is a model, because the successor-state axiom (1) does not in fact preclude the

application of Move0(a,ground,spire).

We need a precondition axiom

Movei(a,ground,spire)→ Ati(a,ground)

and so on.

46

Propositional logic for planning

Life becomes more complicated still if a third location is added: hospital.

Move0(a,spire,ground) ∧ Move0(a,spire,hospital)

is perfectly valid and so we need to specify that he can’t move to two places

simultaneously

¬(Movei(a,spire,ground) ∧ Movei(a,spire,hospital))
¬(Movei(a,ground,spire) ∧ Movei(a,ground,hospital))

...

and so on.

These are action-exclusion axioms.

Unfortunately they will tend to produce totally-ordered rather than partially-ordered

plans.

47

Propositional logic for planning

Alternatively:

1. Prevent actions occurring together if one negates the effect or precondition of

the other.

2. Or, specify that something can’t be in two places simultaneously

∀x, i,l1,l2 l1 6= l2→ ¬(Ati(x,l1) ∧ Ati(x,l2))

This is an example of a state constraint.

Clearly this process can become very complex, but there are techniques to help

deal with this.

48

Planning IV: planning using constraint satisfaction

49

Review of constraint satisfaction problems (CSPs)

We have:

• A set of n variables V1, V2, . . . , Vn.

• For each Vi a domain Di specifying the values that Vi can take.

• A set of m constraints C1, C2, . . . , Cm.

Each constraint Ci involves a set of variables and specifies an allowable collection

of values.

• A state is an assignment of specific values to some or all of the variables.

• An assignment is consistent if it violates no constraints.

• An assignment is complete if it gives a value to every variable.

A solution is a consistent and complete assignment.

50

Example

We will use the problem of colouring the nodes of a graph as a running example.

1

2

8

6

5

3
4

7 7

5

6

4
3

1

2

8

Each node corresponds to a variable. We have three colours and directly con-

nected nodes should have different colours.

Caution required: later on, edges will have a different meaning.

51

Example

This translates easily to a CSP formulation:

• The variables are the nodes

Vi = node i

• The domain for each variable contains the values black, red and cyan

Di = {B,R,C}

• The constraints enforce the idea that directly connected nodes must have dif-

ferent colours. For example, for variables V1 and V2 the constraints specify

(B,R), (B,C), (R,B), (R,C), (C,B), (C,R)

• Variable V8 is unconstrained.

52

Different kinds of CSP

This is an example of the simplest kind of CSP: it is discrete with finite domains.

We will concentrate on these.

We will also concentrate on binary constraints; that is, constraints between pairs

of variables.

• Constraints on single variables—unary constraints—can be handled by ad-

justing the variable’s domain. For example, if we don’t want Vi to be red, then

we just remove that possibility from Di.

• Higher-order constraints applying to three or more variables can certainly be

considered, but...

• ...when dealing with finite domains they can always be converted to sets of

binary constraints by introducing extra auxiliary variables.

How does that work?

53

The state-variable representation

Another planning language: the state-variable representation.

Things of interest such as people, places, objects etc are divided into domains:

D1 = {climber1, climber2}
D2 = {home, jokeShop, hardwareStore, pavement, spire, hospital}
D3 = {rope, inflatableGorilla}

Part of the specification of a planning problem involves stating which domain a

particular item is in. For example

D1(climber1)

and so on.

Relations and functions have arguments chosen from unions of these domains.

above(x, y) ⊆ Dabove
1 ×Dabove

2

is a relation. The Dabove
i are unions of one or more Di.

54

The state-variable representation

The relation above is in fact a rigid relation (RR), as it is unchanging: it does not

depend upon state. (Remember fluents in situation calculus?)

Similarly, we have functions

at(x1, s) : Dat
1 × S → Dat.

Here, at(x, s) is a state-variable. The domain Dat
1 and range Dat are unions of

one or more Di. In general these can have multiple parameters

sv(x1, . . . , xn, s) : Dsv
1 × · · · × Dsv

n × S → Dsv.

A state-variable denotes assertions such as

at(gorilla, s) = jokeShop

where s denotes a state and the set S of all states will be defined later.

The state variable allows things such as locations to change—again, much like

fluents in the situation calculus.

Variables appearing in relations and functions are considered to be typed.

55

The state-variable representation

Note:

• For properties such as a location a function might be considerably more suit-

able than a relation.

• For locations, everything has to be somewhere and it can only be in one place

at a time.

So a function is perfect and immediately solves some of the problems seen earlier.

56

The state-variable representation

Actions as usual, have a name, a set of preconditions and a set of effects.

• Names are unique, and followed by a list of variables involved in the action.

• Preconditions are expressions involving state variables and relations.

• Effects are assignments to state variables.

For example:

buy(x, y, l)
Preconditions at(x, s) = l

sells(l, y)
has(y, s) = l

Effects has(y, s) = x

57

The state-variable representation

Goals are sets of expressions involving state variables.

For example:

Goal:

at(climber, s) = home

has(rope, s) = climber

at(gorilla, s) = spire

From now on we will generally suppress the state s when writing state variables.

58

The state-variable representation

We can essentially regard a state as just a statement of what values the state vari-

ables take at a given time.

Formally:

• For each state variable sv we can consider all ground instances such as—

sv(climber, rope)—with arguments that are consistent with the rigid rela-

tions.

Define X to be the set of all such ground instances.

• A state s is then just a set

s = {(v = c)|v ∈ X}
where c is in the range of v.

This allows us to define the effect of an action.

A planning problem also needs a start state s0, which can be defined in this way.

59

The state-variable representation

Considering all the ground actions consistent with the rigid relations:

• An action is applicable in s if all expressions v = c appearing in the set of

preconditions also appear in s.

Finally, there is a function γ that maps a state and an action to a new state

γ(s, a) = s′

Specifically, we have

γ(s, a) = {(v = c)|v ∈ X}
where either c is specified in an effect of a, or otherwise v = c is a member of s.

Note: the definition of γ implicitly solves the frame problem.

60

The state-variable representation

A solution to a planning problem is a sequence (a0, a1, . . . , an) of actions such

that...

• a0 is applicable in s0 and for each i, ai is applicable in si = γ(si−1, ai−1).

• For each goal g we have

g ∈ γ(sn, an).

What we need now is a method for transforming a problem described in this lan-

guage into a CSP.

We’ll once again do this for a fixed upper limit T on the number of steps in the

plan.

61

Converting to a CSP

Step 1: encode actions as CSP variables.

For each time step t where 0 ≤ t ≤ T − 1, the CSP has a variable

actiont

with domain

Dactiont = {a|a is the ground instance of an action} ∪ {none}
Example: at some point in searching for a plan we might attempt to find the

solution to the corresponding CSP involving

action5 = attach(inflatableGorilla, spire)

WARNING: be careful in what follows to distinguish between state variables, ac-

tions etc in the planning problem and variables in the CSP.

62

Converting to a CSP

Step 2: encode ground state variables as CSP variables, with a complete copy of

all the state variables for each time step.

So, for each t where 0 ≤ t ≤ T we have a CSP variable

svti(c1, . . . , cn)

with domain Dsvi. (That is, the domain of the CSP variable is the range of the

state variable.)

Example: at some point in searching for a plan we might attempt to find the

solution to the corresponding CSP involving

location9(climber1) = hospital.

63

Converting to a CSP

Step 3: encode the preconditions for actions in the planning problem as con-

straints in the CSP problem.

For each time step t and for each ground action a(c1, . . . , cn) with arguments con-

sistent with the rigid relations in its preconditions:

For a precondition of the form svi = v include constraint pairs

(actiont = a(c1, . . . , cn),

svti = v)

Example: consider the action buy(x, y, l) introduced above, and having the pre-

conditions at(x) = l, sells(l, y) and has(y) = l.

Assume sells(y, l) is only true for

l = jokeShop

and

y = inflatableGorilla

(it’s a very strange town) so we only consider these values for l and y. Then for

each time step t we have the constraints...

64

Converting to a CSP

actiont = buy(climber1, inflatableGorilla, jokeShop)
paired with

att(climber1) = jokeShop

actiont = buy(climber1, inflatableGorilla, jokeShop)
paired with

hast(inflatableGorilla) = jokeShop

actiont = buy(climber2, inflatableGorilla, jokeShop)
paired with

att(climber2) = jokeShop

actiont = buy(climber2, inflatableGorilla, jokeShop)
paired with

hast(inflatableGorilla) = jokeShop

and so on...

65

Converting to a CSP

Step 4: encode the effects of actions in the planning problem as constraints in the

CSP problem.

For each time step t and for each ground action a(c1, . . . , cn) with arguments con-

sistent with the rigid relations in its preconditions:

For an effect of the form svi = v include constraint pairs

(actiont = a(c1, . . . , cn),

svt+1
i = v)

Example: continuing with the previous example, we will include constraints

actiont = buy(climber1, inflatableGorilla, jokeShop)
paired with

hast+1(inflatableGorilla) = climber1

actiont = buy(climber2, inflatableGorilla, jokeShop)
paired with

hast+1(inflatableGorilla) = climber2

and so on...

66

Converting to a CSP

Step 5: encode the frame axioms as constraints in the CSP problem.

An action must not change things not appearing in its effects. So:

For:

1. Each time step t.

2. Each ground action a(c1, . . . , cn) with arguments consistent with the rigid re-

lations in its preconditions.

3. Each svi that does not appear in the effects of a, and each v ∈ Dsvi

include in the CSP the ternary constraint

(actiont = a(c1, . . . , cn),

svti = v,

svt+1
i = v)

67

Finding a plan

Finally, having encoded a planning problem into a CSP, we solve the CSP.

The scheme has the following property:

A solution to the planning problem with at most T steps exists if and only if there

is a a solution to the corresponding CSP.

Assume the CSP has a solution.

Then we can extract a plan simply by looking at the values assigned to the actiont

variables in the solution of the CSP.

It is also the case that:

There is a solution to the planning problem with at most T steps if and only if there

is a solution to the corresponding CSP from which the solution can be extracted

in this way.

For a proof see:

Automated Planning: Theory and Practice

Malik Ghallab, Dana Nau and Paolo Traverso. Morgan Kaufmann 2004.

68

Uncertainty I: Probability as Degree of Belief

We now examine:

• How probability theory might be used to represent and reason with knowledge

when we are uncertain about the world.

• How inference in the presence of uncertainty can in principle be performed

using only basic results along with the full joint probability distribution.

• How this approach fails in practice.

• How the notions of independence and conditional independence may be used

to solve this problem.

Reading: Russell and Norvig, chapter 13.

69

Uncertainty in AI

The (predominantly logic-based) methods covered so far have assorted shortcom-

ings:

• Limited epistemological commitment—true/false/unknown.

• Actions are possible when sufficient knowledge is available...

• ...but this is not generally the case.

• In practice there is a need to cope with uncertainty.

For example in the Wumpus World:

• We can not make observations further afield than the current locality.

• Consequently inferences regarding pit/wumpus location etc will not usually be

possible.

70

Uncertainty in AI

A couple of more subtle problems have also presented themselves:

• The Qualification Problem: it is not generally possible to guarantee that an

action will succeed—only that it will succeed if many other preconditions

do/don’t hold.

• Rational action depends on the likelihood of achieving different goals, and

their relative desirability.

71

Logic (as seen so far) has major shortcomings

An example:

∀x symptom(x,toothache)→ problem(x,cavity)

This is plainly incorrect. Toothaches can be caused by things other than cavities.

∀x symptom(x,toothache)→problem(x,cavity)∨
problem(x,abscess)∨
problem(x,gum-disease)∨
· · ·

BUT:

• It is impossible to complete the list.

• There’s no clear way to take account of the relative likelihoods of different

causes.

72

Logic (as seen so far) has major shortcomings

If we try to make a causal rule

∀x problem(x,abscess)→ symptom(x,toothache)

it’s still wrong—abscesses do not always cause pain.

We need further information in addition to

problem(x,abscess)

and it’s still not possible to do this correctly.

73

Logic (as seen so far) has major shortcomings

FOL can fail for essentially three reasons:

1. Laziness: it is not feasible to assemble a set of rules that is sufficiently exhaus-

tive.

If we could, it would not be feasible to apply them.

2. Theoretical ignorance: insufficient knowledge exists to allow us to write the

rules.

3. Practical ignorance: even if the rules have been obtained there may be insuf-

ficient information to apply them.

Instead of thinking in terms of the truth or falsity of a statement we want to deal

with an agent’s degree of belief in the statement.

• Probability theory is the perfect tool for application here.

• Probability theory allows us to summarise the uncertainty due to laziness and

ignorance.

74

An important distinction

There is a fundamental difference between probability theory and fuzzy logic:

• When dealing with probability theory, statements remain in fact either true or

false.

• A probability denotes an agent’s degree of belief one way or another.

• Fuzzy logic deals with degree of truth.

In practice the use of probability theory has proved spectacularly successful.

75

Belief and evidence

An agent’s beliefs will depend on what it has perceived: probabilities are based

on evidence and may be altered by the acquisition of new evidence:

• Prior (unconditional) probability denotes a degree of belief in the absence of

evidence.

• Posterior (conditional) probability denotes a degree of belief after evidence is

perceived.

As we shall see Bayes’ theorem is the fundamental concept that allows us to update

one to obtain the other.

76

Making rational decisions under uncertainty

When using logic, we concentrated on finding an action sequence guaranteed to

achieve a goal, and then executing it.

When dealing with uncertainty we need to define preferences among states of the

world and take into account the probability of reaching those states.

Utility theory is used to assign preferences.

Decision theory combines probability theory and utility theory.

A rational agent should act in order to maximise expected utility.

77

Probability

We want to assign degrees of belief to propositions about the world.

We will need:

• Random variables with associated domains—typically Boolean, discrete, or

continuous.

• All the usual concepts—events, atomic events, sets etc.

• Probability distributions and densities.

• Probability axioms (Kolmogorov).

• Conditional probability and Bayes’ theorem.

So if you’ve forgotten this stuff now is a good time to re-read it.

78

Probability

The standard axioms are:

• Range

0 ≤ Pr(x) ≤ 1

• Always true propositions

Pr(always true proposition) = 1

• Always false propositions

Pr(always false proposition) = 0

• Union

Pr(x ∨ y) = Pr(x) + Pr(y)− Pr(x ∧ y)

79

Origins of probabilities I

Historically speaking, probabilities have been regarded in a number of different

ways:

• Frequentist: probabilities come from measurements.

• Objectivist: probabilities are actual “properties of the universe” which fre-

quentist measurements seek to uncover.

An excellent example: quantum phenomena.

A bad example: coin flipping—the uncertainty is due to our uncertainty about

the initial conditions of the coin.

• Subjectivist: probabilities are an agent’s degrees of belief.

This means the agent is allowed to make up the numbers!

80

Origins of probabilities II

The reference class problem: even frequentist probabilities are subjective.

Example: Say a doctor takes a frequentist approach to diagnosis. She examines

a large number of people to establish the prior probability of whether or not they

have heart disease.

To be accurate she tries to measure “similar people”. (She knows for example that

gender might be important.)

Taken to an extreme, all people are different and there is therefore no reference

class.

81

Origins of probabilities III

The principle of indifference (Laplace).

• Give equal probability to all propositions that are syntactically symmetric with

respect to the available evidence.

• Refinements of this idea led to the attempted development by Carnap and oth-

ers of inductive logic.

• The aim was to obtain the correct probability of any proposition from an arbi-

trary set of observations.

It is currently thought that no unique inductive logic exists.

Any inductive logic depends on prior beliefs and the effect of these beliefs is

overcome by evidence.

82

Prior probability

A prior probability denotes the probability (degree of belief) assigned to a propo-

sition in the absence of any other evidence.

For example

Pr(Cavity = true) = 0.05

denotes the degree of belief that a random person has a cavity before we make

any actual observation of that person.

To keep things compact, we will use

Pr(Cavity)

to denote the entire probability distribution of the random variable Cavity.

Instead of

Pr(Cavity = true) = 0.05

Pr(Cavity = false) = 0.95

write

Pr(Cavity) = (0.05, 0.95)

83

Notation

A similar convention will apply for joint distributions. For example, if Decay

can take the values severe, moderate or low then

Pr(Cavity,Decay)

is a 2 by 3 table of numbers.

severe moderate low

true 0.26 0.1 0.01
false 0.01 0.02 0.6

Similarly

Pr(true,Decay)

denotes 3 numbers etc.

84

The full joint probability distribution

The full joint probability distribution is the joint distribution of all random vari-

ables that describe the state of the world.

This can be used to answer any query.

(But of course life’s not really that simple!)

85

Conditional probability

We use the conditional probability

Pr(x|y)
to denote the probability that a proposition x holds given that all the evidence we

have so far is contained in proposition y.

From basic probability theory

Pr(x|y) = Pr(x ∧ y)

Pr(y)

Conditional probability is not analogous to logical implication.

• Pr(x|y) = 0.1 does not mean that if y is true then Pr(x) = 0.1.

• Pr(x) is a prior probability.

• The notation Pr(x|y) is for use when y is the entire evidence.

• Pr(x|y ∧ z) might be very different.

86

Bayes theorem

From first principles

Pr(x, y) = Pr(x|y) Pr(y)

Pr(x, y) = Pr(y|x) Pr(x)
so

Pr(x|y) = Pr(y|x) Pr(x)
Pr(y)

The most important equation in modern AI?

When evidence e is involved this can be written

Pr(Q|R, e) = Pr(R|Q, e) Pr(Q|e)
Pr(R|e)

87

Bayes theorem

Taking another simple medical diagnosis example: does a patient with a fever

have malaria? A doctor might know that

Pr(fever|malaria) = 0.99

Pr(malaria) =
1

10000

Pr(fever) =
1

20
Consequently we can try to obtain Pr(malaria|fever) by direct application

of Bayes theorem

Pr(malaria|fever) = 0.99× 0.0001

0.05
= 0.00198

or using the alternative technique

Pr(malaria|fever) = αPr(fever|malaria) Pr(malaria)
if the relevant further quantity Pr(fever|¬malaria) is known.

88

Bayes theorem

• Sometimes the first possibility is easier, sometimes not.

• Causal knowledge such as

Pr(fever|malaria)
might well be available when diagnostic knowledge such as

Pr(malaria|fever)
is not.

• Say the incidence of malaria, modelled by Pr(Malaria), suddenly changes.

Bayes theorem tells us what to do.

• The quantity

Pr(fever|malaria)
would not be affected by such a change.

Causal knowledge can be more robust.

89

Using the full joint distribution to perform inference

We can regard the full joint distribution as a knowledge base.

We want to use it to obtain answers to questions.

CP ¬CP
HBP ¬HBP HBP ¬HBP

HD 0.09 0.05 0.07 0.01

¬HD 0.02 0.08 0.03 0.65

We’ll use this medical diagnosis problem as a running example.

• HD = Heart disease

• CP = Chest pain

• HBP = High blood pressure

90

Using the full joint distribution to perform inference

The process is nothing more than the application of basic results:

• Sum atomic events:

Pr(HD ∨ CP) =Pr(HD ∧ CP ∧ HBP)
+ Pr(HD ∧ CP ∧ ¬HBP)
+ Pr(HD ∧ ¬CP ∧ HBP)
+ Pr(HD ∧ ¬CP ∧ ¬HBP)
+ Pr(¬HD ∧ CP ∧ HBP)
+ Pr(¬HD ∧ CP ∧ ¬HBP)
= 0.09 + 0.05 + 0.07 + 0.01 + 0.02 + 0.08

= 0.32

• Marginalisation: if A and B are sets of variables then

Pr(A) =
∑

b

Pr(A ∧ b) =
∑

b

Pr(A|b) Pr(b)

91

Using the full joint distribution to perform inference

Usually we will want to compute the conditional probability of some variable(s)

given some evidence.

For example

Pr(HD|HBP) = Pr(HD ∧ HBP)
Pr(HBP)

=
0.09 + 0.07

0.09 + 0.07 + 0.02 + 0.03
= 0.76

and

Pr(¬HD|HBP) = Pr(¬HD ∧ HBP)
Pr(HBP)

=
0.02 + 0.03

0.09 + 0.07 + 0.02 + 0.03
= 0.24

92

Using the full joint distribution to perform inference

The process can be simplified slightly by noting that

α =
1

Pr(HBP)

is a constant and can be regarded as a normaliser making relevant probabilities

sum to 1.

So a short cut is to avoid computing it as above. Instead:

Pr(HD|HBP) = αPr(HD ∧ HBP) = (0.09 + 0.07)α

Pr(¬HD|HBP) = αPr(¬HD ∧ HBP) = (0.02 + 0.03)α

and we need

Pr(HD|HBP) + Pr(¬HD|HBP) = 1

so

α =
1

0.09 + 0.07 + 0.02 + 0.03

93

Using the full joint distribution to perform inference

The general inference procedure is as follows:

Pr(Q|e) = 1

Z
Pr(Q ∧ e) =

1

Z

∑

u

Pr(Q, e, u)

where

• Q is the query variable.

• e is the evidence.

• u are the unobserved variables.

• 1/Z normalises the distribution.

94

Using the full joint distribution to perform inference

Simple eh?

Well, no...

• For n Boolean variables the table has 2n entries.

• Storage and processing time are both O(2n).

• You need to establish 2n numbers to work with.

In reality we might well have n > 1000, and of course it’s even worse if variables

are non-Boolean.

How can we get around this?

95

Exploiting independence

If I toss a coin and roll a dice, the full joint distribution of outcomes requires

2× 6 = 12 numbers to be specified.

1 2 3 4 5 6
head 0.014 0.028 0.042 0.057 0.071 0.086
tail 0.033 0.067 0.1 0.133 0.167 0.2

Here Pr(Coin = head) = 0.3 and the dice has probability i/21 for the ith
outcome.

BUT: if we assume the outcomes are independent then

Pr(Coin,Dice) = Pr(Coin) Pr(Dice)

Where Pr(Coin) has two numbers and Pr(Dice) has six.

So instead of 12 numbers we only need 8.

96

Exploiting independence

Similarly, say instead of just considering HD, HBP and CP we also consider the

outcome of the Oxford versus Cambridge tiddlywinks competition TC:

Pr(TC = Oxford) = 0.2

Pr(TC = Cambridge) = 0.7

Pr(TC = Draw) = 0.1

Now

Pr(HD,HBP,CP,TC) = Pr(TC|HD,HBP,HD) Pr(HD,HBP,HD)
Assuming that the patient is not an extraordinarily keen fan of tiddlywinks, their

cardiac health has nothing to do with the outcome, so

Pr(TC|HD,HBP,HD) = Pr(TC)

and 2× 2× 2× 3 = 24 numbers has been reduced to 3 + 8 = 11.

97

Exploiting independence

In general you need to identify such independence through knowledge of the prob-

lem.

BUT:

• It generally does not work as clearly as this.

• The independent subsets themselves can be big.

98

Conditional independence

What happens if we have multiple pieces of evidence?

We have seen that to compute

Pr(HD|CP,HBP)
directly might well run into problems.

We could try using Bayes theorem to obtain

Pr(HD|CP,HBP) = αPr(CP,HBP|HD) Pr(HD)
However while HD is probably manageable, a quantity such as Pr(CP,HBP|HD)

might well still be problematic especially in more realistic cases.

99

Conditional independence

However although in this case we might not be able to exploit independence di-

rectly we can say that

Pr(CP,HBP|HD) = Pr(CP|HD) Pr(HBP|HD)
which simplifies matters.

Conditional independence:

• Pr(A,B|C) = Pr(A|C) Pr(B|C).

• If we know that C is the case then A and B are independent.

Although CP and HBP are not independent, they do not directly influence one

another in a patient known to have heart disease.

This is much nicer!

Pr(HD|CP,HBP) = αPr(CP|HD) Pr(HBP|HD) Pr(HD)

100

Naive Bayes

Conditional independence is often assumed even when it does not hold.

Naive Bayes:

Pr(A,B1, B2, . . . , Bn) = Pr(A)
n∏

i=1

Pr(Bi|A)

Also known as Idiot’s Bayes.

Despite this, it is often surprisingly effective.

101

Uncertainty II - Bayesian Networks

Having seen that in principle, if not in practice, the full joint distribution alone

can be used to perform any inference of interest, we now examine a practical

technique.

• We introduce the Bayesian Network (BN) as a compact representation of the

full joint distribution.

• We examine the way in which a BN can be constructed.

• We examine the semantics of BNs.

• We look briefly at how inference can be performed.

Reading: Russell and Norvig, chapter 14.

102

Bayesian networks

Also called probabilistic/belief/causal networks or knowledge maps.

CP HBP

HDTW

• Each node is a random variable (RV).

• Each node Ni has a distribution

Pr(Ni|parents(Ni))

• A Bayesian network is a directed acyclic graph.

• Roughly speaking, an arrow from N to M means N directly affects M .

103

Bayesian networks

After a regrettable incident involving an inflatable gorilla, a famous College has

decided to install an alarm for the detection of roof climbers.

• The alarm is very good at detecting climbers.

• Unfortunately, it is also sometimes triggered when one of the extremely fat

geese that lives in the College lands on the roof.

• One porter’s lodge is near the alarm, and inhabited by a chap with excellent

hearing and a pathological hatred of roof climbers: he always reports an

alarm. His hearing is so good that he sometimes thinks he hears an alarm,

even when there isn’t one.

• Another porter’s lodge is a good distance away and inhabited by an old chap

with dodgy hearing who likes to listen to his collection of DEATH METAL

with the sound turned up.

104

Bayesian networks

No: 0.95

Yes: 0.05 Yes: 0.2

No: 0.8

a

¬a ¬a
a

0.001

Y

N

Y

N
Y

Y

N

N

Alarm

Climber Goose

Lodge1 Lodge2

Pr(A|C,G)

0.98
0.08
0.96
0.2

0.60.99

0.08

Pr(L1|A) Pr(L2|A)

Pr(A|C,G)C G

Pr(Goose)Pr(Climber)

105

Bayesian networks

Note that:

• In the present example all RVs are discrete (in fact Boolean) and so in all cases

Pr(Ni|parents(Ni)) can be represented as a table of numbers.

• Climber and Goose have only prior probabilities.

• All RVs here are Boolean, so a node with p parents requires 2p numbers.

A BN with n nodes represents the full joint probability distribution for those nodes

as

Pr(N1 = n1, N2 = n2, . . . , Nn = nn) =
n∏

i=1

Pr(Ni = ni|parents(Ni)) (2)

For example

Pr(¬C,¬G,A,L1,L2) = Pr(L1|A) Pr(L2|A) Pr(A|¬C,¬G) Pr(¬C) Pr(¬G)
= 0.99× 0.6× 0.08× 0.95× 0.8

106

Semantics

In general Pr(A,B) = Pr(A|B) Pr(B) so abbreviating Pr(N1 = n1, N2 = n2, . . . , Nn =
nn) to Pr(n1, n2, . . . , nn) we have

Pr(n1, . . . , nn) = Pr(nn|nn−1, . . . , n1) Pr(nn−1, . . . , n1)

Repeating this gives

Pr(n1, . . . , nn) = Pr(nn|nn−1, . . . , n1) Pr(nn−1|nn−2, . . . , n1) · · ·Pr(n1)

=
n∏

i=1

Pr(ni|ni−1, . . . , n1)
(3)

Now compare equations (2) and (3). We see that BNs make the assumption

Pr(Ni|Ni−1, . . . , N1) = Pr(Ni|parents(Ni))

for each node, assuming that parents(Ni) ⊆ {Ni−1, . . . , N1}.

Each Ni is conditionally independent of its predecessors given its parents

107

Semantics

• When constructing a BN we want to make sure the preceding property holds.

• This means we need to take care over ordering.

• In general causes should directly precede effects.

· · ·

Ni

parents(Ni)

Here, parents(Ni) contains all preceding nodes having a direct influence on Ni.

108

Semantics

Deviation from this rule can have major effects on the complexity of the network.

That’s bad! We want to keep the network simple:

• If each node has at most p parents and there are n Boolean nodes, we need to

specify at most n2p numbers...

• ...whereas the full joint distribution requires us to specify 2n numbers.

So: there is a trade-off attached to the inclusion of tenuous although strictly-

speaking correct edges.

109

Semantics

As a rule, we should include the most basic causes first, then the things they

influence directly etc.

What happens if you get this wrong?

Example: add nodes in the order L2,L1,G,C,A.

Goose

Lodge2

Climber Alarm

Lodge1

110

Semantics

In this example:

• Increased connectivity.

• Many of the probabilities here will be quite unnatural and hard to specify.

Once again: causal knowledge is preferred to diagnostic knowledge.

111

Semantics

As an alternative we can say directly what conditional independence assumptions

a graph should be interpreted as expressing. There are two common ways of doing

this.

A

P2P1

N1 N2

Any node A is conditionally independent of the Ni—its non-descendants—given

the Pi—its parents.

112

Semantics

M7 M6 M5

M4M8

M1 M2 M3

A

Any node A is conditionally independent of all other nodes given the Markov

blanket Mi—that is, its parents, its children and its children’s parents.

113

More complex nodes

How do we represent

Pr(Ni|parents(Ni))

when nodes can denote general discrete and/or continuous RVs?

• BNs containing both kinds of RV are called hybrid BNs.

• Naive discretisation of continuous RVs tends to result in both a reduction in

accuracy and large tables.

• O(2p) might still be large enough to be unwieldy.

• We can instead attempt to use standard and well-understood distributions,

such as the Gaussian.

• This will typically require only a small number of parameters to be specified.

114

More complex nodes

Example: functional relationships are easy to deal with.

Ni = f(parents(Ni))

Pr(Ni = ni|parents(Ni)) =

{
1 if ni = f(parents(Ni))
0 otherwise

115

More complex nodes

Example: a continuous RV with one continuous and one discrete parent.

Pr(Speed of car|Throttle position,Tuned engine)

where SC and TP are continuous and TE is Boolean.

• For a specific setting of ET = true it might be the case that SC increases

with TP, but that some uncertainty is involved

Pr(SC|TP,et) = N(getTP + cet, σ
2
et)

• For an un-tuned engine we might have a similar relationship with a different

behaviour

Pr(SC|TP,¬et) = N(g¬etTP + c¬et, σ
2
¬et)

There is a set of parameters {g, c, σ} for each possible value of the discrete RV.

116

More complex nodes

Example: a discrete RV with a continuous parent

Pr(Go roofclimbing|Size of fine)

We could for example use the probit distribution

Pr(Go roofclimbing = true|size) = Φ

(
t− size

s

)

where

Φ(x) =

∫ x

−∞
N(y)dy

and N(x) is the Gaussian distribution with zero mean and variance 1.

117

More complex nodes

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
The probit distribution

x

Φ
(x

)

90 92 94 96 98 100 102 104 106 108 110
0

0.2

0.4

0.6

0.8

1
Pr(GRC = true |size) with t = 100 and different values of s

size

Φ
(t
−s
i
z
e

/s
)

118

More complex nodes

Alternatively, for this example we could use the logit distribution

Pr(Go roofclimbing = true|size) = 1

1 + e(−2(t−size)/s)

which has a similar shape.

• Tails are longer for the logit distribution.

• The logit distribution tends to be easier to use...

• ...but the probit distribution is often more accurate.

119

Basic inference

We saw earlier that the full joint distribution can be used to perform all inference

tasks:

Pr(Q|e) = 1

Z
Pr(Q ∧ e) =

1

Z

∑

u

Pr(Q, e, u)

where

• Q is the query variable

• e is the evidence

• u are the unobserved variables

• 1/Z normalises the distribution.

120

Basic inference

As the BN fully describes the full joint distribution

Pr(Q, u, e) =
n∏

i=1

Pr(Ni|parents(Ni))

It can be used to perform inference in the obvious way

Pr(Q|e) = 1

Z

∑

u

n∏

i=1

Pr(Ni|parents(Ni))

but as we’ll see this is in practice problematic.

• More sophisticated algorithms aim to achieve this more efficiently.

• For complex BNs we resort to approximation techniques.

121

Other approaches to uncertainty: Default reasoning

One criticism made of probability is that it is numerical whereas human argument

seems fundamentally different in nature:

• On the one hand this seems quite defensible. I certainly am not aware of doing

logical thought through direct manipulation of probabilities, but. . .

• . . . on the other hand, neither am I aware of solving differential equations in

order to walk!

Default reasoning:

• Does not maintain degrees of belief .

• Allows something to be believed until a reason is found not to.

122

Other approaches to uncertainty: rule-based systems

Rule-based systems have some desirable properties:

• Locality: if we establish the evidence X and we have a rule X → Y then Y
can be concluded regardless of any other rules.

• Detachment: once any Y has been established it can then be assumed. (It’s

justification is irrelevant.)

• Truth-functionality: truth of a complex formula is a function of the truth of its

components.

These are not in general shared by probabilistic systems. What happens if:

• We try to attach measures of belief to rules and propositions.

• We try to make a truth-functional system by, for example, making belief in

X ∧ Y a function of beliefs in X and Y ?

123

Other approaches to uncertainty: rule-based systems

Problems that can arise:

1. Say I have the causal rule

Heart disease
0.95−→ Chest pain

and the diagnostic rule

Chest pain
0.7−→ Heart disease

Without taking very great care to keep track of the reasoning process, these

can form a loop.

2. If in addition I have

Chest pain
0.6−→ Recent physical exertion

then it is quite possible to form the conclusion that with some degree of cer-

tainty heart disease is explained by exertion, which may well be incorrect.

124

Other approaches to uncertainty: rule-based systems

In addition, we might argue that because heart disease is an explanation for chest

pain the belief in physical exertion should decrease.

In general when such systems have been successful it has been through very care-

ful control in setting up the rules.

In general, it is difficult to relate implication to conditional probability.

A AB B

Pr(A|B) = Pr(A∧B)
Pr(B)

Pr(A→ B) = Pr(¬A ∨B)

125

Implication and conditional probability

In general, it is difficult to relate implication to conditional probability.

A AB B

Pr(A|B) = Pr(A∧B)
Pr(B)

Pr(A→ B) = Pr(¬A ∨B)

Imagine that fish are very rare, and most fish can swim.

With implication,

Pr(fish→ ¬swim) = Pr(¬fish ∨ ¬swim) = LARGE!

With conditional probability,

Pr(¬swim|fish) = Pr(¬swim ∧ fish)
Pr(fish)

= SMALL!

126

Other approaches to uncertainty: Dempster-Shafer theory

Dempster-Shafer theory attempts to distinguish between uncertainty and igno-

rance.

Whereas the probabilistic approach looks at the probability of X , we instead look

at the probability that the available evidence supports X .

This is denoted by the belief function Bel(X).

Example: given a coin but no information as to whether it is fair I have no reason

to think one outcome should be preferred to another

Bel(outcome = head) = Bel(outcome = tail) = 0

These beliefs can be updated when new evidence is available. If an expert tells

us there is n percent certainty that it’s a fair coin then

Bel(outcome = head) = Bel(outcome = tail) =
n

100
× 1

2
.

We may still have a gap in that

Bel(outcome = head) + Bel(outcome = tail) 6= 1.

Dempster-Shafer theory provides a coherent system for dealing with belief func-

tions.

127

Other approaches to uncertainty: Dempster-Shafer theory

Problems:

• The Bayesian approach deals more effectively with the quantification of how

belief changes when new evidence is available.

• The Bayesian approach has a better connection to the concept of utility, whereas

the latter is not well-understood for use in conjunction with Dempster-Shafer

theory.

128

Uncertainty III: exact inference in Bayesian networks

We now examine:

• The basic equation for inference in Bayesian networks, the latter being hard to

achieve if approached in the obvious way.

• The way in which matters can be improved a little by a small modification to

the way in which the calculation is done.

• The way in which much better improvements might be possible using a still

more informed approach, although not in all cases.

Reading: Russell and Norvig, chapter 14, section 14.4.

129

Performing exact inference

We know that in principle any query Q can be answered by the calculation

Pr(Q|e) = 1

Z

∑

u

Pr(Q, e, u)

where Q denotes the query, e denotes the evidence, u denotes unobserved vari-

ables and 1/Z normalises the distribution.

The naive implementation of this approach yields the Enumerate-Joint-Ask algo-

rithm, which unfortunately requires O(2n) time and space for n Boolean random

variables (RVs).

130

Performing exact inference

In what follows we will make use of some abbreviations.

• C denotes Climber

• G denotes Goose

• A denotes Alarm

• L1 denotes Lodge1

• L2 denotes Lodge2

Instead of writing out Pr(C = ⊤), Pr(C = ⊥) etc we will write Pr(c), Pr(¬c) and

so on.

131

Performing exact inference

Also Pr(Q, e, u) has a particular form expressing conditional independences:

No: 0.95

Yes: 0.05 Yes: 0.2

No: 0.8

a

¬a ¬a
a

0.001

Y

N

Y

N
Y

Y

N

N

Alarm

Climber Goose

Lodge1 Lodge2

Pr(A|C,G)

0.98
0.08
0.96
0.2

0.60.99

0.08

Pr(L1|A) Pr(L2|A)

Pr(A|C,G)C G

Pr(Goose)Pr(Climber)

Pr(C,G,A, L1, L2) = Pr(C)Pr(G)Pr(A|C,G)Pr(L1|A)Pr(L2|A)

132

Performing exact inference

Consider the computation of the query Pr(C|l1, l2)
We have

Pr(C|l1, l2) = 1

Z

∑

A

∑

G

Pr(C)Pr(G)Pr(A|C,G)Pr(l1|A)Pr(l2|A)

Here there are 5 multiplications for each set of values that appears for summation,

and there are 4 such values.

In general this gives time complexity O(n2n) for n Boolean RVs.

Looking more closely we see that

Pr(C|l1, l2) = 1

Z

∑

A

∑

G

Pr(C)Pr(G)Pr(A|C,G)Pr(l1|A)Pr(l2|A)

=
1

Z
Pr(C)

∑

A

Pr(l1|A)Pr(l2|A)
∑

G

Pr(G)Pr(A|C,G)

=
1

Z
Pr(C)

∑

G

Pr(G)
∑

A

Pr(A|C,G)Pr(l1|A)Pr(l2|A)

(4)

So for example...

133

Performing exact inference

Pr(c|l1, l2) = 1

Z
Pr(c)

(

Pr(g)

{
Pr(a|c, g)Pr(l1|a)Pr(l2|a)

+Pr(¬a|c, g)Pr(l1|¬a)Pr(l2|¬a)

}

+Pr(¬g)
{

Pr(a|c,¬g)Pr(l1|a)Pr(l2|a)
+Pr(¬a|c,¬g)Pr(l1|¬a)Pr(l2|¬a)

})

with a similar calculation for Pr(¬c|l1, l2).
Basically straightforward, BUT optimisations can be made.

134

Performing exact inference

Pr(c)

Pr(g) Pr(¬g)

Pr(¬a|c,¬g)

+

+

+

Pr(¬a|c, g)Pr(a|c, g) Pr(a|c,¬g)

Repeated Repeated

Pr(l1|a)

Pr(l2|a)

Pr(l1|¬a)

Pr(l2|¬a) Pr(l2|a)

Pr(l1|a) Pr(l1|¬a)

Pr(l2|¬a)

135

Optimisation 1: Enumeration-Ask

The enumeration-ask algorithm improves matters to O(2n) time and O(n) space

by performing the computation depth-first.

However matters can be improved further by avoiding the duplication of compu-

tations that clearly appears in the example tree.

136

Optimisation 2: variable elimination

Looking again at the fundamental equation (4)

1

Z
Pr(C)
︸ ︷︷ ︸

C

∑

G

Pr(G)
︸ ︷︷ ︸

G

∑

A

Pr(A|C,G)
︸ ︷︷ ︸

A

Pr(l1|A)
︸ ︷︷ ︸

L1

Pr(l2|A)
︸ ︷︷ ︸

L2

where C, G, A, L1, L2 denote the relevant factors.

The basic idea is to evaluate (4) from right to left (or in terms of the tree, bottom

up) storing results as we progress and re-using them when necessary.

Pr(l1|A) depends on the value of A. We store it as a table FL1(A). Similarly for

Pr(l2|A).
FL1(A) =

(
0.99
0.08

)

FL2(A) =

(
0.6
0.001

)

as Pr(l1|a) = 0.99, Pr(l1|¬a) = 0.08 and so on.

137

Optimisation 2: variable elimination

Similarly for Pr(A|C,G), which is dependent on A, C and G

FA(A,C,G) =

A C G FA(A,C,G)
⊤ ⊤ ⊤ 0.98
⊤ ⊤ ⊥ 0.96
⊤ ⊥ ⊤ 0.2
⊤ ⊥ ⊥ 0.08
⊥ ⊤ ⊤ 0.02
⊥ ⊤ ⊥ 0.04
⊥ ⊥ ⊤ 0.8
⊥ ⊥ ⊥ 0.92

Can we write

Pr(A|C,G)Pr(l1|A)Pr(l2|A) (5)

as

FA(A,C,G)FL1(A)FL2(A) (6)

in a reasonable way?

138

Optimisation 2: variable elimination

The answer is “yes” provided multiplication of factors is defined correctly. Look-

ing at (4)
1

Z
Pr(C)

∑

G

Pr(G)
∑

A

Pr(A|C,G)Pr(l1|A)Pr(l2|A)

note that the values of the product (5) in the summation depend on the values of

C and G external to it, and the values of A themselves. So (6) should be a table

collecting values for (5) where correspondences between RVs are maintained.

This leads to a definition for multiplication of factors best given by example.

139

Optimisation 2: variable elimination

F(A,B)F(B,C) = F(A,B,C)

where

A B F(A,B) B C F(B,C) A B C F(A,B,C)
⊤ ⊤ 0.3 ⊤ ⊤ 0.1 ⊤ ⊤ ⊤ 0.3× 0.1
⊤ ⊥ 0.9 ⊤ ⊥ 0.8 ⊤ ⊤ ⊥ 0.3× 0.8
⊥ ⊤ 0.4 ⊥ ⊤ 0.8 ⊤ ⊥ ⊤ 0.9× 0.8
⊥ ⊥ 0.1 ⊥ ⊥ 0.3 ⊤ ⊥ ⊥ 0.9× 0.3

⊥ ⊤ ⊤ 0.4× 0.1
⊥ ⊤ ⊥ 0.4× 0.8
⊥ ⊥ ⊤ 0.1× 0.8
⊥ ⊥ ⊥ 0.1× 0.3

140

Optimisation 2: variable elimination

This process gives us

FA(A,C,G)FL1(A)FL2(A) =

A C G
⊤ ⊤ ⊤ 0.98× 0.99× 0.6
⊤ ⊤ ⊥ 0.96× 0.99× 0.6
⊤ ⊥ ⊤ 0.2× 0.99× 0.6
⊤ ⊥ ⊥ 0.08× 0.99× 0.6
⊥ ⊤ ⊤ 0.02× 0.08× 0.001
⊥ ⊤ ⊥ 0.04× 0.08× 0.001
⊥ ⊥ ⊤ 0.8× 0.08× 0.001
⊥ ⊥ ⊥ 0.92× 0.08× 0.001

141

Optimisation 2: variable elimination

How about

FA,L1,L2(C,G) =
∑

A

FA(A,C,G)FL1(A)FL2(A)

To denote the fact that A has been summed out we place a bar over it in the

notation.
∑

A

FA(A,C,G)FL1(A)FL2(A) =FA(a, C,G)FL1(a)FL2(a)

+ FA(¬a, C,G)FL1(¬a)FL2(¬a)
where

FA(a, C,G) =

C G
⊤ ⊤ 0.98
⊤ ⊥ 0.96
⊥ ⊤ 0.2
⊥ ⊥ 0.08

FL1(a) = 0.99 FL2(a) = 0.6

and similarly for FA(¬a, C,G), FL1(¬a) and FL2(¬a).

142

Optimisation 2: variable elimination

FA(a, C,G)FL1(a)FL2(a) =

C G
⊤ ⊤ 0.98× 0.99× 0.6
⊤ ⊥ 0.96× 0.99× 0.6
⊥ ⊤ 0.2× 0.99× 0.6
⊥ ⊥ 0.08× 0.99× 0.6

FA(¬a, C,G)FL1(¬a)FL2(¬a) =

C G
⊤ ⊤ 0.02× 0.08× 0.001
⊤ ⊥ 0.04× 0.08× 0.001
⊥ ⊤ 0.8× 0.08× 0.001
⊥ ⊥ 0.92× 0.08× 0.001

FA,L1,L2(C,G) =

C G
⊤ ⊤ (0.98× 0.99× 0.6) + (0.02× 0.08× 0.001)
⊤ ⊥ (0.96× 0.99× 0.6) + (0.04× 0.08× 0.001)
⊥ ⊤ (0.2× 0.99× 0.6) + (0.8× 0.08× 0.001)
⊥ ⊥ (0.08× 0.99× 0.6) + (0.92× 0.08× 0.001)

143

Optimisation 2: variable elimination

Now, say for example we have ¬c, g. Then doing the calculation explicitly would

give
∑

A

Pr(A|¬c, g)Pr(l1|A))Pr(l2|A)

= Pr(a|¬c, g)Pr(l1|a)Pr(l2|a) + Pr(¬a|¬c, g)Pr(l1|¬a)Pr(l2|¬a)
= (0.2× 0.99× 0.6) + (0.8× 0.08× 0.001)

which matches!

Continuing in this manner form

FG,A,L1,L2(C,G) = FG(G)FA,L1,L2(C,G)

sum out G to obtain FG,A,L1,L2(C) =
∑

GFG(G)FA,L1,L2(C,G), form

FC,G,A,L1,L2 = FC(C)FG,A,L1,L2(C)

and normalise.

144

Optimisation 2: variable elimination

What’s the computational complexity now?

• For Bayesian networks with suitable structure we can perform inference in

linear time and space.

• However in the worst case it is #P -hard, which is worse than NP -hard.

Consequently, we may need to resort to approximate inference.

145

Uncertainty IV: Simple Decision-Making

We now examine:

• The concept of a utility function.

• The way in which such functions can be related to reasonable axioms about

preferences.

• A generalization of the Bayesian network, known as a decision network.

• How to measure the value of information, and how to use such measurements

to design agents that can ask questions.

Reading: Russell and Norvig, chapter 16.

146

Simple decision-making

We now look at choosing an action by maximising expected utility.

A utility function U (s) measures the desirability of a state.

If we can express a probability distribution for the states resulting from alternative

actions, then we can act in order to maximise expected utility.

For an action a, let Result(a) = {s1, . . . , sn} be a set of states that might be the

result of performing action a. Then the expected utility of a is

EU(a|E) =
∑

s∈Result(a)
Pr(s|a, E)U (s)

Note that this applies to individual actions. Sequences of actions will not be

covered in this course.

147

Simple decision-making: all of AI?

Much as this looks like a complete and highly attractive method for an agent to

decide how to act, it hides a great deal of complexity:

1. It may be hard to compute U (s). You generally don’t know how good a state

is until you know where it might lead on to: planning etc...

2. Knowing what state you’re currently in involves most of AI!

3. Dealing with Pr(s|a,E) involves Bayesian networks.

148

Utility in more detail

Overall, we now want to express preferences between different things.

Let’s use the following notation:

X > Y : X is preferred to Y

X = Y : we are indifferent regarding X and Y

X ≥ Y : X is preferred, or we’re indifferent

X , Y and so on are lotteries. A lottery has the form

X = [p1, O1|p2, O2| · · · |pn, On]

where Oi are the outcomes of the lottery and pi their respective probabilities.

Outcomes can be other lotteries or actual states.

149

Axioms for utility theory

Given we are dealing with preferences it seems that there are some clear properties

that such things should exhibit:

Transitivity: if X > Y and Y > Z then X > Z.

Orderability: either X > Y or Y > X or X = Y .

Continuity: if X > Y > Z then there is a probability p such that

[p,X|(1− p), Z] = Y

Substitutability: if X = Y then

[p,X|(1− p), L] = [p, Y |(1− p), L]

150

Axioms for utility theory

Monotonicity: if X > Y then for probabilities p1 and p2, p1 ≥ p2 if and only if

[p1, X|(1− p1), Y] ≥ [p2, X|(1− p2), Y]

Decomposability:

[p1, X|(1− p1), [p2, Y |(1− p2), Z]] = [p1, X|(1− p1)p2, Y |(1− p1)(1− p2), Z]

If an agent’s preferences conform to the utility theory axioms—and note that

we are only considering preferences, not numbers—then it is possible to define a

utility function U (s) for states such that:

1. U (s1) > U (s2)←→ s1 > s2

2. U (s1) = U (s2)←→ s1 = s2

3. U ([p1, s1|p2, s2| · · · |pn, sn]) =
∑n

i=1 piU (si).

We therefore have a justification for the suggested approach.

151

Designing utility functions

There is complete freedom in how a utility function is defined, but clearly it will

pay to define them carefully.

Example: the utility of money (for most people) exhibits a monotonic preference.

That is, we prefer to have more of it.

But we need to talk about preferences between lotteries.

Say you’ve won 100, 000 pounds in a quiz and you’re offered a coin flip:

• For heads: you win a total of 1, 000, 000 pounds.

• For tails: you walk away with nothing!

Would you take the offer?

152

Designing utility functions

The expected monetary value (EMV) of this lottery is

(0.5× 1, 000, 000) + (0.5× 0) = 500, 000

whereas the EMV of the initial amount is 100, 000.

BUT: most of us would probably refuse to take the coin flip.

The story is not quite as simple as this though: our attitude probably depends on

how much money we have to start with. If I have M pounds to start with then I am

in fact choosing between expected utility of

U (M + 100, 000)

and expected utility of

(0.5× U (M)) + (0.5× U (M + 1, 000, 000))

If M is 50, 000, 000 my attitude is much different to if it is 10, 000.

153

Designing utility functions

In fact, research shows that the utility of M pounds is for most people almost

exactly proportional to logM for M > 0. . .

−5 −4 −3 −2 −1 0 1 2 3 4 5

x 10
8

−8

−6

−4

−2

0

2

4

6

8
The utility U(M) of M pounds

M

U
(M

)

. . . and follows a similar shape for M < 0.

154

Decision networks

Decision networks—also known as influence diagrams. . .

Build cost

Site of landfill

Legal action

Road traffic Air quality

Cost to taxpayer Utility

Road congestion

. . . allow us to work actions and utilities into the formalism of Bayesian networks.

A decision network has three types of node. . .

155

Decision networks

A decision network has three types of node:

Chance nodes: are denoted by ovals. These are random variables (RVs) repre-

sented by a distribution conditional on their parents, as in Bayesian networks.

Parents can be other chance nodes or a decision node.

Decision nodes: are denoted by squares. They describe possible outcomes of the

decision of interest. Here we deal only with single decisions: multiple decisions

require alternative techniques.

Utility nodes: are denoted by diamonds. They describe the utility function relevant

to the problem, as a function of the values of the node’s parents.

156

Decision networks

Sometimes such diagrams are simplified by leaving out the RVs describing the

new state and converting current state and decision directly to utility:

This gives us fewer nodes to deal with BUT
potentially less flexibility in exploring alternative
descriptions of the problem.

and so never appear as evidence.
road conjestion describe future state
Air quality, cost to taxpayer and

Build cost

Legal action

Road traffic

Site of landfill

Utility

EU(a|E) =
∑

s∈Result(a) Pr(s|a,E)U(s)

This is an action-utility table. The utility no longer depends on a state but is the

expected utility for a given action.

157

Evaluation of decision networks

Once a specific action is selected for a decision node it acts like a chance node for

which a specific value is being used as evidence.

1. Set the current state chance nodes to their evidence values.

2. For each potential action

• Fix the decision node.

• Compute the probabilities for the utility node’s parents.

• Compute the expected utility.

3. Return the action that maximised EU(a|E).

158

The value of information

We have been assuming that a decision is to be made with all evidence available

beforehand. This is unlikely to be the case.

Knowing what questions one should ask is a central, and important part of making

decisions. Example:

• Doctors do not diagnose by first obtaining results for all possible tests on their

patients.

• They ask questions to decide what tests to do.

• They are informed in formulating which tests to perform by probabilities of

test outcomes, and by the manner in which knowing an outcome might im-

prove treatment.

• Tests can have associated costs.

159

The value of perfect information

Information value theory provides a formal way in which we can reason about

what further information to gather using sensing actions.

Say we have evidence E, so

EU(action|E) = max
a

∑

s∈Result(a)
Pr(s|a,E)U (s)

denotes how valuable the best action based on E must be.

How valuable would it be to learn about a further piece of evidence?

If we examined another RV E ′ and found that E ′ = e′ then the best action might

be altered as we’d be computing

EU(action′|E,E ′) = max
a

∑

s∈Result(a)
Pr(s|a,E,E ′)U (s)

BUT: because E ′ is a RV, and in advance of testing we don’t know its value, we

need to average over its possible values using our current knowledge.

160

The value of perfect information

This leads to the definition of the value of perfect information (VPI)

VPIE(E
′) =

{
∑

e′
Pr(E ′ = e′|E)EU(action′|E,E ′ = e′)

}

− EU(action|E)

VPI has the following properties:

• VPIE(E
′) ≥ 0

• It is not necessarily additive, that is, it is possible that

VPIE(E
′, E ′′) 6= VPIE(E

′) + VPIE(E
′′)

• It is independent of ordering

VPIE(E
′, E ′′) = VPIE(E

′) + VPIE,E′(E
′′)

= VPIE(E
′′) + VPIE,E′′(E

′)

161

Agents that can gather information

In constructing an agent with the ability to ask questions, we would hope that it

would:

• Use a good order in which to ask the questions.

• Avoid asking irrelevant questions.

• Trade off the cost of obtaining information against the value of that informa-

tion.

• Choose a good time to stop asking questions.

We now have the means with which to approach such a design.

162

Agents that can gather information

Assuming we can associate a cost C(E ′) with obtaining the knowledge that E ′ =
e′ an agent can act as follows:

• Given a decision network and current percept.

• Find the piece of evidence E ′ maximising VPIE(E
′)− C(E ′).

• If VPIE(E
′)− C(E ′) is positive then find the value of E ′, else take the action

indicated by the decision network.

This is known as a myopic agent as it requests a single piece of evidence at once.

163

Uncertainty V: probabilistic reasoning through time

We now examine:

• How an agent might operate by keeping track of the state of its environment

in an uncertain world, and how alterations in world state and uncertainty in

observing the world can be modelled using probability distributions.

• How inferences can be performed regarding the current state, past state and

future states.

• The Viterbi algorithm for computing the most likely sequence.

• A slightly simplified system within this framework called a hidden Markov

model (HMM), and the way in which some inference tasks can be simplified

in the HMM case.

Reading: Russell and Norvig, chapter 15.

164

Probabilistic reasoning through time

A fundamental idea throughout the AI courses has been that an agent should keep

track of the state of the environment:

• The environment’s state changes over time.

• The knowledge of how the state changes may be uncertain.

• The agent’s perception of the state of the environment may be uncertain.

For all the usual reasons related to uncertainty, we need to move beyond logic,

situation calculus etc.

165

States and evidence

We model the (unobservable) state of the environment as follows:

• We use a sequence

(S0, S1, S2, . . .)

of sets of random variables (RVs).

• Each St is a set of RVs

St = {S(1)
t , . . . , S

(n)
t }

denoting the state of the environment at time t, where t = 0, 1, 2,

Think of the state as changing over time.

S0→ S1 → S2→ · · ·

166

States and evidence

At each time t there is also an observable set

Et = {E(1)
t , . . . , E

(m)
t }

of random variables denoting the evidence that an agent obtains about the state at

time t.

As usual capitals denote RVs and lower case denotes actual values. So actual

values for the assorted RVs are denoted

St = {s(1)t , . . . , s
(n)
t } = st

Et = {e(1)t , . . . , e
(m)
t } = et

167

Stationary and Markov processes

As t can in principle increase without bound we now need some simplifying as-

sumptions.

Assumption 1: We deal with stationary processes: probability distributions do not

change over time.

Assumption 2: We deal with Markov processes

Pr(St|S0:t−1) = Pr(St|St−1) (7)

where S0:t−1 = (S0, S1, . . . , St−1).

(Strictly speaking this is a first order Markov Process, and we’ll only consider

these.)

Pr(St|St−1) is called the transition model.

168

Stationary and Markov processes

Assumption 3: We assume that evidence only depends on the current state

Pr(Et|S0:t, E1:t−1) = Pr(Et|St) (8)

Then

Pr(Et|St) is called the sensor model.

Pr(St|St−1)

Pr(Et|St)

Pr(S0) S0 S1 S2 S3

E1 E2 E3

· · ·

Pr(S0) is the prior probability of the starting state. We need this as there has to be

some way of getting the process started.

169

The full joint distribution

Given:

1. The prior Pr(S0).

2. The transition model Pr(St|St−1).

3. The sensor model Pr(Et|St).

along with the assumptions of stationarity and the assumptions of independence

in equations 7 and 8 we have

Pr(S0, S1, . . . , St, E1, E2, . . . , Et) = Pr(S0)
t∏

i=1

Pr(Si|Si−1)Pr(Ei|Si) .

This follows from basic probability theory as for example

Pr(S0, S1, S2, E1, E2) = Pr(E2|S0:2, E1)Pr(S2|S0:1, E1)Pr(E1|S0:1)Pr(S1|S0)Pr(S0)

= Pr(E2|S2)Pr(S2|S1)Pr(E1|S1)Pr(S1|S0)Pr(S0)

170

Example: two biased coins

Here’s a simple example with only two states and two observations.

I have two biased coins.

I flip one and tell you the outcome.

I then either stay with the same coin, or swap them.

This continues, producing a succession of outcomes:

0.2

0.2

head

0.90.1

head

0.80.8 coin1 coin2

171

Example: two biased coins

We’ll use the following numbers:

• The prior Pr(S0 = coin1) = 0.5.

• The transition model

Pr(St = coin1|St−1 = coin1) = Pr(St = coin2|St−1 = coin2) = 0.8

Pr(St = coin1|St−1 = coin2) = Pr(St = coin2|St−1 = coin1) = 0.2

• The sensor model

Pr(Et = head|St = coin1) = 0.1

Pr(Et = head|St = coin2) = 0.9

172

Example: two biased coins

This is straightforward to simulate.

Here’s an example of what happens:

[C2,C2,C1,C1,C1,C1,C1,C1,C1,C1,C1,C1,C2,C1,C1,C1,C1,C1,C1,C1,C1,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2]

⇓

[Hd,Tl,Tl,Tl,Hd,Tl,Hd,Tl,Tl,Tl,Hd,Tl,Hd,Tl,Tl,Tl,Tl,Tl,Hd,Tl,Tl,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Tl,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Tl,Hd]

As expected, we tend to see runs of a single coin, and might expect to be able to

guess which is being used as one favours heads and the other tails.

173

Example: 2008, paper 9, question 5

A friend of mine likes to climb on the roofs of Cambridge. To make a good start to

the coming week, he climbs on a Sunday with probability 0.98. Being concerned

for his own safety, he is less likely to climb today if he climbed yesterday, so

Pr(climb today|climb yesterday) = 0.4

If he did not climb yesterday then he is very unlikely to climb today, so

Pr(climb today|¬climb yesterday) = 0.1

Unfortunately, he is not a very good climber, and is quite likely to injure himself

if he goes climbing, so

Pr(injury|climb today) = 0.8

whereas

Pr(injury|¬climb today) = 0.1

174

Example: 2008, paper 9, question 5

This has a similar corresponding diagram:

0.1

0.10.8

0.4

0.6

0.9¬climbclimb

injury injury

We’ll look at the rest of this exam question later.

175

Performing inference

There are four basic inference tasks that we might want to perform.

In each of the following cases, assume that we have observed the evidence

E1:t = e1:t

Task 1: filtering

Deduce what state we might now be in by computing

Pr(St|e1:t).

In the coin tossing question: “If you’ve seen all the outcomes so far, infer which

coin was used last”.

In the exam question: “If you observed all the injuries so far, infer whether my

friend climbed today”.

176

Performing inference

Task 2: prediction

Deduce what state we might be in some time in the future by computing

Pr(St+T |e1:t) for some T > 0.

In the coin tossing question: “If you’ve seen all the outcomes so far, infer which

coin will be tossed T steps in the future”.

In the exam question: “If you’ve observed all the injuries so far, infer whether my

friend will go climbing T nights from now”.

177

Performing inference

Task 3: Smoothing

Deduce what state we might have been in at some point in the past by computing

Pr(St|e1:T) for 0 ≤ t < T.

In the coin tossing question: “If you’ve seen all the outcomes so far, infer which

coin was tossed at time t in the past”.

In the exam question: “If you’ve observed all the injuries so far, infer whether my

friend climbed on night t in the past”.

178

Performing inference

Task 4: Find the most likely explanation

Deduce the most likely sequence of states so far by computing

argmax
s1:t

Pr(s1:t|e1:t)

In the coin tossing question: “If you’ve seen all the outcomes so far, infer the most

probable sequence of coins used”.

In the exam question: “If you’ve observed all the injuries so far, infer the most

probable collection of nights on which my friend climbed”.

179

Filtering

We want to compute Pr(St|e1:t). This is often called the forward message and

denoted

f1:t = Pr(St|e1:t)
for reasons that are about to become clear.

Remember that St is an RV and so f1:t is a probability distribution containing a

probability for each possible value of St.

It turns out that this can be done in a simple manner with a recursive estimation.

Obtain the result at time t + 1:

1. using the result from time t and...

2. ...incorporating new evidence et+1.

f1:t+1 = g(et+1, f1:t)

for a suitable function g that we’ll now derive.

180

Filtering

Step 1:

Project the current state distribution forward

Pr(St+1|e1:t+1) = Pr(St+1|e1:t, et+1)

= cPr(et+1|St+1, e1:t)Pr(St+1|e1:t)
= cPr(et+1|St+1)
︸ ︷︷ ︸

Sensor model

Pr(St+1|e1:t)
︸ ︷︷ ︸
Needs more work

where as usual c is a constant that normalises the distribution. Here,

• The first line does nothing but split e1:t+1 into et+1 and e1:t.

• The second line is an application of Bayes’ theorem.

• The third line uses assumption 3 regarding sensor models.

181

Filtering

Step 2:

To obtain Pr(St+1|e1:t)
Pr(St+1|e1:t) =

∑

st

Pr(St+1, st|e1:t)

=
∑

st

Pr(St+1|st, e1:t)Pr(st|e1:t)

=
∑

st

Pr(St+1|st)
︸ ︷︷ ︸

Transition model

Pr(st|e1:t)
︸ ︷︷ ︸

Available from previous step

Here,

• The first line uses marginalisation.

• The second line uses the basic equation Pr(A,B) = Pr(A|B)Pr(B).

• The third line uses assumption 2 regarding transition models.

182

Filtering

Pulling it all together

Pr(St+1|e1:t+1) = cPr(et+1|St+1)
︸ ︷︷ ︸

Sensor model

∑

st

Pr(St+1|st)
︸ ︷︷ ︸

Transition model

Pr(st|e1:t)
︸ ︷︷ ︸

From previous step

(9)

This will be shortened to

f1:t+1 = cFORWARD(et+1, f1:t)

Here

• f1:t is a shorthand for Pr(St|e1:t).
• f1:t is often interpreted as a message being passed forward.

• The process is started using the prior.

183

Prediction

Prediction is somewhat simpler as

Pr(St+T+1|e1:t)
︸ ︷︷ ︸
Prediction at t+T+1

=
∑

st+T

Pr(St+T+1, st+T |e1:t)

=
∑

st+T

Pr(St+T+1|st+T , e1:t)Pr(st+T |e1:t)

=
∑

st+T

Pr(St+T+1|st+T)
︸ ︷︷ ︸

Transition model

Pr(st+T |e1:t)
︸ ︷︷ ︸
Prediction at t+T

However we do not get to make accurate predictions arbitrarily far into the future!

184

Smoothing

For smoothing, we want to calculate Pr(St|e1:T) for 0 ≤ t < T .

Again, we can do this in two steps.

Step 1:

Pr(St|e1:T) = Pr(St|e1:t, et+1:T)

= cPr(St|e1:t)Pr(et+1:T |St, e1:t)

= cPr(St|e1:t)Pr(et+1:T |St)

= cf1:tbt+1:T

Here

• f1:t is the forward message defined earlier.

• bt+1:T is a shorthand for Pr(et+1:T |St) to be regarded as a message being passed

backward.

185

Smoothing

Step 2:

bt+1:T = Pr(et+1:T |St) =
∑

st+1

Pr(et+1:T , st+1|St)

=
∑

st+1

Pr(et+1:T |st+1)Pr(st+1|St)

=
∑

st+1

Pr(et+1, et+2:T |st+1)Pr(st+1|St)

=
∑

st+1

Pr(et+1|st+1)
︸ ︷︷ ︸

Sensor model

Pr(et+2:T |st+1)
︸ ︷︷ ︸

bt+2:T

Pr(st+1|St)
︸ ︷︷ ︸

Transition model

= BACKWARD(et+1:T , bt+2:T)

(10)

This process is initialised with

bt+1:t = Pr(eT+1:T |ST) = (1, . . . , 1)

186

The forward-backward algorithm

So: our original aim of computing Pr(St|e1:T) can be achieved using:

• A recursive process working from time 1 to time t (equation 9).

• A recursive process working from time T to time t + 1 (equation 10).

This results in a process that is O(T) given the evidence e1:T and smooths for a

single point at time t.

To smooth at all points 1 : T we can easily repeat the process obtaining O(T 2).

Alternatively a very simple example of dynamic programming allows us to smooth

at all points in O(T) time.

187

The forward-backward algorithm

Done

Prior

Recursively compute all values bt+1:T and combine with stored values for f1:t.

Recursively compute all values for f1:t and store results

188

Computing the most likely sequence: the Viterbi algorithm

In computing the most likely sequence the aim is to obtain

argmax
s1:t

Pr(s1:t|e1:t)

Earlier we derived the joint distribution for all relevant variables

Pr(S0, S1, . . . , St, E1, E2, . . . , Et) = Pr(S0)
t∏

i=1

Pr(Si|Si−1)Pr(Ei|Si)

189

Computing the most likely sequence: the Viterbi algorithm

We therefore have

max
s1:t

Pr(s1:t, St+1|e1:t+1)

= cmax
s1:t

Pr(et+1|St+1)Pr(St+1|st)Pr(s1:t|e1:t)

= cPr(et+1|St+1)max
st






Pr(St+1|st) max

s1:t−1
Pr(s1:t−1, st|e1:t)







This looks a bit fierce, despite the fact that:

• The second line is just Bayes’ theorem applied to the joint distribution.

• The last line is just a re-arrangement of the second line.

190

Computing the most likely sequence: the Viterbi algorithm

There is however a way to visualise it that leads to a dynamic programming algo-

rithm called the Viterbi algorithm.

Step 1: Simplify the notation.

• Assume there are n states s1, . . . , sn and m possible observations e1, . . . , em at

any given time.

• Denote Pr(St = sj|St−1 = si) by pi,j(t).

• Denote Pr(et|St = si) by qi(t).

It’s important to remember in what follows that the observations are known but

that we’re maximising over all possible state sequences.

191

Computing the most likely sequence: the Viterbi algorithm

The equation we’re interested in is now of the form

P =
T∏

t=1

pi,j(t)qi(t)

(The prior Pr(S0) has been dropped out for the sake of clarity, but is easy to put

back in in what follows.)

The equation P will be referred to in what follows.

It is in fact a function of any given sequence of states.

192

Computing the most likely sequence: the Viterbi algorithm

Step 2: Make a grid: columns denote time and rows denote state.

...
...

...
...

...
...

...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

193

Computing the most likely sequence: the Viterbi algorithm

Step 3: Label the nodes:

• Say at time t the actual observation was et. Then label the node for si in

column t with the value qi(t).

• Any sequence of states through time is now a path through the grid. So for any

transition from si at time t− 1 to sj at time t label the transition with the value

pi,j(t).

In the following diagrams we can often just write pi,j and qi because the time is

clear from the diagram.

So for instance...

194

Computing the most likely sequence: the Viterbi algorithm

...
...

...
...

...
...

...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

q1(2)

p2,1(2)

qn(k)

q2(1)
p1,3(3)

q3(3)

pn,n−1(k + 1)

qn−1(k + 1)

195

Computing the most likely sequence: the Viterbi algorithm

• The value of P =
∏T

t=1 pi,j(t)qi(t) for any path through the grid is just the

product of the corresponding labels that have been added.

• But we don’t want to find the maximum by looking at all the possible paths

because this would be time-consuming.

• The Viterbi algorithm computes the maximum by moving from one column to

the next updating as it goes.

• Say you’re at column k and for each node m in that column you know the

highest value for the product to this point over any possible path. Call this:

Wm(k) = max
s1:k

k∏

t=1

pi,j(t)qi(t)

196

Computing the most likely sequence: the Viterbi algorithm

...
...

...
...

...
...

...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

pn,n−1(k + 1)

qn−1(k + 1)

W1(k)

W2(k)

W3(k)

Wn−1(k)

Wn(k)

197

Computing the most likely sequence: the Viterbi algorithm

Here is the key point: you only need to know

• The values Wi(k) for i = 1, . . . , n at time k.

• The numbers pi,j(k + 1).

• The numbers qi(k + 1).

to compute the values Wi(k + 1) for the next column k + 1.

This is because

Wi(k + 1) = max
j

Wj(k)pj,i(k + 1)qi(k + 1)

198

Computing the most likely sequence: the Viterbi algorithm

Once you get to the column for time t:

• The node with the largest value for Wi(t) tells you the largest possible value

of P .

• Provided you stored the path taken to get there you can work backwards to

find the corresponding sequence of states.

This is the Viterbi algorithm.

199

Computing the most likely sequence: the Viterbi algorithm

...
...

...
...

...
...

...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

W3(t) maximum

200

Hidden Markov models

Now for a specific case: hidden Markov models (HMMs). Here we have a single,

discrete state variable Si taking values s1, s2, . . . , sn. For example, with n = 3 we

might have

s1

s2

s3

Pr(St+1|St = s1) Pr(St+1|St = s2)

0.3

0.6

0.1

0.2

0.6

0.2

Pr(St+1|St = s3)

0.2

0.3

0.5

s3

s2s1

201

Hidden Markov models

In this simplified case the conditional probabilities Pr(St+1|St) can be represented

using the matrix

Sij = Pr(St+1 = sj|St = si)

or for the example on the previous slide

S =





0.3 0.1 0.6
0.2 0.6 0.2
0.2 0.3 0.5





← Pr(S|s1)
← Pr(S|s2)
← Pr(S|s3)

=







Pr(s1|s1) Pr(s2|s1) · · · Pr(sn|s1)
Pr(s1|s2) Pr(s2|s2) · · · Pr(sn|s2)

...

Pr(s1|sn) Pr(s2|sn) · · · Pr(sn|sn)







To save space, I am abbreviating Pr(St+1 = si|St = sj) to Pr(si|sj).

202

Hidden Markov models

The computations we’re making are always conditional on some actual observa-

tions e1:T .

For each t we can therefore use the sensor model to define a further matrix Et:

• Et is square and diagonal (all off-diagonal elements are 0).

• The ith element of the diagonal is Pr(et|St = si).

So in our present example with 3 states, there will be a matrix

Et =





Pr(et|s1) 0 0
0 Pr(et|s2) 0
0 0 Pr(et|s3)





for each t = 1, . . . , T .

203

Hidden Markov models

In the general case the equation for filtering was

Pr(St+1|e1:t+1) = cPr(et+1|St+1)
∑

st

Pr(St+1|st)Pr(st|e1:t)

and the message f1:t was introduced as a representation of Pr(St|e1:t).
In the present case we can define f1:t to be the vector

f1:t =







Pr(s1|e1:t)
Pr(s2|e1:t)

...

Pr(sn|e1:t)







Key point: the filtering equation now reduces to nothing but matrix multiplication.

204

What does matrix multiplication do?

What does matrix multiplication do? It computes weighted summations:

Ab =







a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m

...

an,1 an,2 · · · an,m













b1
b2
...

bm







=







∑m
i=1 a1,ibi∑m
i=1 a2,ibi

...
∑m

i=1 an,ibi







So the point at the end of the last slide shouldn’t come as a big surprise!

205

Hidden Markov models

Now, note that if we have n states

STf1:t =








Pr(s1|s1) · · · Pr(s1|sn)
Pr(s2|s1) · · · Pr(s2|sn)

...

Pr(sn|s1) · · · Pr(sn|sn)















Pr(s1|e1:t)
Pr(s2|e1:t)

...

Pr(sn|e1:t)








=








Pr(s1|s1)Pr(s1|e1:t) + · · · + Pr(s1|sn)Pr(sn|e1:t)
Pr(s2|s1)Pr(s1|e1:t) + · · · + Pr(s2|sn)Pr(sn|e1:t)

...

Pr(sn|s1)Pr(s1|e1:t) + · · · + Pr(sn|sn)Pr(sn|e1:t)








=








∑

s Pr(s1|s)Pr(s|e1:t)
∑

s Pr(s2|s)Pr(s|e1:t)
...

∑

s Pr(sn|s)Pr(s|e1:t)








206

Hidden Markov models

And taking things one step further

Et+1S
Tf1:t =





Pr(et+1|s1) 0
. . .

0 Pr(et+1|sn)











∑

s Pr(s1|s)Pr(s|e1:t)∑

s Pr(s2|s)Pr(s|e1:t)
...

∑

s Pr(sn|s)Pr(s|e1:t)







=







Pr(et+1|s1)
∑

s Pr(s1|s)Pr(s|e1:t)
Pr(et+1|s2)

∑

s Pr(s2|s)Pr(s|e1:t)
...

Pr(et+1|sn)
∑

s Pr(sn|s)Pr(s|e1:t)







Compare this with the equation for filtering

Pr(St+1|e1:t+1) = cPr(et+1|St+1)
∑

st

Pr(St+1|st)Pr(st|e1:t)

207

Hidden Markov models

Comparing the expression for Et+1S
Tf1:t with the equation for filtering we see

that

f1:t+1 = cEt+1S
Tf1:t

and a similar equation can be found for b

bt+1:T = SEt+1bt+2:T .

Exercise: derive this.

The fact that these can be expressed simply using only multiplication of vectors

and matrices allows us to make an improvement to the forward-backward algo-

rithm.

208

Hidden Markov models

The forward-backward algorithm works by:

• Moving up the sequence from 1 to T , computing and storing values for f .

• Moving down the sequence from T to 1 computing values for b and combining

them with the stored values for f using the equation

Pr(St|e1:T) = cf1:tbt+1:T

Now in our simplified HMM case we have

f1:t+1 = cEt+1S
Tf1:t

or multiplying through by (Et+1S
T)−1 and re-arranging

f1:t =
1

c
(ST)−1(Et+1)

−1f1:t+1

209

Hidden Markov models

So as long as:

• We know the final value for f .

• ST has an inverse.

• Every observation has non-zero probability in every state.

We don’t have to store T different values for f—we just work through, discarding

intermediate values, to obtain the last value and then work backward.

210

Example: 2008, paper 9, question 5

A friend of mine likes to climb on the roofs of Cambridge. To make a good start to

the coming week, he climbs on a Sunday with probability 0.98. Being concerned

for his own safety, he is less likely to climb today if he climbed yesterday, so

Pr(climb today|climb yesterday) = 0.4

If he did not climb yesterday then he is very unlikely to climb today, so

Pr(climb today|¬climb yesterday) = 0.1

Unfortunately, he is not a very good climber, and is quite likely to injure himself

if he goes climbing, so

Pr(injury|climb today) = 0.8

whereas

Pr(injury|¬climb today) = 0.1

211

Example: 2008, paper 9, question 5

You learn that on Monday and Tuesday evening he obtains an injury, but on

Wednesday evening he does not. Use the filtering algorithm to compute the prob-

ability that he climbed on Wednesday.

Initially

f1:0 =

(
0.98
0.02

)

S =

(
0.4 0.6
0.1 0.9

)

E =

(
0.8 0
0 0.1

)

E ′ =

(
0.2 0
0 0.9

)

212

Example: 2008, paper 9, question 5

The update equation is

f1:t+1 = cEt+1S
Tf1:t

so

f1:1 =
c

10, 000

(
8 0
0 1

)(
4 1
6 9

)(
98
2

)

=

(
0.83874
0.16126

)

Repeating this twice more using E ′ rather than E the final time gives

f1:2 =

(
0.81268
0.18732

)

f1:3 =

(
0.10429
0.89571

)

so the answer is 0.1.

213

Example: 2008, paper 9, question 5

Over the course of the week, you also learn that he does not obtain an injury on

Thursday or Friday. Use the smoothing algorithm to compute the probability that

he climbed on Thursday.

The S, E and E ′ matrices are the same. The backward message starts as

b6:5 =

(
1
1

)

and the update equation is

bt:T = SEtbt+1:T

Then working backwards

b5:5 =
1

100

(
4 6
1 9

)(
2 0
0 9

)(
1
1

)

=

(
0.62
0.83

)

214

Example: 2008, paper 9, question 5

We also need one more forward step, which gives

f1:4 =

(
0.03249
0.96751

)

Finally

cf1:4b5:5 = c

(
0.03249× 0.62
0.96751× 0.83

)

=

(
0.02447
0.97553

)

giving the answer 0.02447.

215

Online smoothing

Say we want to smooth at a fixed number of time steps. We can also obtain a

simple algorithm for updating the result each time a new et+1 appears.

1 2 TT − lag

· · · · · ·

1 2 TT − lag
· · · · · ·

New eT+1

Smooth here

Update to here

T + 1T − lag + 1

216

Online smoothing

As usual we need to calculate

cf1:T−lagbT−lag+1:T

to smooth at time (T − lag) if we’ve progressed to time T . So: assume f1:T−lag

and bT−lag+1:T are known.

What can we now do when eT+1 arrives to obtain f1:T−lag+1 and bT−lag+2:T+1?

f is easy to update because as usual

f1:T−lag+1 = cET−lag+1S
T f1:T−lag

Known

217

Online smoothing

b is more tricky.

We know that

bT−lag+1:T = SET−lag+1bT−lag+2:T

and continuing this recursion up to the end of the sequence at T gives

bT−lag+1:T =

T∏

i=T−lag+1

SEi ×







1
1
...

1







Define

βa:b =
b∏

i=a

SEi

so

bT−lag+1:T = βT−lag+1:T ×







1
1
...

1







218

Online smoothing

Now when eT+1 arrives we have

bT−lag+2:T+1 =
T+1∏

i=T−lag+2

SEi ×







1
1
...

1







= βT−lag+2:T+1 ×







1
1
...

1







= E−1T−lag+1S
−1βT−lag+1:TSET+1 ×







1
1
...

1







219

Online smoothing

This leads to an easy way to update β

βa+1:b+1 = E−1a S−1βa:bSEb+1

Using this gives the required update for b.

220

Supervised learning II: the Bayesian approach

We now place supervised learning into a probabilistic setting by examining:

• The application of Bayes’ theorem to the supervised learning problem.

• Priors, the likelihood, and the posterior probability of a hypothesis.

• The maximum likelihood and maximum a posteriori hypotheses, and some

examples.

• Bayesian decision theory: minimising the error rate.

• Application of the approach to neural networks, using approximation tech-

niques.

221

Reading

There is some relevant material to be found in Russell and Norvig chapters 18 to

20 although the intersection between that material and what I will cover is small.

Almost all of what I cover can be found in:

• Machine Learning. Tom Mitchell, McGraw Hill 1997, chapter 6.

• Pattern Recognition and Machine Learning. Christopher M. Bishop, Springer,

2006.

222

Supervised learning: a quick reminder

We want to design a classifier, denoted h(x)

x

Classifier

h(x) LabelAttribute vector

It should take an attribute vector

xT =
(
x1 x2 · · · xn

)

and label it.

What we mean by label depends on whether we’re doing classification or regres-

sion.

223

Supervised learning: a quick reminder

In classification we’re assigning x to one of a set {ω1, . . . , ωc} of c classes.

For example, if x contains measurements taken from a patient then there might be

three classes:

ω1 = patient has disease

ω2 = patient doesn’t have disease

ω3 = don’t ask me buddy, I’m just a computer!

We’ll often specialise to the case of two classes, denoted C1 and C2.

224

Supervised learning: a quick reminder

In regression we’re assigning x to a real number h(x) ∈ R.

For example, if x contains measurements taken regarding today’s weather then we

might have

h(x) = estimate of amount of rainfall expected tomorrow

For the two-class classification problem we will also refer to a situation somewhat

between the two, where

h(x) = Pr(x is in C1)

225

Supervised learning: a quick reminder

We don’t want to design h explicitly.

Training sequence

h = L(s)

Labelh(x)

s

Learner
L

Classifier
Attribute vector

x

So we use a learner L to infer it on the basis of a sequence s of training examples.

226

Supervised learning: a quick reminder

The training sequence s is a sequence of m labelled examples.

s =







(x1, y1)
(x2, y2)

...

(xm, ym)







That is, examples of attribute vectors x with their correct label attached.

So a learner only gets to see the labels for a—most probably small—subset of the

possible inputs x.

Regardless, we aim that the hypothesis h = L(s) will usually be successful at

predicting the label of an input it hasn’t seen before.

This ability is called generalization.

227

Supervised learning: a quick reminder

There is generally a set H of hypotheses from which L is allowed to select h

L(s) = h ∈ H
H is called the hypothesis space.

The learner can output a hypothesis explicitly or—as in the case of a multilayer

perceptron—it can output a vector

w =
(
w1 w2 · · · wW

)

of weights which in turn specify h

h(x) = f(w;x)

where w = L(s).

228

Supervised learning: a quick reminder

In AI I you saw the backpropagation algorithm for training multilayer percep-

trons, in the case of regression.

This worked by minimising a function of the weights representing the error cur-

rently being made:

E(w) =
1

2

m∑

i=1

(f(w;xi)− yi)
2

The summation here is over the training examples. The expression in the summa-

tion grows as f ’s prediction for xi diverges from the known label yi.

Backpropagation tries to find a w that minimises E(w) by performing gradient

descent

wt+1 = wt − α
∂E(w)

∂w

∣
∣
∣
∣
wt

229

Difficulties with classical neural networks

There are some well-known difficulties associated with neural network training of

this kind.

0.5 1 1.5 2 2.5 3

-0.4

-0.2

0.2

0.4

0.6

0.8

BEWARE!!!

230

Sources of uncertainty

So we have to be careful. But let’s press on with this approach for a little while

longer...

The model used above suggests two sources of uncertainty that we might treat

with probabilities.

• Let’s assume we’ve selected anH to use, and it’s the same one nature is using.

• We don’t know how nature chooses h′ fromH. We therefore model our uncer-

tainty by introducing the prior distribution Pr(h) on H.

• There is noise on the training examples.

It’s worth emphasising at this point that in modelling noise on the training exam-

ples we’ll only consider noise on the labels. The input vectors x are not modelled

using a probability distribution.

231

The likelihood

We model our uncertainty in the training examples by specifying a likelihood:

Pr(Y |h,x)
Translation: the probability of seeing a given label Y , when the input vector is x

and the underlying hypothesis is h.

Example: two-class classification. A common likelihood is

Pr(Y = C1|h,x) = σ(h(x))

where

σ(z) =
1

1 + exp(−z)
(Note: strictly speaking x should not appear in these probabilities because it’s not

a random variable. It is included for clarity.)

232

The likelihood

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The logistic function σ(z) = 1

1+exp(−z)

z

σ
(z

)

−10
−5

0
5

10

−10

−5

0

5

10
0

0.2

0.4

0.6

0.8

1

Input x1

Logistic σ(z) applied to the output of a linear function

Input x2

P
r(
x

is
in

C
1
)

233

The likelihood

So: if we’re given a training sequence, what is the probability that it was generated

using some h?

For an example (x, y), y can be C1 or C2. It’s helpful here to rename the classes

as just 1 and 0 respectively because this leads to a nice simple expression. Now

Pr(Y |h,x) =
{
σ(h(x)) if Y = 1
1− σ(h(x)) if Y = 0

Consequently when y has a known value we can write

Pr(y|h,x) = [σ(h(x))]y [1− σ(h(x))](1−y)

If we assume that the examples are independent then the probability of seeing the

labels in a training sequence s is straightforward.

234

The likelihood

Collecting the inputs and outputs in s together into separate matrices, so

yT =
(
y1 y2 · · · ym

)

and

X =
(
x1 x2 · · · xm

)

we have the likelihood of the training sequence

Pr(y|h,X) =
m∏

i=1

Pr(yi|h,xi)

=
m∏

i=1

[σ(h(xi))]
yi [1− σ(h(xi))]

(1−yi)

235

The likelihood

Another example: regression. A common likelihood in the regression case works

by assuming that examples are corrupted by Gaussian noise with mean 0 and some

specified variance σ2

y = h(x) + ǫ, where ǫ ∼ N (0, σ2)

As usual, the density for N (µ, σ2) is

p(Z) =
1√
2πσ2

exp

(

−(z − µ)2

2σ2

)

by adding h(x) to ǫ we just shift its mean, so

p(y|h,x) = 1√
2πσ2

exp

(

−(y − h(x))2

2σ2

)

236

The likelihood

Consequently if the examples are independent then the likelihood of a training

sequence s is

p(y|h,X) =

m∏

i=1

p(yi|h,xi)

=
m∏

i=1

1√
2πσ2

exp

(

−(yi − h(xi))
2

2σ2

)

=
1

(2πσ2)m/2
exp

(

− 1

2σ2

m∑

i=1

(yi − h(xi))
2

)

where we’ve used the fact that

exp(a) exp(b) = exp(a + b)

237

Bayes’ theorem appears once more...

Right: we’ve take care of the uncertainty by introducing the prior p(h) and the

likelihood of the training sequence p(y|h,X).

By this point you hopefully want to apply Bayes’ theorem and write

p(h|y) = p(y|h)p(h)
p(y)

where

p(y) =
∑

h∈H
p(h,y) =

∑

h∈H
p(y|h)p(h)

and to simplify the expression we have now dropped the mention of X as the

inputs are fixed. p(h|y) is called the posterior distribution.

The denominator Z = p(y) is called the evidence and leads on to fascinating

issues of its own. Unfortunately we won’t have time to explore them.

238

Bayes’ theorem appears once more...

The boxed equation on the last slide has a very simple interpretation: what’s the

probability that this specific h was used to generate the training sequence I’ve

been given?

Two natural learning algorithms now present themselves:

1. The maximum likelihood hypothesis

hML = argmax
h∈H

p(y|h)

2. The maximum a posteriori hypothesis

hMAP = argmax
h∈H

p(h|y)
= argmax

h∈H
p(y|h)p(h)

Obviously hML corresponds to the case where the prior p(h) is uniform.

239

Example: maximum likelihood learning

We derived an exact expression for the likelihood in the regression case above:

p(y|h) = 1

(2πσ2)m/2
exp

(

− 1

2σ2

m∑

i=1

(yi − h(xi))
2

)

Proposition: under the assumptions used, any learning algorithm that works by

minimising the sum of squared errors on s finds hML.

This is clearly of interest: the notable example is the backpropagation algorithm.

We now prove the proposition...

240

Example: maximum likelihood learning

The proposition holds because:

hML = argmax
h∈H

p(y|h)

= argmax
h∈H

log p(y|h)

= argmax
h∈H

log

[

1

(2πσ2)m/2
exp

(

− 1

2σ2

m∑

i=1

(yi − h(xi))
2

)]

= argmax
h∈H

log

[
1

(2πσ2)m/2

]

− 1

2σ2

m∑

i=1

(yi − h(xi))
2

= argmax
h∈H

− 1

2σ2

m∑

i=1

(yi − h(xi))
2

= argmin
h∈H

m∑

i=1

(yi − h(xi))
2

241

Example: maximum likelihood learning

Note:

• If the distribution of the noise is not Gaussian a different result is obtained.

• The use of log above to simplify a maximisation problem is a standard trick.

• The Gaussian assumption is sometimes, but not always a good choice. (Be-

ware the Central Limit Theorem!).

242

The next step...

We have so far concentrated throughout our coverage of machine learning on

choosing a single hypothesis.

Are we asking the right question though?

Ultimately, we want to generalise.

That means being presented with a new x and asking the question: what is the

most probable classification of x?

Is it reasonable to expect a single hypothesis to provide the optimal answer?

We need to look at what the optimal solution to this kind of problem might be...

243

Bayesian decision theory

What is the optimal approach to this problem?

Put another way: how should we make decisions in such a way that the outcome

obtained is, on average, the best possible? Say we have:

• Attribute vectors x ∈ R
d.

• A set of classes {ω1, . . . , ωc}.
• Several possible actions {α1, . . . , αa}.

The actions can be thought of as saying “assign the vector to class 1” and so on.

There is also a loss λ(αi, ωj) associated with taking action αi when the class is ωj.

The loss will sometimes be abbreviated to λ(αi, ωj) = λij.

244

Bayesian decision theory

Say we can also model the world as follows:

• Classes have probabilities Pr(ω) of occurring.

• The probability of seeing x when the class is ω has density p(x|ω).

Think of nature choosing classes at random (although not revealing them) and

showing us a vector selected at random using p(x|ω).
As usual Bayes rule tells us that

Pr(ω|x) = p(x|ω)Pr(ω)

p(x)

and now the denominator is

p(x) =
c∑

i=1

p(x|ωi)Pr(ωi).

245

Bayesian decision theory

Say nature shows us x and we take action αi.

If we always take action αi when we see x then the average loss on seeing x is

R(αi|x) = Eω∼p(ω|x) [λij|x] =
c∑

j=1

λ(αi, ωj)Pr(ωj|x).

The quantity R(αi|x) is called the conditional risk.

Note that this particular x is fixed.

246

Bayesian decision theory

Now say we have a decision rule α : Rd → {α1, . . . , αa} telling us what action to

take on seeing any x ∈ R
d.

The average loss, or risk, is

R = E(x,ω)∼p(x,ω) [λ(α(x), ω)]

= Ex∼p(x)
[
Eω∼Pr(ω|x) [λ(α(x), ω)|x]

]

= Ex∼p(x) [R(α(x)|x)] (11)

=

∫

R(α(x)|x)p(x)dx

where we have used the standard result from probability theory that

E [E [X|Y]] = E [X] .

(See the supplementary notes for a proof.)

247

Bayesian decision theory

Clearly the risk is minimised for the decision rule defined as follows:

α outputs the action αi that minimises R(αi|x), for all x ∈ R
d.

The provides us with the minimum possible risk, or Bayes risk R⋆.

The rule specified is called the Bayes decision rule.

248

Example: minimum error rate classification

In supervised learning our aim is often to work in such a way that we minimise

the probability of error.

What loss should we consider in these circumstances? From basic probability

theory

Pr(A) = E [I(A)]

where

I(A) =

{
1 if A happens

0 otherwise

(See the supplementary notes for a proof.)

249

Example: minimum error rate classification

So if we are addressing a supervised learning problem with c classes {ω1, . . . , ωc}
and we interpret action αi as meaning ‘the input is in class ωi’, then a loss

λij =

{
1 if i 6= j
0 otherwise

means that the risk R is

R = E [λ] = Pr(α(x) is in error)

and the Bayes decision rule minimises the probability of error.

250

Example: minimum error rate classification

Now, what is the Bayes decision rule?

R(αi|x) =
c∑

j=1

λ(αi, ωj)Pr(ωj|x)

=
∑

i 6=j

Pr(ωj|x)

= 1− Pr(ωi|x)
so α(x) should be the class that maximises Pr(ωi|x).
THE IMPORTANT SUMMARY: Given a new x to classify, choosing the class that

maximises Pr(ωi|x) is the best strategy if your aim is to obtain the minimum error

rate!

251

Bayesian learning II

Bayes decision theory tells us that in this context we should consider the quantity

Pr(ωi|s,x) where the involvement of the training sequence has been made explicit.

Pr(ωi|s,x) =
∑

h∈H
Pr(ωi, h|s,x)

=
∑

h∈H
Pr(ωi|h, s,x)Pr(h|s,x)

=
∑

h∈H
Pr(ωi|h,x)Pr(h|s).

Here we have re-introduced H using marginalisation. In moving from line 2 to

line 3 we are assuming some independence properties.

252

Bayesian learning II

So our classification should be

ω = argmax
ω∈{ω1,...,ωc}

∑

h∈H
Pr(ω|h,x)Pr(h|s)

IfH is infinite the sum becomes an integral. So for example for a neural network

ω = argmax
ω∈{ω1,...,ωc}

∫

RW
Pr(ω|w,x)Pr(w|s) dw

where W is the number of weights in w.

253

Bayesian learning II

Why might this make any difference? (Aside from the fact that we now know it’s

optimal!)

Example 1: Say |H| = 3 and h(x) = Pr(x is in class C1) for a 2 class problem.

Pr(h1|s) = 0.4

Pr(h2|s) = Pr(h3|s) = 0.3

Now, say we have an x for which

h1(x) = 1

h2(x) = h3(x) = 0

so hMAP says that x is in class C1.

254

Bayesian learning II

However,

Pr(class 1|s,x) = 1× 0.4 + 0× 0.3 + 0× 0.3

= 0.4

Pr(class 2|s,x) = 0× 0.4 + 1× 0.3 + 1× 0.3

= 0.6

so class C2 is the more probable!

In this case the Bayes optimal approach in fact leads to a different answer.

255

A more in-depth example

Let’s take this a step further and work through something a little more complex in

detail. For a two-class classification problem with h(x) denoting Pr(C1|h, x) and

x ∈ R:

Hypotheses: We have three hypotheses

h1(x) = exp(−(x− 1)2)

h2(x) = exp(−(2x− 2)2)

h3(x) = exp(−(1/10)(x− 3)2)

Prior: The prior is Pr(h1) = 0.1, Pr(h2) = 0.05 and Pr(h3) = 0.85.

256

A more in-depth example

We see the examples (0.5, C1), (0.9, C1), (3.1, C2) and (3.4, C1).

Likelihood: For the individual hypotheses the likelihoods are given by

Pr(s|h) = h(x1)h(x2)[1− h(x3)]h(x4)

Which in this case tells us

Pr(s|h1) = 0.0024001365

Pr(s|h2) = 0.0031069836

Pr(s|h3) = 0.0003387476

Posterior: Multiplying by the priors and normalising gives

Pr(h1|s) = 0.3512575000

Pr(h2|s) = 0.2273519164

Pr(h3|s) = 0.4213905836

257

A more in-depth example

Now let’s classify the point x′ = 2.5.

We need

Pr(C1|s, x′) = Pr(C1|h1)Pr(h1|s) + Pr(C1|h2)Pr(h2|s) + Pr(C1|h3)Pr(h3|s)
= 0.6250705317

So: it’s most likely to be in class C1, but not with great certainty.

258

The Bayesian approach to neural networks

Let’s now see how this can be applied to neural networks. We have:

• A neural network computing a function f(w;x).

• A training sequence s = ((x1, y1), . . . , (xm, ym)), split into

y = (y1 y2 · · · ym)

and

X = (x1 x2 · · · xm)

The prior distribution p(w) is now on the weight vectors and Bayes’ theorem tells

us that

p(w|s) = p(w|X,y) =
p(y|w,X)p(w|X)

p(y|X)

Nothing new so far...

259

The Bayesian approach to neural networks

As usual, we don’t consider uncertainty in x and so X will be omitted. Conse-

quently

p(w|y) = p(y|w)p(w)

p(y)

where

p(y) =

∫

RW
p(y|w)p(w)dw

p(y|w) is a model of the noise corrupting the labels and as previously is the like-

lihood function.

260

The Bayesian approach to neural networks

p(w) is typically a broad distribution to reflect the fact that in the absence of any

data we have little idea of what w might be.

When we see some data the above equation tells us how to obtain p(w|y). This

will typically be more localised.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

wMAP

p(
w
|y

)
a
n
d

p(
w

)

The posterior density p(w|y) becomes more localised

Prior
Posterior

To put this into practice we need expressions for p(w) and p(y|w).

261

Reminder: the general Gaussian density

Reminder: we’re going to be making a lot of use of the general Gaussian density

N (µ,Σ) in d dimensions

p(z) = (2π)−d/2|Σ|−1/2 exp
[

−1
2

(
(z− µ)TΣ−1(z− µ)

)
]

where µ is the mean vector and Σ is the covariance matrix.

−5

0

5

−5

0

5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

z1

Gaussian density, µ = [0 0], Σ = I

z2

p(
z
)

262

The Gaussian prior

A common choice for p(w) is the Gaussian prior with zero mean and

Σ = σ2I

so

p(w) = (2π)−W/2σ−W exp

[

−w
Tw

2σ2

]

Note that σ controls the distribution of other parameters.

• Such parameters are called hyperparameters.

• Assume for now that they are both fixed and known.

Hyperparameters can be learnt using s through the application of more advanced

techniques.

263

The Bayesian approach to neural networks

Physicists like to express quantities such as p(w) in terms of a measure of “en-

ergy”. The expression is therefore usually re-written as

p(w) =
1

ZW (α)
exp
(

−α
2
||w||2

)

where

EW (w) =
1

2
||w||2

ZW (α) =

(
2π

α

)d/2

α =
1

σ2

This is simply a re-arranged version of the more usual equation.

264

The Gaussian noise model for regression

We’ve already seen that for a regression problem with zero mean Gaussian noise

having variance σ2
n

yi = f(xi) + ǫi

p(ǫi) =
1

√

2πσ2
n

exp

(

− ǫ2i
2σ2

n

)

where f corresponds to some unknown network, the likelihood function is

p(y|w) =
1

(2πσ2
n)

m/2
exp

(

− 1

2σ2
n

m∑

i=1

(yi − f(w;xi))
2

)

Note that there are now two variances: σ2 for the prior and σ2
n for the noise.

265

The Bayesian approach to neural networks

This expression can also be rewritten in physicist-friendly form

p(y|w) =
1

Zy(β)
exp (−βEy(w))

where

β =
1

σ2
n

Zy(β) =

(
2π

β

)m/2

Ey(w) =
1

2

m∑

i=1

(yi − f(w;xi))
2

Here, β is a second hyperparameter. Again, we assume it is fixed and known,

although it can be learnt using s using more advanced techniques.

266

The Bayesian approach to neural networks

Combining the two boxed equations gives

p(w|y) = 1

ZS(α, β)
exp(−S(w))

where

S(w) = αEW (w) + βEy(w)

The quantity

ZS(α, β) =

∫

RW
exp(−S(w))dw

normalises the density. Recall that this is called the evidence.

267

Example I: gradient descent revisited...

To find hMAP (in this scenario by finding wMAP) we therefore maximise

p(w|y) = 1

ZS(α, β)
exp(−(αEW (w) + βEy(w)))

or equivalently find

wMAP = argmin
w

α

2
||w||2 + β

2

m∑

i=1

(yi − f(w;xi))
2

This algorithm has also been used a lot in the neural network literature and is

called the weight decay technique.

268

Example II: two-class classification in two dimensions

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Examples

x1

x
2

−10
0

10

−10

0

10
0.5

1

1.5

2

x 10
−3

w1

Prior density p(w)

w2

−10
0

10

−10

0

10
0

0.02

0.04

0.06

w1

Likelihood p(y|w)

w2 −10
0

10

−10

0

10
0

0.5

1

x 10
−4

w1

Posterior density p(w|y)

w2

269

The Bayesian approach to neural networks

What happens as the number m of examples increases?

• The first term corresponding to the prior remains fixed.

• The second term corresponding to the likelihood increases.

So for small training sequences the prior dominates, but for large ones hML is a

good approximation to hMAP.

270

The Bayesian approach to neural networks

Where have we got to...? We have obtained

p(w|y) = 1

ZS(α, β)
exp(−(αEW (w) + βEy(w)))

ZS(α, β) =

∫

RW
exp(−(αEW (w) + βEy(w)))dw

Translating the expression for the Bayes optimal solution given earlier into the

current scenario, we need to compute

p(Y |y,x) =
∫

RW
p(y|w,x)p(w|y) dw

Easy huh? Unfortunately not...

271

The Bayesian approach to neural networks

In order to make further progress it’s necessary to perform integrals of the general

form ∫

RW
F (w)p(w|y)dw

for various functions F and this is generally not possible.

There are two ways to get around this:

1. We can use an approximate form for p(w|y).
2. We can use Monte Carlo methods.

272

Method 1: approximation to p(w|y)

The first approach introduces a Gaussian approximation to p(w|y) by using a

Taylor expansion of

S(w) = αEW (w) + βEy(w)

at wMAP.

This allows us to use a standard integral.

The result will be approximate but we hope it’s good!

Let’s recall how Taylor series work...

273

Reminder: Taylor expansion

In one dimension the Taylor expansion about a point x0 ∈ R for a function f :
R→ R is

f(x) ≈ f(x0) +
1

1!
(x− x0)f

′(x0) +
1

2!
(x− x0)

2f ′′(x0) + · · · +
1

k!
(x− x0)

kfk(x0)

What does this look like for the kinds of function we’re interested in? We can try

to approximate

exp (−f(x))
where

f(x) = x4 − 1

2
x3 − 7x2 − 5

2
x + 22

This has a form similar to S(w), but in one dimension.

274

Reminder: Taylor expansion

The functions of interest look like this:

−5 0 5
0

100

200

300

400

500

600
The function f(x)

x

f
(x

)

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
The function exp(−f(x))

x

ex
p(
−f
(x

))

By replacing −f(x) with its Taylor expansion about its maximum, which is at

xmax = 2.1437

we can see what the approximation to exp(−f(x)) looks like. Note that the exp
hugely emphasises peaks.

275

Reminder: Taylor expansion

Here are the approximations for k = 1, k = 2 and k = 3.

−5 0 5
−600

−400

−200

0

Taylor expansion for k = 1

x
−5 0 5

−600

−400

−200

0

Taylor expansion for k = 2

x
−5 0 5

−600

−400

−200

0

Taylor expansion for k = 3

x

−5 0 5
0

0.2

0.4

0.6

0.8
exp(−f(x)) exact

x
−5 0 5
0

0.2

0.4

0.6

0.8
exp(−f(x)) using Taylor expansion for k = 2

x

The use of k = 2 looks promising...

276

Reminder: Taylor expansion

In multiple dimensions the Taylor expansion for k = 2 is

f(x) ≈ f(x0) +
1

1!
(x− x0)

T ∇f(x)|x0 +
1

2!
(x− x0)

T ∇2f(x)
∣
∣
x0
(x− x0)

where ∇ denotes gradient

∇f(x) =
(

∂f(x)
∂x1

∂f(x)
∂x2
· · · ∂f(x)

∂xn

)

and∇2f(x) is the matrix with elements

Mij =
∂2f(x)

∂xi∂xj

(Although this looks complicated, it’s just the obvious extension of the 1-dimensional

case.)

277

Method 1: approximation to p(w|y)

Applying this to S(w) and expanding around wMAP

S(w) ≈ S(wMAP) + (w −wMAP)
T ∇S(w)|wMAP

+
1

2
(w −wMAP)

TA(w −wMAP)

notice the following:

• As wMAP minimises the function the first derivatives are zero and the corre-

sponding term in the Taylor expansion disappears.

• The quantity A = ∇∇S(w)|wMAP
can be simplified.

This is because
A = ∇∇(αEW (w) + βEy(w))|

wMAP

= αI + β∇∇Ey(wMAP)

278

Method 1: approximation to p(w|y)

Defining

∆w = w −wMAP

we now have

S(w) ≈ S(wMAP) +
1

2
∆wTA∆w

The vector wMAP can be obtained using any standard optimisation method (such

as backpropagation).

The quantity ∇∇Ey(w) can be evaluated using an extended form of backpropa-

gation.

279

A useful integral

Dropping for this slide only the special meanings usually given to vectors x and

y, here is a useful standard integral:

If A ∈ R
n×n is symmetric then for b ∈ R

n and c ∈ R

∫

Rn
exp

(

−1
2

(
xTAx + xTb + c

)
)

dx

= (2π)n/2|A|−1/2 exp
(

−1
2

(

c− bTA−1b

4

))

At the beginning of the course, two exercises were set involving the evaluation of

this integral.

To make this easy to refer to, let’s call it the BIG INTEGRAL.

280

Method 1: approximation to p(w|y)

We now have

p(w|y) ≈ 1

Z(α, β)
exp

(

−S(wMAP)−
1

2
∆wTA∆w

)

where ∆w = w −wMAP and using the BIG INTEGRAL

Z(α, β) = (2π)W/2|A|−1/2 exp(−S(wMAP))

Our earlier discussion tells us that given a new input x we should calculate

p(Y |y,x) =
∫

RW
p(y|w,x)p(w|y)dw

p(y|w,x) is just the likelihood so...

281

Method 1: approximation to p(w|y)

The likelihood we’re using is

p(y|w,x) =
1√
2πσ2

exp

(

−(y − f(w;x))2

2σ2

)

∝ exp

(

−β
2
(y − f(w;x))2

)

and plugging it into the integral gives

p(y|x,y) ∝
∫

RW
exp

(

−β
2
(y − f(w;x))2

)

exp

(

−1
2
∆wTA∆w

)

dw

which has no solution!

We need another approximation...

282

Method 1: approximation to p(w|y)

If we assume that p(w|y) is narrow (this depends on A) then we can introduce a

linear approximation of f(w;x) at wMAP:

f(w;x) ≈ f(wMAP;x) + gT∆w

where g = ∇f(w;x)|wMAP
.

By linear approximation we just mean the Taylor expansion for k = 1.

This leads to

p(Y |y,x) ∝
∫

RW
exp

(

−β
2

(
y − f(wMAP;x)− gT∆w

)2 − 1

2
∆wTA∆w

)

dw

and this integral can be evaluated using the BIG INTEGRAL to give THE AN-

SWER...

283

Method 1: approximation to p(w|y)

Finally

p(Y |y,x) = 1
√

2πσ2
y

exp

(

−(y − f(wMAP;x))
2

2σ2
y

)

where

σ2
y =

1

β
+ gTA−1g.

Hooray! But what does it mean?

284

Method 1: approximation to p(w|y)

This is a Gaussian density, so we can now see that p(Y |y,x) peaks at f(wMAP;x).
That is, the MAP solution.

The variance σ2
y can be interpreted as a measure of certainty.

• The first term of σ2
y is 1/β and corresponds to the noise.

• The second term of σ2
y is gTA−1g and corresponds to the width of p(w|y).

Or interpreted graphically...

285

Method 1: approximation to p(w|y)

−0.5 0 0.5 1 1.5
−2

−1

0

1

2

3

4
Typical behaviour of the Bayesian solution

x

286

Method II: Markov chain Monte Carlo (MCMC) methods

The second solution to the problem of performing integrals

I =

∫

F (w)p(w|y)dw

is to use Monte Carlo methods. The basic approach is to make the approximation

I ≈
1

N

N∑

i=1

F (wi)

where the wi have distribution p(w|y). Unfortunately, generating wi with a given

distribution can be non-trivial.

287

MCMC methods

A simple technique is to introduce a random walk, so

wi+1 = wi + ǫ

where ǫ is zero mean spherical Gaussian and has small variance. Obviously the

sequence wi does not have the required distribution. However, we can use the

Metropolis algorithm, which does not accept all the steps in the random walk:

1. If p(wi+1|y) > p(wi|y) then accept the step.

2. Else accept the step with probability
p(wi+1|y)
p(wi|y) .

In practice, the Metropolis algorithm has several shortcomings, and a great deal

of research exists on improved methods, see:

R. Neal, “Probabilistic inference using Markov chain Monte Carlo methods,”

University of Toronto, Department of Computer Science Technical Report

CRG-TR-93-1, 1993.

288

Approximate inference for Bayesian networks

MCMC methods also provide a method for performing approximate inference in

Bayesian networks.

Say a system can be in a state s and moves from state to state in discrete time steps

according to a probabilistic transition

Pr(s→ s′)

Let πt(s) be the probability distribution for the state after t steps, so

πt+1(s
′) =

∑

s

Pr(s→ s′)πt(s)

If at some point we obtain πt+1(s) = πt(s) for all s then we have reached a

stationary distribution π. In this case

∀s′π(s′) =
∑

s

Pr(s→ s′)π(s)

There is exactly one stationary distribution for a given Pr(s → s′) provided the

latter obeys some simple conditions.

289

Approximate inference for Bayesian networks

The condition of detailed balance

∀s, s′π(s)Pr(s→ s′) = π(s′)Pr(s′ → s)

is sufficient to provide a π that is a stationary distribution. To see this simply sum:
∑

s

π(s)Pr(s→ s′) =
∑

s

π(s′)Pr(s′ → s)

= π(s′)
∑

s

Pr(s′ → s)

︸ ︷︷ ︸
=1

= π(s′)

If all this is looking a little familiar, it’s because we now have an excellent ap-

plication for the material in Mathematical Methods for Computer Science. That

course used the alternative term local balance.

290

Approximate inference for Bayesian networks

Recalling once again the basic equation for performing probabilistic inference

Pr(Q|e) = 1

Z
Pr(Q ∧ e) =

1

Z

∑

u

Pr(Q, u, e)

where

• Q is the query variable.

• e is the evidence.

• u are the unobserved variables.

• 1/Z normalises the distribution.

We are going to consider obtaining samples from the distribution Pr(Q,U |e).

291

Approximate inference for Bayesian networks

The evidence is fixed. Let the state of our system be a specific set of values for

the query variable and the unobserved variables

s = (q, u1, u2, . . . , un) = (s1, s2, . . . , sn+1)

and define si to be the state vector with si removed

si = (s1, . . . , si−1, si+1, . . . , sn+1)

To move from s to s′ we replace one of its elements, say si, with a new value s′i
sampled according to

s′i ∼ Pr(Si|si, e)
This has detailed balance, and has Pr(Q,U |e) as its stationary distribution.

292

Approximate inference for Bayesian networks

To see that Pr(Q,U |e) is the stationary distribution

π(s)Pr(s→ s′) = Pr(s|e)Pr(s′i|si, e)
= Pr(si, si|e)Pr(s′i|si, e)
= Pr(si|si, e)Pr(si|e)Pr(s′i|si, e)
= Pr(si|si, e)Pr(s′i, si|e)
= Pr(s′ → s)π(s′)

As a further simplification, sampling from Pr(Si|si, e) is equivalent to sampling

Si conditional on its parents, children and children’s parents.

293

Approximate inference for Bayesian networks

So:

• We successively sample the query variable and the unobserved variables, con-

ditional on their parents, children and children’s parents.

• This gives us a sequence s1, s2, . . . which has been sampled according to Pr(Q,U |e).

Finally, note that as

Pr(Q|e) =
∑

u

Pr(Q, u|e)

we can just ignore the values obtained for the unobserved variables. This gives

us q1, q2, . . . with

qi ∼ Pr(Q|e)

294

Approximate inference for Bayesian networks

To see that the final step works, consider what happens when we estimate the

expected value of some function of Q.

E[f(Q)] =
∑

q

f(q)Pr(q|e)

=
∑

q

f(q)
∑

u

Pr(q, u|e)

=
∑

q

∑

u

f(q)Pr(q, u|e)

so sampling using Pr(q, u|e) and ignoring the values for u obtained works exactly

as required.

295

Artificial Intelligence II: further notes on machine learning

We now look at several issues that need to be considered when applying machine

learning algorithms in practice:

• We often have more examples from some classes than from others.

• The obvious measure of performance is not always the best.

• Much as we’d love to have an optimal method for finding hyperparameters,

we don’t have one, and it’s unlikely that we ever will.

• We need to exercise care if we want to claim that one approach is superior to

another.

296

Supervised learning

As usual, we want to design a classifier.

x

Classifier

LabelAttribute vector hθ(x)

It should take an attribute vector

xT =
(
x1 x2 · · · xn

)

and label it.

We now denote a classifier by hθ(x) where

θT =
(
w p

)

denotes any weights w and (hyper)parameters p.

To keep the discussion and notation simple we assume a classification problem

with two classes labelled +1 (positive examples) and −1 (negative examples).

297

Supervised learning

Previously, the learning algorithm was a box labelled L.

Training sequence

Label

s

Learner
L

Classifier
Attribute vector

x
hθ(x)

hθ = L(s)

Blood, sweat
and tears

Unfortunately that turns out not to be enough, so a new box has been added.

298

Measuring performance

How do you assess the performance of your classifier?

1. That is, after training, how do you know how well you’ve done?

2. In general, the only way to do this is to divide your examples into a smaller

training set s of m examples and a test set s′ of m′ examples.

Original s

s s′

s′m′sm s′1s3s2s1

The GOLDEN RULE: data used to assess performance must NEVER have been

seen during training.

This might seem obvious, but it was a major flaw in a lot of early work.

299

Measuring performance

How do we choose m and m′? Trial and error!

Assume the training is complete, and we have a classifier hθ obtained using only

s. How do we use s′ to assess our method’s performance?

The obvious way is to see how many examples in s′ the classifier classifies cor-

rectly:

êrs′(hθ) =
1

m′

m′∑

i=1

I(hθ(x
′
i) 6= y′i)

where

s′ =
(
(x′1, y

′
1) (x′2, y

′
2) · · · (x′m′, y

′
m′)
)T

and

I(z) =

{
1 if z = true

0 if z = false
.

This is just an estimate of the probability of error and is often called the accuracy.

300

Unbalanced data

Unfortunately it is often the case that we have unbalanced data and this can make

such a measure misleading. For example:

If the data is naturally such that almost all examples are negative (medical

diagnosis for instance) then simply classifying everything as negative gives a

high performance using this measure.

We need more subtle measures.

For a classifier h and any set s of size m containing m+ positive examples and m−

negative examples...

301

Unbalanced data

Define

1. The true positives

P+ = {(x,+1) ∈ s|h(x) = +1}, and p+ = |P+|

2. The false positives

P− = {(x,−1) ∈ s|h(x) = +1}, and p− = |P−|

3. The true negatives

N+ = {(x,−1) ∈ s|h(x) = −1}, and n+ = |N+|

4. The false negatives

N− = {(x,+1) ∈ s|h(x) = −1}, and n− = |N−|

Thus êrs(h) = (p+ + n+)/m.

This allows us to define more discriminating measures of performance.

302

Performance measures

Some standard performance measures:

1. Precision p+

p++p− .

2. Recall p+

p++n− .

3. Sensitivity p+

p++n− .

4. Specificity n+

n++p− .

5. False positive rate p−
p−+n+

.

6. Positive predictive value p+

p++p− .

7. Negative predictive value n+

n++n− .

8. False discovery rate p−
p−+p+

.

In addition, plotting sensitivity (true positive rate) against the false positive rate

while a parameter is varied gives the receiver operating characteristic (ROC)

curve.

303

Performance measures

The following specifically take account of unbalanced data:

1. Matthews Correlation Coefficient (MCC)

MCC =
p+n+ − p−n−

√

(p+ + p−)(n+ + n−)(p+ + n−)(n+ + p−)

2. F1 score

F1 =
2× precision× recall

precision + recall

When data is unbalanced these are preferred over the accuracy.

304

Validation and crossvalidation

The next question: how do we choose hyperparameters?

Answer: try different values and see which values give the best (estimated)

performance.

There is however a problem:

If I use my test set s′ to find good hyperparameters, then I can’t use it to get a

final measure of performance. (See the Golden Rule above.)

Solution 1: make a further division of the complete set of examples to obtain a

third, validation set:

v1 vm′′

vs s′

Original s

s′1s1 s2 s3 sm s′m′

305

Validation and crossvalidation

Now, to choose the value of a hyperparameter p:

For some range of values p1, p2, . . . , pn

1. Run the training algorithm using training data s and with the hyperparameter

set to pi.

2. Assess the resulting hθ by computing a suitable measure (for example accu-

racy, MCC or F1) using v.

Finally, select the hθ with maximum estimated performance and assess its actual

performance using s′.

306

Validation and crossvalidation

This was originally used in a similar way when deciding the best point at which

to stop training a neural network.

Estimated error on v

Estimated error on s

E
st

im
at

ed
er

ro
r

Time
Stop training here

The figure shows the typical scenario.

307

Crossvalidation

The method of crossvalidation takes this a step further.

We our complete set into training set s and testing set s′ as before.

But now instead of further subdividing s just once we divide it into n folds s(i)

each having m/n examples.

s′

Original s

s

s′1 s′m′

s(2)s(1) s(n)

Typically n = 10 although other values are also used, for example if n = m we

have leave-one-out cross-validation.

308

Crossvalidation

Let s−i denote the set obtained from s by removing s(i).

Let êrs(i)(h) denote any suitable error measure, such as accuracy, MCC or F1,

computed for h using fold i.

Let Ls−i,p be the classifier obtained by running learning algorithm L on examples

s−i using hyperparameters p.

Then,

1

n

n∑

i=1

êrs(i)(Ls−i,p)

is the n-fold crossvalidation error estimate.

So for example, let s
(i)
j denote the jth example in the ith fold. Then using accuracy

as the error estimate we have

1

m

n∑

i=1

m/n
∑

j=1

I(Ls−i,p(x
(i)
j) 6= y

(i)
j)

309

Crossvalidation

Two further points:

1. What if the data are unbalanced? Stratified crossvalidation chooses folds such

that the proportion of positive examples in each fold matches that in s.

2. Hyperparameter choice can be done just as above, using a basic search.

What happens however if we have multiple hyperparameters?

1. We can search over all combinations of values for specified ranges of each

parameter.

2. This is the standard method in choosing parameters for support vector ma-

chines (SVMs).

3. With SVMs it is generally limited to the case of only two hyperparameters.

4. Larger numbers quickly become infeasible.

310

Comparing classifiers

Imagine I have compared the Bloggs Classificator 2000 and the CleverCorp Dis-

criminotron and found that:

1. Bloggs Classificator 2000 has estimated accuracy 0.981 on the test set.

2. CleverCorp Discriminotron has estimated accuracy 0.982 on the test set.

Can I claim that the CleverCorp Discriminotron is the better classifier?

Answer:

NO! NO! NO! NO! NO! NO! NO! NO! NO!!!!!!!!!!!!!!

311

Comparing classifiers

NO!!!!!!!

Note for next year: include photo of grumpy-looking cat.

312

Assessing a single classifier

From Mathematical Methods for Computer Science:

The Central Limit Theorem: If we have independent identically distributed (iid)

random variables X1, X2, . . . , Xn with mean

E [X] = µ

and standard deviation

E
[
(X − µ)2

]
= σ2

then as n→∞
X̂n − µ

σ/
√
n
→ N(0, 1)

where

X̂n =
1

n

n∑

i=1

Xi.

313

Assessing a single classifier

We have tables of values zp such that if x ∼ N(0, 1) then

Pr(−zp ≤ x ≤ zp) > p.

Rearranging this using the equation from the previous slide we have that with

probability p

µ ∈
[

X̂n ± zp

√

σ2

n

]

. (12)

We don’t know σ2 but it can be estimated using

σ2 ≃ 1

n− 1

n∑

i=1

(

Xi − X̂n

)2

.

Alternatively, when X takes only values 0 or 1

σ2 = E
[
(X − µ)2

]
= E

[
X2
]
− µ2 = µ(1− µ) ≃ X̂n(1− X̂n).

314

Assessing a single classifier

The actual probability of error for a classifier h is

er(h) = E [I(h(x) 6= y)]

and we are estimating er(h) using the accuracy

êrs(h) =
1

m

m∑

i=1

I(h(xi) 6= yi)

for a test set s.

We can find a confidence interval for this estimate using precisely the derivation

above, simply by noting that the Xi are the random variables

Xi = I(h(xi) 6= yi).

315

Assessing a single classifier

Typically we are interested in a 95% confidence interval, for which zp = 1.96.

Thus, when m > 30 (so that the central limit theorem applies) we know that, with

probability 0.95

er(h) = êrs(h)± 1.96

√

êrs(h)(1− êrs(h)))

m
.

Example: I have 100 test examples and my classifier makes 18 errors. With prob-

ability 0.95 I know that

er(h) = 0.18± 1.96

√

0.18(1− 0.18)

100
= 0.18± 0.075.

This should perhaps raise an alarm regarding our suggested comparison of clas-

sifiers above.

316

Assessing a single classifier

There is an important distinction to be made here:

1. The mean of X is µ and the variance of X is σ2.

2. We can also ask about the mean and variance of X̂n.

3. The mean of X̂n is

E

[

X̂n

]

= E

[

1

n

n∑

i=1

Xi

]

=
1

n

n∑

i=1

E [Xi]

= µ.

4. It is left as an exercise to show that the variance of X̂n is

σ2
X̂n

=
σ2

n
.

317

Comparing classifiers

We are using the values zp such that if x ∼ N(0, 1) then

Pr(−zp ≤ x ≤ zp) > p.

There is an alternative way to think about this.

1. Say we have a random variable Y with variance σ2
Y and mean µY .

2. The random variable Y − µY has variance σ2
Y and mean 0.

3. It is a straightforward exercise to show that dividing a random variable having

variance σ2 by σ gives us a new random variable with variance 1.

4. Thus the random variable
Y−µY
σY

has mean 0 and variance 1.

So: with probability p
Y = µY ± zpσY (13)

µY = Y ± zpσY .

Compare this with equation (12). You need to be careful to keep track of whether

you are considering the mean and variance of a single RV or a sum of RVs.

318

Comparing classifiers

Now say I have classifiers h1 (Bloggs Classificator 2000) and h2 (CleverCorp

Discriminotron) and I want to know something about the quantity

d = er(h1)− er(h2).

I estimate d using

d̂ = êrs1(h1)− êrs2(h2)

where s1 and s2 are two independent test sets.

Notice:

1. The estimate of d is a sum of random variables, and we can apply the central

limit theorem.

2. The estimate is unbiased

E [êrs1(h1)− êrs2(h2)] = d.

319

Comparing classifiers

Also notice:

1. The two parts of the estimate êrs1(h1) and êrs2(h2) are each sums of random

variables and we can apply the central limit theorem to each.

2. The variance of the estimate is the sum of the variances of êrs1(h1) and êrs2(h2).

3. Adding Gaussians gives another Gaussian.

4. We can calculate a confidence interval for our estimate.

With probability 0.95

d = d̂± 1.96

√

êrs1(h1)(1− êrs1(h1))

m1
+

êrs2(h2)(1− êrs2(h2))

m2
. (14)

In fact, if we are using a split into training set s and test set s′ we can generally

obtain h1 and h2 using s and use the estimate

d̂ = êrs′(h1)− êrs′(h2).

320

Comparing classifiers—hypothesis testing

This still doesn’t tell us directly about whether one classifier is better than an-

other—whether h1 is better than h2.

What we actually want to know is whether

d = er(h1)− er(h2) > 0.

Say we’ve measured D̂ = d̂. Then:

• Imagine the actual value of d is 0.

• Recall that the mean of D̂ is d.

• So larger measured values d̂ are less likely, even though some random varia-

tion is inevitable.

• If it is highly unlikely that when d = 0 a measured value of d̂ would be ob-

served, then we can be confident that d > 0.

• Thus we are interested in

Pr(D̂ > d + d̂)

This is known as a one-sided bound.

321

One-sided bounds

Given the two-sided bound

Pr(−zǫ ≤ x ≤ zǫ) = 1− ǫ

we actually need to know the one-sided bound

Pr(x ≤ zǫ).

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

p
(x
)

Pr(−z ≤ x ≤ z) = 1−ε

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

p
(x
)

Pr(−∞ ≤ x ≤ z) = 1−ε/2

Clearly, if our random variable is Gaussian then Pr(x ≤ zǫ) = 1− ǫ/2.

322

Comparing algorithms: paired t-tests

We now know how to compare hypotheses h1 and h2.

But we still haven’t properly addressed the comparison of algorithms.

• Remember, a learning algorithm L maps training data s to hypothesis h.

• So we really want to know about the quantity

d = Es∈Sm [er(L1(s))− er(L2(s))].

• This is the expected difference between the actual errors of the two different

algorithms L1 and L2 .

Unfortunately, we have only one set of data s available and we can only estimate

errors er(h)—we don’t have access to the actual quantities.

We can however use the idea of crossvalidation.

323

Comparing algorithms: paired t-tests

Recall, we subdivide s into n folds s(i) each having m/n examples

s

s(2)s(1) s(n)

and denote by s−i the set obtained from s by removing s(i). Then

1

n

n∑

i=1

êrs(i)(L(s−i))

is the n-fold crossvalidation error estimate. Now we estimate d using

d̂ =
1

n

n∑

i=1

[
êrs(i)(L1(s−i))− êrs(i)(L2(s−i))

]
.

324

Comparing algorithms: paired t-tests

As usual, there is a statistical test allowing us to assess how likely this estimate is

to mislead us.

We will not consider the derivation in detail. With probability p

d ∈
[

d̂± tp,n−1σd̂

]

.

This is analogous to the equations seen above, however:

• The parameter tp,n−1 is analogous to zp.

• The parameter tp,n−1 is related to the area under the Student’s t-distribution

whereas zp is related to the area under the normal distribution.

• The relevant estimate of standard deviation is

σd̂ =

√
√
√
√

1

n(n− 1)

n∑

i=1

(

di − d̂
)2

where

di = êrs(i)(L1(s−i))− êrs(i)(L2(s−i)).

325

Reinforcement Learning

We now examine:

• Some potential shortcomings of hidden Markov models, and of supervised

learning.

• An extension know as the Markov Decision Process (MDP).

• The way in which we might learn from rewards gained as a result of acting

within an environment.

• Specific, simple algorithms for performing such learning, and their conver-

gence properties.

Reading: Russell and Norvig, chapter 21. Mitchell chapter 13.

326

Reinforcement learning and HMMs

Hidden Markov Models (HMMs) are appropriate when our agent models the

world as follows

Pr(S0) S0 S1 S2 S3

E1 E3

Pr(St|St−1)

Pr(Et|St)

E2

· · ·

and only wants to infer information about the state of the world on the basis of

observing the available evidence.

This might be criticised as un-necessarily restricted, although it is very effective

for the right kind of problem.

327

Reinforcement learning and supervised learning

Supervised learners learn from specifically labelled chunks of information:

x ???

(x1, 1)

(x2, 1)

(x3, 0)
...

This might also be criticised as un-necessarily restricted: there are other ways to

learn.

328

Reinforcement learning: the basic case

We now begin to model the world in a more realistic way as follows:

S0 S1 S2 S3

In any state:

Perform an action a to move to a new state. (There may be many possibilities.)

Receive a reward r depending on the start state and action.

· · ·

The agent can perform actions in order to change the world’s state.

If the agent performs an action in a particular state, then it gains a corresponding

reward.

329

Deterministic Markov Decision Processes

Formally, we have a set of states

S = {s1, s2, . . . , sn}
and in each state we can perform one of a set of actions

A = {a1, a2, . . . , am}.
We also have a function

S : S × A→ S

such that S(s, a) is the new state resulting from performing action a in state s,

and a function

R : S × A→ R

such that R(s, a) is the reward obtained by executing action a in state s.

330

Deterministic Markov Decision Processes

From the point of view of the agent, there is a matter of considerable importance:

The agent does not have access to the functions S andR .

It therefore has to learn a policy, which is a function

p : S → A

such that p(s) provides the action a that should be executed in state s.

What might the agent use as its criterion for learning a policy?

331

Measuring the quality of a policy

Say we start in a state at time t, denoted st, and we follow a policy p. At each

future step in time we get a reward. Denote the rewards rt, rt+1, . . . and so on.

A common measure of the quality of a policy p is the discounted cumulative re-

ward

V p(st) =
∞∑

i=0

ǫirt+i

= rt + ǫrt+1 + ǫ2rt+2 + · · ·
where 0 ≤ ǫ ≤ 1 is a constant, which defines a trade-off for how much we value

immediate rewards against future rewards.

The intuition for this measure is that, on the whole, we should like our agent to

prefer rewards gained quickly.

332

Measuring the quality of a policy

Other common measures are the average reward

lim
T→∞

1

T

T∑

i=0

rt+i

and the finite horizon reward
T∑

i=0

rt+i

In these notes we will only address the discounted cumulative reward.

333

Two important issues

Note that in this kind of problem we need to address two particularly relevant

issues:

• The temporal credit assignment problem: that is, how do we decide which

specific actions are important in obtaining a reward?

• The exploration/exploitation problem. How do we decide between exploiting

the knowledge we already have, and exploring the environment in order to

possibly obtain new (and more useful) knowledge?

We will see later how to deal with these.

334

The optimal policy

Ultimately, our learner’s aim is to learn the optimal policy

popt(s) = argmax
p

V p(s)

for some initial state s. We will denote the optimal discounted cumulative reward

as

Vopt(s) = V popt(s).

How might we go about learning the optimal policy?

335

Learning the optimal policy

The only information we have during learning is the individual rewards obtained

from the environment.

We could try to learn Vopt(s) directly, so that states can be compared:

Consider s as better than s′ if Vopt(s) > Vopt(s
′).

However we actually want to compare actions, not states. Learning Vopt(s) might

help as

popt(s) = argmax
a

[R(s, a) + ǫVopt(S(s, a))]

but only if we know S andR.

As we are interested in the case where these functions are not known, we need

something slightly different.

336

The Q function

The trick is to define the following function:

Q(s, a) = R(s, a) + ǫVopt(S(s, a))
This function specifies the discounted cumulative reward obtained if you do ac-

tion a in state s and then follow the optimal policy.

As

popt(s) = argmax
a
Q(s, a)

then provided one can learn Q it is not necessary to have knowledge of S and R
to obtain the optimal policy.

337

The Q function

Note also that

Vopt(s) = max
α
Q(s, α)

and so

Q(s, a) = R(s, a) + ǫmax
α
Q(S(s, a), α)

which suggests a simple learning algorithm.

Let Q′ be our learner’s estimate of what the exact Q function is.

That is, in the current scenario Q′ is a table containing the estimated values of

Q(s, a) for all pairs (s, a).

338

Q-learning

Start with all entries in Q′ set to 0. (In fact we will see in a moment that random

entries will do.)

Repeat the following:

1. Look at the current state s and choose an action a. (We will see how to do this

in a moment.)

2. Do the action a and obtain some reward R(s, a).
3. Observe the new state S(s, a).
4. Perform the update

Q′(s, a) = R(s, a) + ǫmax
α

Q′(S(s, a), α)

Note that this can be done in episodes. For example, in learning to play games,

we can play multiple games, each being a single episode.

339

Convergence of Q-learning

This looks as though it might converge!

Note that, if the rewards are at least 0 and we initialise Q′ to 0 then,

∀n, s, a Q′n+1(s, a) ≥ Q′n(s, a)

and

∀n, s, a Q(s, a) ≥ Q′n(s, a) ≥ 0

However, we need to be a bit more rigorous than this...

340

Convergence of Q-learning

If:

1. The agent is operating in an environment that is a deterministic MDP.

2. Rewards are bounded in the sense that there is a constant δ > 0 such that

∀s, a |R(s, a)| < δ

3. All possible pairs s and a are visited infinitely often.

Then the Q-learning algorithm converges, in the sense that

∀a, s Q′n(s, a)→ Q(s, a)
as n→∞.

341

Convergence of Q-learning

This is straightforward to demonstrate.

Using condition 3, take two stretches of time in which all s and a pairs occur:

All s, a occur All s, a occur

Define

ξ(n) = max
s,a
|Q′n(s, a)−Q(s, a)|

the maximum error in Q′ at n.

What happens when Q′n(s, a) is updated to Q′n+1(s, a)?

342

Convergence of Q-learning

We have,

|Q′n+1(s, a)−Q(s, a)|
= |(R(s, a) + ǫmax

α
Q′n(S(s, a), α))− (R(s, a) + ǫmax

α
Q(S(s, a), α))|

= ǫ|max
α

Q′n(S(s, a), α)−max
α
Q(S(s, a), α)|

≤ ǫmax
α
|Q′n(S(s, a), α)−Q(S(s, a), α)|

≤ ǫmax
s,a
|Q′n(s, a)−Q(s, a)|

= ǫξ(n).

Convergence as described follows.

343

Choosing actions to perform

We have not yet answered the question of how to choose actions to perform during

learning.

One approach is to choose actions based on our current estimate Q′. For instance

action chosen in current state s = argmax
a

Q′(s, a).

However we have already noted the trade-off between exploration and exploita-

tion. It makes more sense to:

• Explore during the early stages of training.

• Exploit during the later stages of training.

This seems particularly important in the light of condition 3 of the convergence

proof.

344

Choosing actions to perform

One way in which to choose actions that incorporates these requirements is to

introduce a constant λ and choose actions probabilistically according to

Pr(action a|state s) =
λQ′(s,a)

∑

a λ
Q′(s,a)

Note that:

• If λ is small this promotes exploration.

• If λ is large this promotes exploitation.

We can vary λ as training progresses.

345

Improving the training process

There are two simple ways in which the process can be improved:

1. If training is episodic, we can store the rewards obtained during an episode

and update backwards at the end.

This allows better updating at the expense of requiring more memory.

2. We can remember information about rewards and occasionally re-use it by

re-training.

346

Nondeterministic MDPs

The Q-learning algorithm generalises easily to a more realistic situation, where

the outcomes of actions are probabilistic.

Instead of the functions S and R we have probability distributions

Pr(new state|current state, action)

and

Pr(reward|current state, action).

and we now use S(s, a) and R(s, a) to denote the corresponding random vari-

ables.

We now have

V p = E

(∞∑

i=0

ǫirt+i

)

and the best policy popt maximises V p.

347

Q-learning for nondeterministic MDPs

We now have

Q(s, a) = E(R(s, a)) + ǫ
∑

σ

Pr(σ|s, a)V opt(σ)

= E(R(s, a)) + ǫ
∑

σ

Pr(σ|s, a)max
α
Q(σ, α)

and the rule for learning becomes

Q′n+1 = (1− θn+1)Q
′
n(s, a) + θn+1

[

R(s, a) + max
α

Q′n(S(s, a), α)
]

with

θn+1 =
1

1 + vn+1(s, a)

where vn+1(s, a) is the number of times the pair s and a has been visited so far.

348

Convergence of Q-learning for nondeterministic MDPs

If:

1. The agent is operating in an environment that is a nondeterministic MDP.

2. Rewards are bounded in the sense that there is a constant δ > 0 such that

∀s, a |R(s, a)| < δ

3. All possible pairs s and a are visited infinitely often.

4. ni(s, a) is the ith time that we do action a in state s.

and also...

349

Convergence of Q-learning for nondeterministic MDPs

...we have

0 ≤θn < 1
∞∑

i=1

θni(s,a) =∞
∞∑

i=1

θ2ni(s,a) <∞

then with probability 1 the Q-learning algorithm converges, in the sense that

∀a, s Q′n(s, a)→ Q(s, a)
as n→∞.

350

Alternative representation for the Q′ table

But there’s always a catch...

We have to store the table for Q′:

• Even for quite straightforward problems it is HUGE!!! - certainly big enough

that it can’t be stored.

• A standard approach to this problem is, for example, to represent it as a neural

network.

• One way might be to make s and a the inputs to the network and train it to

produce Q′(s, a) as its output.

This, of course, introduces its own problems, although it has been used very suc-

cessfully in practice.

It might be covered in Artificial Intelligence III, which unfortunately does not yet

exist.

351

A (very) brief introduction into how to learn hyperparameters

So far in our coverage of the Bayesian approach to neural networks, the hyperpa-

rameters α and β were assumed to be known and fixed.

• But this is not a good assumption because...

• ...α corresponds to the width of the prior and β to the noise variance.

• So we really want to learn these from the data as well.

• How can this be done?

We now take a look at one of several ways of addressing this problem.

352

The Bayesian approach to neural networks

Earlier we looked at the Bayesian approach to neural networks using the following

notation. We have:

• A neural network computing a function f(w;x).

• A training sequence s = ((x1, y1), . . . , (xm, ym)), split into

y = (y1 y2 · · · ym)

and

X = (x1 x2 · · · xm)

The prior distribution p(w) is now on the weight vectors and Bayes’ theorem tells

us that

p(w|y) = p(y|w)p(w)

p(y)

In addition we have a Gaussian prior and a likelihood assuming Gaussian noise.

353

The Bayesian approach to neural networks

The prior and likelihood depend on α and β respectively so we now make this

clear and write

p(w|y, α, β) = p(y|w, β)p(w|α)
p(y|α, β)

(Don’t worry about recalling the actual expressions for the prior and likelihood

just yet, they appear in a few slides time.)

In the earlier slides we found that the Bayes classifier should in fact compute

p(Y |y,x, α, β) =
∫

RW
p(y|w,x, β)p(w|y, α, β) dw

and we found an approximation to this integral. (Again, the necessary parts of the

result are repeated later.)

354

Hierarchical Bayes and the evidence

Let’s write down directly something that might be useful to know:

p(α, β|y) = p(y|α, β)p(α, β)
p(y)

If we know p(α, β|y) then a straightforward approach is to use the values for α
and β that maximise it.

Here is a standard trick: assume that the prior p(α, β) is flat, so that we can just

maximise

p(y|α, β)
This is called type II maximum likelihood and is one common way of doing the

job.

As usual there are other ways of handling α and β, some of which are regarded as

more “correct”.

355

Hierarchical Bayes and the evidence

The quantity

p(y|α, β)
is called the evidence.

When we re-wrote our earlier equation for the posterior density of the weights,

making α and β explicit, we found

p(w|y, α, β) = p(y|w, α, β)p(w|α, β)
p(y|α, β)

So the evidence is the denominator in this equation.

This is the common pattern and leads to the idea of hierarchical Bayes: the ev-

idence for the hyperparameters at one level is the denominator in the relevant

application of Bayes theorem.

356

An expression for the evidence

We have already derived everything necessary to write an explicit equation for the

evidence for the case of regression that we’ve been following.

First, as we know about a lot of expressions involving w we can introduce it by

the standard trick of marginalising:

p(y|α, β) =
∫

p(y,w|α, β)dw

=

∫

p(y|w, α, β)p(w|α, β)dw

=

∫

p(y|w, β)p(w|α)dw

where we’ve made the obvious independence simplifications.

The two densities in this integral are just the likelihood and prior we’ve already

studied.

We’ve just conditioned on α and β, which previously were constants but are now

being treated as random variables.

357

An expression for the evidence

Here are the actual expression for the prior and likelihood.

The prior is

p(w|α) = 1

ZW (α)
exp (−αEW (w))

where

ZW (α) =

(
2π

α

)W/2

and EW (w) =
1

2
||w||2

and the likelihood is

p(y|w, β) =
1

Zy(β)
exp (−βEy(w))

where

Zy(β) =

(
2π

β

)m/2

and Ey(w) =
1

2

m∑

i=1

(yi − h(w;xi))
2

Both of these equations have been copied directly from earlier slides: there is

nothing to add.

358

An expression for the evidence

That gives us

p(y|α, β) =
(
2π

α

)−W/2(
2π

β

)−m/2 ∫

exp (−S(w)) dw

where

S(w) = αEW (w) + βEy(w)

This is exactly the integral we first derived an approximation for.

Specifically
∫

exp (−S(w)) dw ≃ (2π)W/2|A|−1/2 exp(−S(wMAP))

where

A = αI + β∇∇Ey(wMAP)

and wMAP is the maximum a posteriori solution.

359

An expression for the evidence

Putting all that together we get an expression for the logarithm of the evidence:

log p(y|α, β) ≃W
2
logα− m

2
log 2π +

m

2
log β

− 1

2
log |A|

− αEW (wMAP)− βEy(wMAP)

Again, we’re using the fact that we want to maximise the evidence and this is

equivalent to maximising its logarithm which turns a product into a more friendly

sum.

360

Maximising the evidence

We want to maximise this, so let’s differentiate it with respect to α and β.

For α
∂ log p(y|α, β)

∂α
=

W

2α
− EW (wMAP)−

1

2

∂ log |A|
∂α

How do we handle the final term? This is straightforward if we can compute the

eigenvalues of A.

Recall that the n eigenvalues λi and n eigenvectors vi of an n × n matrix M are

defined such that

Mvi = λivi for i = 1, . . . , n

and the eigenvectors are orthonormal

vT
i vj =

{
1 if i = j
0 otherwise.

One standard result is that the determinant of a matrix is the product of its eigen-

values.

|M| =
n∏

i=1

λi

361

Maximising the evidence

We have

A = αI + β∇∇Ey(wMAP)

Say the eigenvalues of β∇∇Ey(wMAP) are λi. (These can be computed using

standard numerical algorithms.)

Then the eigenvalues of A are α + λi and

∂ log |A|
∂α

=
∂

∂α

(

log
W∏

i=1

(α + λi)

)

=
∂

∂α

(
W∑

i=1

log(α + λi)

)

=
W∑

i=1

1

α + λi

∂(α + λi)

∂α

This remains tricky because the eigenvalues might be functions of α.

362

Maximising the evidence

To make further progress, assume (sometimes correct, sometimes not!) that the λi

do not depend on α.

In that case

∂ log |A|
∂α

=
W∑

i=1

1

α + λi

= Trace(A−1)

because M−1 has eigenvalues 1/λi and the trace of a matrix is equal to the sum of

its eigenvalues.

Finally, equating the derivative to zero gives:

W

2α
− EW (wMAP)−

1

2
Trace(A−1) = 0

or

α =
1

2EW (wMAP)

(

W −
W∑

i=1

α

α + λi

)

which can be used to update the value for α.

363

Maximising the evidence

We can now repeat the process to obtain an update for β:

∂ log p(y|α, β)
∂β

=
m

2β
− Ey(wMAP)−

1

2

∂ log |A|
∂β

In this case

∂ log |A|
∂β

=
∂

∂β

(
W∑

i=1

log(α + λi)

)

=

W∑

i=1

1

α + λi

∂

∂β
(α + λi)

=
W∑

i=1

1

α + λi

∂λi

∂β

and again we have a potentially tricky derivative.

364

Maximising the evidence

As the λi are the eigenvalues of β∇∇Ey(wMAP) we have

∂λi

∂β
=

λi

β

(can you see why?) so

∂ log |A|
∂β

=
1

β

W∑

i=1

λi

α + λi

Equating the derivative to zero gives

β =
1

2Ey(wMAP)

(

m−
W∑

i=1

λi

α + λi

)

which can be used to update the value for β.

365

Maximising the evidence

Here’s why the derivative works.

Say

M = ∇∇Ey(wMAP)

so we’re interested in ∂λi/∂β when the λi are the eigenvalues of βM. Thus

(βM)vi = λivi

and using the fact that the eigenvectors are orthonormal

βvT
i Mvi = λiv

T
i vi = λi.

So

vT
i Mvi =

λi

β
and

∂λi

∂β
= vT

i Mvi =
λi

β
.

366

Maximising the evidence

Summary:

Define

θt =

W∑

i=1

λi

αt + λi

where the subscript denotes the fact that we’re using the following equations to

periodically update our estimates of α and β.

Collecting the two update equations together we have

αt+1 =
θt

2EW (wMAP)

and

βt+1 =
m− θt

2Ey(wMAP)

367

Maximising the evidence

This suggests a method for the overall learning process:

1. Choose the initial values α0 and β0 at random.

2. Choose an initial weight vector w according to the prior.

3. Use a standard optimisation algorithm to iteratively estimate wMAP.

4. While the optimisation progresses, periodically use the equations above to re-

estimate α and β.

Step 4 requires that we compute an eigendecomposition, which might well be

time-consuming. If necessary we can make a simplification.

When m >> W it is reasonable to expect that θt ≃ W an so we can use

αt+1 =
W

2EW (wMAP)

and

βt+1 =
m

2Ey(wMAP)

368

An alternative: integrate the hyperparameters out

While choosing α and β by maximising the evidence leads to an effective algo-

rithm, it might be argued that a more correct way to deal with these parameters

would be to integrate them out.

p(w|y) =
∫ ∫

p(w, α, β|y)dαdβ.

(Recall the general equation for probabilistic inference where we integrate out

unobserved random variables.)

Re-arranging this we have
∫ ∫

p(w, α, β|y)dαdβ =
1

p(y)

∫ ∫

p(y|w, α, β)p(w, α, β)dαdβ

=
1

p(y)

∫ ∫

p(y|w, α, β)p(w|α, β)p(α, β)dαdβ

=
1

p(y)

∫ ∫

p(y|w, β)p(w|α)p(α)p(β)dαdβ

where we’re assuming α and β are independent.

369

An alternative: integrate the hyperparameters out

In order to continue we need to specify priors on α and β.

On this occasion we have a good reason to choose particular priors, as α and β are

scale parameters.

In general, a scale parameter σ is one that appears in a density of the form

p(x|σ) = 1

σ
f
(x

σ

)

The standard deviation of a Gaussian density is an example.

What happens to this density if we scale x such that x′ = cx?

370

Standard result number 1

We need to recall how to deal with transformations of continuous random vari-

ables.

Say we have a random variable x with probability density px(x).

We then transform x to y = f(x) where f is strictly increasing.

What is the probability density function of y? There is a standard method for

computing this. (See NST maths, or the 1A Probability course.)

py(y) =
px(f

−1(y))

f ′(f−1(y))

371

An alternative: integrate the hyperparameters out

Applying this when x′ = cx we have

f(x) = cx

f−1(x′) =
x′

c
f ′(x) = c

and so

px′(x
′) =

1

cσ
f

(
x′

cσ

)

=
1

σ′
f

(
x′

σ′

)

Thus the transformation leaves the density essentially unchanged, and in particular

we want the densities p(σ) and p(σ′) to be identical.

It turns out that this forces the choice

p(σ) =
c′

σ
.

This is an improper prior and it is conventional to take c′ = 1.

372

Standard result number 2

Returning to the integral of interest

1

p(y)

∫ ∫

p(y|w, β)p(w|α)p(α)p(β)dαdβ

Taking the integral for α first we have
∫

p(w|α)p(α)dα =

∫
1

αZW (α)
exp(−αEW (w))dα

=

∫
1

α

(α

2π

)W/2

exp
(

−α
2
||w||2

)

dα

and to evaluate this we use the following standard result:
∫ ∞

0

xn exp(−ax)dx =
Γ(n + 1)

an+1

where n > −1 and a > 0. So the integral becomes

(2π)−W/2 Γ(W/2)

EW (w)W/2

373

An alternative: integrate the hyperparameters out

Repeating the process for β and using the same standard result we have

∫

p(y|w, β)p(β)dβ =

∫
1

β

(
β

2π

)m/2

exp(−βEy(w))dβ

= (2π)−m/2 Γ(m/2)

Ey(w)m/2

Combining the two expression we obtain

− log p(w|y) = − log

(
1

p(y)
(2π)−W/2 Γ(W/2)

EW (w)W/2
(2π)−m/2 Γ(m/2)

Ey(w)m/2

)

=
W

2
logEW (w) +

m

2
logEy(w) + constant

and we want to minimise this so we need

W

2

1

EW (w)

∂EW (w)

∂w
+
m

2

1

Ey(w)

∂Ey(w)

∂w
= 0

374

An alternative: integrate the hyperparameters out

The actual value for the evidence is

− log p(w|y) = − log

(
1

p(y)

1

Zy(α, β)
exp(−(αEW (w) + βEy(w)))

)

= αEW (w) + βEy(w) + constant

and we want to minimise this so we need

α
∂EW (w)

∂w
+ β

∂Ey(w)

∂w
= 0

This should make us VERY VERY HAPPY because if we equate the two boxed

equations we get

α =
W

2EW (w)

and

β =
m

2Ey(w)

and so the result for integrating out the hyperparameters agrees with the result for

optimising the evidence.

375

