15/09/15

Concurrent systems

Lecture 5: Concurrency without
shared data; transactions

Dr Robert N. M. Watson

Reminder from last time

* Liveness properties

* Deadlock (requirements; resource allocation
graphs; detection; prevention; recovery)

Concurrency is so hard!

If only there were some way that programmers could
accomplish useful concurrent computation without...

(1) the hassles of shared memory concurrency
(2) blocking synchronisation primitives




This time

* Concurrency without shared data
— Active objects

* Message passing; the actor model

— Linda, occam, Erlang

* Composite operations
— Transactions, ACID properties
— Isolation and serialisability

This material has significant overlap with databases and distributed

systems — but is presented here from a concurrency perspective

Concurrency without shared data

* The examples so far have involved threads which
can arbitrarily read & write shared data

— A key need for mutual exclusion has been to avoid
race-conditions (i.e. ‘collisions’ on access to this data)

* An alternative approach is to have only one
thread access any particular piece of data

— Different threads can own distinct chunks of data

e Retain concurrency by allowing other threads to
ask for operations to be done on their behalf

— This ‘asking’ of course needs to be concurrency safe...

Fundamental design dimension: concurrent access via

shared data vs. concurrent access via explicit communication

15/09/15



15/09/15

Example: Active Objects

* A monitor with an associated server thread
— Exports an entry for each operation it provides
— Other (client) threads ‘call’ methods
— Call returns when operation is done

* All complexity bundled up in active object
— Must manage mutual exclusion where needed
— Must queue requests from multiple threads

— May need to delay requests pending conditions
e E.g. if a producer wants to insert but buffer is full

Observation: code running in exactly one thread, and the data only

it accesses, experience protection similar to mutual exclusion

Producer-Consumer in Ada

task-body ProducercConsumer is

. Clause is active only
Toop when condition is true
SELECT
when count < buffer-size
ACCEPT insert(item) do

// insert item into buffer

ACCEPT dequeues a
client request and
performs the operation

end;
count++;
or Single thread: no need
when count > 0 for mutual exclusion

ACCEPT consume(item) do
// remove item from buffer

end; _ Non-deterministic choice
(Cjount-— ’ between a set of
end SELECT guarded ACCEPT clauses
end Toop




Message Eassing

* Dynamic invocations between threads can be thought
of as general message passing

— Thread X can send a message to Thread Y
— Contents of message can be arbitrary data

e Can be used to build Remote Procedure Call (RPC)

— Message includes name of operation to invoke along with
as any parameters

— Receiving thread checks operation name, and invokes the
relevant code

— Return value(s) sent back as another message
* (Called Remote Method Invocation (RMI) in Java)

We will discuss message passing and RPC in detail next term; a taster

now, as these ideas apply to local, not just distributed, systems.

Message Qassing semantics

e Can conceptually view sending a message to be
similar to sending an email:

1. Sender prepares contents locally, and then sends
2. System eventually delivers a copy to receiver
3. Receiver checks for messages

* In this model, sending is asynchronous:
— Sender doesn’t need to wait for message delivery
— (but he may, of course, choose to wait for a reply)
* Receiving is also asynchronous:
— messages first delivered to a mailbox, later retrieved
— message is a copy of the data (i.e. no actual sharing)

15/09/15



I\/Iessage Eassing adva ntages

Copy semantics avoid race conditions
— At least directly on the data

Flexible API: e.g.

— Batching: can send K messages before waiting; and
can similarly batch a set of replies.

— Scheduling: can choose when to receive, who to
receive from, and which messages to prioritize

— Broadcast: can send messages to many recipients
Works both within and between machines
— i.e. same design works for distributed systems

Explicitly used as basis of some languages...

Example: Linda

Concurrent programming language based on the
abstraction of the tuple space

— A [distributed] shared store which holds variable
length typed tuples, e.g. “(‘tag’, 17, 2.34, ‘foo’)”

— Allows asynchronous “pub sub” messaging

Processes can create new tuples, read tuples, or
read-and-remove tuples
out(<tuple>); // publishes tuple in TS

t rd(<pattern>); // reads a tuple matching pattern
t in(<pattern>); // as above, but removes tuple

Weird... and difficult to implement efficiently

10

15/09/15



ExamEIe: occam

* Language based on Hoare’s Communicating Sequential
Processes (CSP) formalism
— A “process algebra” for modeling concurrency

* Processes synchronously communicate via channels

<channel> ? <variable> // an input process
<channel> ! <expression> // an output process

* Build complex processes via SEQ, PAR and ALT, e.g.

ALT
countl < 100 & cl ? Data
SEQ
countl:= countl + 1
merged ! data
count2 < 100 & c2 ? Data

SEQ
count2:= count2 + 1
merged ! data 11

Example: Erlang

* Functional programming language designed in
mid 80’s, made popular more recently

* Implements the actor model
* Actors: lightweight language-level processes
— Can spawn() new processes very cheaply

* Single-assignment: each variable is assigned only
once, and thereafter is immutable

— But values can be sent to other processes

* Guarded receives (as in Ada, occam)
— Messages delivered in order to local mailbox

Proponents of Erlang argue that lack of synchronous message

passing prevents deadlock. Why might this claim be misleading?

15/09/15



Producer-Consumer in ErIang

-module(producerconsumer) .

-export([start/0]). Invoking start() will
spawn an actor...

start() ->

spawn(fun() -> Toop() end).
receive matches

Toop() -> messages to patterns
receive

{produce, item } -> explicit tail-recursion is
enter_item(item), required to keep the
Toop(Q); actor alive...

{consume, Pid } ->

Pid ! remove_item(), ... so if send ‘stop’,
Toop(); process will terminate.

stop ->
ok

end.

13

Message Eassing: summary

* A way of sidestepping (at least some of) the
issues with shared memory concurrency

— No direct access to data => no race conditions
— Threads choose actions based on message

* Explicit message passing can be awkward
— Many weird and wonderful languages ;-)

* Can also use with traditional languages, e.g.
— Transparent messaging via RPC/RMI
— Scala, Kilim (actors on Java, or for Java), ...

Although we have eliminated some of the issues associated with shared memory (at a

cost), these are still concurrent programs potentially subject to deadlock, livelock, etc.

15/09/15



Comgosite ogerations

* So far have seen various ways to ensure safe
concurrent access to a single object

— e.g. monitors, active objects, message passing
* More generally want to handle composite operations:
— i.e. build systems which act on multiple distinct objects

* As an example, imagine an internal bank system which
allows account access via three method calls:

int amount = getBalance(account);
bool credit(account, amount);
bool debit(account, amount);

* |f each is thread-safe, is this sufficient?
* Or are we going to get into trouble???

15

Comgosite oEerations

e Consider two concurrently executing client threads:

— One wishes to transfer 100 quid from the savings account
to the current account

— The other wishes to learn the combined balance

// thread 1: transfer 100 // thread 2: check balance

// from savings->current s = getBalance(savings);
debit(savings, 100); c = getBalance(current);
credit(current, 100); tot = s + C;

* If we're unlucky then:
— Thread 2 could see balance that’s too small
— Thread 1 could crash after doing debit() — ouch!
— Server thread could crash at any point — ouch?

16

15/09/15



Problems with composite operations

Two separate kinds of problem here:

1. Insufficient Isolation
* Individual operations being atomic is not enough
* e.g. want the credit & debit making up the transfer to
happen as one operation
» Could fix this particular example with a new transfer()
method, but not very general ...
2. Fault Tolerance
* In the real-word, programs (or systems) can fail
* Need to make sure we can recover safely

17

Transactions

* Want programmer to be able to specify that a set of
operations should happen atomically, e.g.

// transfer amt from A -> B
transaction {
if (getBalance(A) > amt) {
debit(A, amt);
credit(B, amt);
return true;
} else return false;

}

e Atransaction either executes correctly (in which case
we say it commits), or has no effect at all (i.e. it aborts)

* regardless of other transactions, or system crashes!

18

15/09/15



ACID Properties

Want committed transactions to satisfy four properties:

e Atomicity: either all or none of the transaction’s operations
are performed

— Programmer doesn’t need to worry about clean up

e Consistency: a transaction transforms the system from one
consistent state to another

— Programmer must ensure e.g. conservation of money

* |solation: each transaction executes [as if] isolated from
the concurrent effects of others

— Can ignore concurrent transactions (or partial updates)

* Durability: the effects of committed transactions survive
subseguent system failures

— If system reports success, must ensure this is recorded on disk
This is a different use of the word “atomic” than previously;
we will just have to live with that, unfortunately.

ACID Properties

Can group these into two categories

1. Atomicity & Durability deal with making sure the
system is safe even across failures
— (A) No partially complete txactions

— (D) Transactions previously reported as committed
don’t disappear, even after a system crash

2. Consistency & Isolation ensure correct behavior
even in the face of concurrency

— (C) Can always code as if invariants in place
— (I) Concurrently executing transactions are indivisible

20

15/09/15

10



Isolation

e To ensure a transaction executes in isolation
could just have a server-wide lock... simple!

// transfer amt from A -> B
transaction { // acquire server lock
if (getBalance(A) > amt) {

debit(A, amt);

credit(B, amt);

return true;

} else return false;

} // release server lock

* But doesn’t allow any concurrency...

* And doesn’t handle mid-transaction failure
(e.g. what if we are unable to credit the amount to B?)

21

Isolation — serialisability

* The idea of executing transactions serially (one
after the other) is a useful model
— We want to run transactions concurrently
— But the result should be as if they ran serially

e Consider two transactions, T1 and T2

T1l transaction { T2 transaction {
s = getBalance(S); debit(s, 100);
c = getBalance(C); credit(c, 100);
return (s + c); return true;

} }

* If assume individual operations are atomic, then there
are six possible ways the operations can interleave...

22

15/09/15

11



Conflict Serialisability

* There are many flavours of serialisability
 Conflict serialisability is satisfied for a schedule S
if (and only if):

— it contains the same set of actions as some serial
schedule T; and

— all conflicting operations are ordered the same way
asinT

* Define conflicting as non-commutative

— l.e., differences are permitted between the execution
ordering and T, they can’t have a visible impact

Isolation — serialisability

T1:§ S.getBalance C.getBalance >
TZ:S S.debit C.credit
T1 S.getBalance C.getBalance
- >

* First case is serial and, as expected, all ok

* Second case is not serial ... but result is fine
— Both of T1’s operations happen after T2’s update
— This is a serialisable schedule [as is first case]

* Under conflict serialisability, this is fine as we’ve
swapped the execution of non-conflicting operations

24

15/09/15

12



Isolation — serialisability

T1:: S.getBalance C.getBalance
T2:: S.debit C.credit >
Tl S.getBalance C.getBalance >
r2: — | Coredit _pud

* Neither of these two executions is ok

* T1 sees inconsistent values:
— (top) sees updated version of C, but old version of S
— (bottom) sees updated S, but original version of C

* Both orderings swap conflicting operations such that
there is no matching serial execution

25

Summary + next time

* Concurrency without shared data (Active Objects)
* Message passing, actor model (Linda, occam, Erlang)

* Composite operations; transactions; ACID properties;
isolation and serialisability

* Next time — more on transactions:
— History graphs; good (and bad) schedules
— Isolation vs. strict isolation; enforcing isolation
— Two-phase locking; rollback

— Timestamp ordering (TSO); optimistic concurrency control
(OCC)

— Isolation and concurrency summary

26

15/09/15

13



