16/09/15

Concurrent systems

Lecture 2: More mutual exclusion, semaphores,
producer-consumer, and MRSW

Dr Robert N. M. Watson

Reminder from last time

* Definition of a concurrent system
* Origins of concurrency within a computer
* Processes and threads

e Challenge: concurrent access to shared
resources

* Mutual exclusion, race conditions, and
atomicity

e Mutual exclusion locks (mutexes)

16/09/15

From last time: beer-buying example

 Thread 1 (person 1) Thread 2 (person 2)

1. Lookin fridge 1. Lookin fridge

2. If no beer, go buy 2. If no beer, go buy
beer beer

3. Put beerin fridge 3. Put beerin fridge

* In most cases, this works just fine...

We spotted race conditions in obvious concurrent implementations

Ad hoc solutions (e.g., leaving a note) failed
Even naive application of atomic operations failed
What we want is a general solution for mutual exclusion

This time

* Implementing mutual exclusion

* Hardware support for atomicity, condition
synchronisation

* Semaphores for mutual exclusion, condition
synchronisation, and resource allocation

* Two-party and generalised producer-
consumer relationships

* Multi-Reader Single-Writer (MRSW) locks

Imglementing mutual exclusion

e Associate a mutual exclusion lock with each
critical section, e.g. a variable L
— (must ensure use correct lock variable!)

ENTER_CS() = “LOCK(L)”
LEAVE_CS() = “UNLOCK(L)”

e Can implement LOCK() using read-and-set():

Lock(L) { UNLOCK(L) {
while(!read-and-set(L)) L = 0;
; // do nothing }

}

Hardware foundations for atomicity

* How can we implement atomic read-and-set?

e Simple pair of load and store instructions fail
the atomicity test (obviously divisible!)

Need a ISA primitive for protection against
parallel access to memory from another CPU

Two common flavours:
— Atomic Compare and Swap (CAS)
— Load Linked, Store Conditional (LL/SC)

16/09/15

Atomic Compare and Swap (CAS

* Found on CISC systems such as x86

e Atomic Test and Set (TAS) another variation

* Caller provides previous value as argument

* If memory contents match, assignment occurs
* Return value can be tested to trigger loop

mov %edx, 1 # New value

spin:
mov foo_lock, %eax # Load old value
test %eax, %eax # If non-zero (owned),
jnz spin # loop
Tock cmpxchg %edx, foo_Tlock # If foo_lock == %eax,
test %eax, xeax # swap 1n value from
jnz spin # %edx; else loop

Load Linked-Store Conditional (LL/SC)

* Found on RISC systems (MIPS, Alpha, ARM, ...)
— Load value from memory location with LL
— Manipulate value in register
— SC fails if memory location modified since LL
— Return value can be checked; loop on failure

* Foundation for a more general technique seeing early
deployment: Software Transactional Memory (STM)

spin:
11d $t0, 0(%$a0) # Load old value
bnez $t0, spin # If non-zero (owned), Tloop
d14 $t0, 1 # New value (branch-delay slot)
scd $t0, 0(%$a0) # Cconditional store to $%$a0
begz $t0, spin # If failed ($t0 zero), Tloop
nop # Branch-delay slot

16/09/15

Locks and invariants

* One important goal of locking is to avoid exposing
inconsistent intermediate states to other threads
* This suggests a more general invariants strategy:
— Invariants hold when lock is acquired
— Invariants may be violated while lock is held
— Invariants must be restored before lock is released

* E.g., deletion from a doubly linked list
— Invariant: an entry is in the list, or not in the list

— Individually non-atomic updates of forward and backward
pointers around a deleted object are fine as long as the
lock isn’t released in between the two pointer writes

Semaphores

* Even with atomic operations, busy waiting for
a lock is inefficient...

— Better to sleep until resource available

e Dijkstra (THE, 1968) proposed semaphores
— New type of variable
— Initialized once to an integer value (default 0)

e Supports two operations: wait() and signal()
— Sometimes called down() and up()
— (and originally called P() and V() ... blurk!)

10

16/09/15

Semaphore implementation

* Implemented as an integer and a queue

wait(sem) {
if(sem > 0) {
sem = sem-1;
} else suspend caller & add to queue for sem

}

signal(sem) {
if no threads are waiting {
sem = sem + 1;
} else wake up some thread on queue

}

* Method bodies are implemented atomically
* “suspend” and “wake” invoke threading APlIs

11

Hardware support for wakeups

CAS/LLSC/... support atomicity via shared memory

But what about “wake up thread”?
— On asingle CPU, wakeup triggers context switch

— How to wake up a thread on another CPU that is already
busy doing something else?

Inter-Processor Interrupts (IPls)
— Wakeup sends an interrupt to the target CPU

— IPI handler runs thread scheduler, preempts running
thread, triggers context switch

Together, shared memory and IPIs provide atomicity
and condition synchronisation between CPUs

12

16/09/15

Mutual exclusion with a semaphore

aSem A B C
=
EE—' wait (aSem)
[0]1-g waitl(aSem)

CS B blocked
IIE—’ B,C wait (pSem)
i C blocked
[0])~¢ signal (qSem)
CS
EE-’ signall (aSem)
CS
! signal (gSem)
v v I

* Initialize semaphore to 1; wait() is lock(), signal() is unlock()

13

Two-process synch ronization

wait before signal signal before wait
A B A B
asem asem
m wait|(aSem)
A ! signall (aSem)
A blocked; “wake-up waiting”
. it (aSem)
signall (aSem) wai
EE—' EE_. A continues
A continues
v v v v

 Initialize semaphore to 0; A proceeds only after B signals

14

16/09/15

N-resource allocation

e Suppose there are N instances of a resource
— e.g. N printers attached to a DTP system
e Can manage allocation with a semaphore sem,
initialized to N
— Anyone wanting printer does wait(sem)
— After N people get a printer, next will sleep

— To release resource, signal(sem)
* Will wake someone if anyone is waiting

* Will typically also require mutual exclusion
— e.g. to decide which printers are free

15

Semaphore programming examples

* Semaphores are quite powerful
— Can solve mutual exclusion...

— Can also provide condition synchronization

* Thread waits until some condition set by another thread
becomes true

* Let’s look at some examples:

1. One producer thread, one consumer thread, with a
N-slot shared memory buffer

2. Any number of producer and consumer threads,
again using an N-slot shared memory buffer

3. Multiple reader, single writer synchronization

16

16/09/15

Producer-consumer Eroblem

e Shared buffer B[] with N slots, initially empty
* Producer thread wants to:

— Produce an item

— If there’s room, insert into next slot;

— Otherwise, wait until there is room

e Consumer thread wants to:

— If there’s anything in buffer, remove an item (and
consume it)

— Otherwise, wait until there is something

* General concurrent programming paradigm
— e.g. pipelines in Unix; staged servers; work stealing

17

Producer-consumer solution

int buffer[N]; int in = 0, out = O;

spaces = new Semaphore(N);
items = new Semaphore(0);
// producer thread // consumer thread
while(true) { while(true) {
item = produce(); if there is an item {
if there 1is space { item = buffer[out];
buffer[in] = item; out = (out + 1) % N;
in = (in + 1) % N; }
} consume(item);
} }
buffer

N-1

18

16/09/15

Producer-consumer solution

int buffer[N]; int in = 0, out = 0;
spaces = new Semaphore(N);

items = new Semaphore(0);
// producer thread // consumer thread
while(true) { while(true) {
item = produce(); wait(items);
wait(spaces); 1tem = buffer[out];
buffer[in] = item; out = (out + 1) % N;
in = (in + 1) % N; signal (spaces);
signal (items); consume(item);
h }
buffer
0 N-1

19

Producer-consumer solution

* Use of semaphores for N-resource allocation
— In this case, “resource” is a slot in the buffer
— “spaces” allocates empty slots (for producer)
— “items” allocates full slots (for consumer)

* No explicit mutual exclusion

— Threads will never try to access the same slot at
the same time; if “in == out” then either
 buffer is empty (and consumer will sleep on ‘items’), or
 buffer is full (and producer will sleep on ‘spaces’)

20

16/09/15

10

Generalized Qroducer—consumer

* Previously had exactly one producer thread,
and exactly one consumer thread

* More generally might have many threads
adding items, and many removing them

* |f so, we do need explicit mutual exclusion

— e.g. to prevent two consumers from trying to
remove (and consume) the same item

* Can implement with one more semaphore...

21

Generalized P-C solution

int buffer[N]; int in = 0, out = O;

spaces = new Semaphore(N);
items = new Semaphore(0);
guard = new Semaphore(l); // for mutual exclusion
// producer threads // consumer threads
while(true) { while(true) {
item = produce(); wait(items);
wait(spaces); wait(guard);
wait(guard); item = buffer[out];
buffer[in] = item; out = (out + 1) % N;
in = (in + 1) % N; signal (guard) ;
signal (guard); signal (spaces);
signal (items); consume (item);
} }

» Exercise: allow 1 producer and 1 consumer concurrent access

22

16/09/15

11

Multiple-Readers Single-Writer (MRSW)

* Another common paradigm is MRSW

— Shared resource accessed by a set of threads
* e.g. cached set of DNS results

— Safe for many threads to read simultaneously, but a
writer (updating) must have exclusive access

— Mutual exclusion vs. data stability

* Simplest solution uses a single semaphore as a
mutual exclusion lock for write access
— Any writer must wait to acquire this
— First reader also acquires this; last reader releases it
— Manage reader counts using another semaphore

23

Simplest MRSW solution

int nr = 0; // number of readers
rSem = new Semaphore(l); // protects access to nr
wSem = new Semaphore(l); // protects access to data
// a writer thread // a reader thread
wait(wSem) ; wait(rsem);
. perform update to data nr = nr + 1;
signal (wSem) ; if (nr == 1) // first 1in
wait(wSem) ;
signal (rSem);
. read data
wait(rsem);

nr = nr - 1;
if (nr == 0) // last out

signal (wSem) ;
signal (rsem) ;

24

16/09/15

12

Simplest MRSW solution

* Solution on previous slide is “correct”

— Only one writer will be able to access data
structure, but — providing there is no writer —any
number of readers can access it

e However writers can starve

— If readers continue to arrive, a writer might wait
forever (since readers will not release wSem)

— Would be fairer if a writer only had to wait for all
current readers to exit...

— Can implement this with an additional semaphore

25

A fairer MRSW solution

int nr = 0; // number of readers
rSem = new Semaphore(l); // protects access to nr
wSem = new Semaphore(l); // protects access to data
turn = new Semaphore(l); // for more fairness!
// a reader thread
 wait(turn);
4/,,,:222?” signal (turn);
wait(rsem);
nr = nr + 1;
if (hr == 1) // first in
wait(wSem) ;
signal (rSem);
'/ a writer thread .. read data
wait(turn); wait(rSem) ;
wait(wsem); nr = nr - 1;
. perform update to data if (nr == 0) // Tlast out
signal(turn); signal(wSem) ;
signal (wSem) ; signal(rsem); 26

16/09/15

13

Semaghores: summary

* Powerful abstraction for implementing
concurrency control:

— mutual exclusion & condition synchronization
e Better than read-and-set()... but correct use
requires considerable care

— e.g. forget to wait(), can corrupt data
— e.g. forget to signal(), can lead to infinite delay
— generally get more complex as add more semaphores

e Used internally in some OSes and libraries, but
generally deprecated for other mechanisms...

27

Summary + next time

* Implementing mutual exclusion
* Hardware support for atomicity, condition synchronisation

* Semaphores for mutual exclusion, condition
synchronisation, and resource allocation

* Two-party and generalised producer-consumer
relationships

e Multi-Reader Single-Writer (MRSW) locks

* Next time:
— Conditional critical regions (CCRs); Monitors
— Condition variables; signal-and-wait vs. signal-and-continue
— Concurrency in practice; concurrency primitives wrap-up

28

16/09/15

14

