Distributed systems

Lecture 1: Introduction to distributed systems; RPC

Lent 2016

Dr Robert N. M. Watson
(With thanks to Dr Steven Hand)

Recommended Reading

« “Distributed Systems: Concepts and Design”, (5" Ed)
Coulouris et al, Addison-Wesley 2012

» “Distributed Systems: Principles and Paradigms”
(2" Ed), Tannenbaum et al, Prentice Hall, 2006

» “Operating Systems, Concurrent and Distributed
S/W Design“, Bacon & Harris, Addison-Wesley 2003

2

— or “Concurrent Systems”, (2" Ed), Jean Bacon,
Addison-Wesley 1997

What are Distributed Systems?

* A set of discrete computers (“nodes”) that
cooperate to perform a computation

— Operates “as if” it were a single computing system

* Examples include:
— Compute clusters (e.g. CERN, HPCF)
— BOINC (aka SETI@Home and friends)
— Distributed storage systems (e.g. NFS, Dropbox, ...)
— The Web (client/server; CDNs; and back-end too!)
— Peer-to-peer systems such as Tor
— Vehicles, factories, buildings (?)

Concurrent systems reminder

* Foundations of concurrency: processor(s), ISAs, threads
* Mutual exclusion: locks, semaphores, monitors, etc.

* Producer-consumer, active objects, message passing

* Races, deadlock, livelock, starvation, priority inversion
e Transactions, ACID, isolation, serialisability, schedules

* 2-phase locking, rollback, time-stamp ordering (TSO),
optimistic concurrency control (OCC)

e Durability, write-ahead logging, crash recovery
* Lock-free algorithms, transactional memory

e Operating-system case study
These problems were not difficult enough — distributed systems add:

loss of global visibility; loss of global ordering; new failure modes

Distributed Systems: Advantages

e Scale and performance
— Cheaper to buy 100 PCs than a supercomputer...
— ... and easier to incrementally scale up too!

e Sharing and Communication

— Allow access to shared resources (e.g. a printer) and
information (e.g. distributed FS or DBMS)

— Enable explicit communication between machines
(e.g. EDI, CDNs) or people (e.g. email, twitter)
* Reliability
— Can hopefully continue to operate even if some parts
of the system are inaccessible, or simply crash

Distributed Systems: Challenges

e Distributed Systems are Concurrent Systems

— Need to coordinate independent execution at
each node (c/f first part of course)

* Failure of any components (nodes, network)
— At any time, for any reason
* Network delays
— Can’t distinguish congestion from crash/partition
* No global time
— Tricky to coordinate, or even agree on ordering!

Middleware

What you
actually

wanted to - -
do! Distributed applications

Machine A Machine B Machine B

E.g., Java
I N R RMI

Middleware services 5

E.g.,
TCP/IP,

Ethernet

Local
network/OS
services

Local
network/OS
services

Kernel

|

|

Toel E.g., Java
network/OS runtime
services

E.g.,
Linux,
BSD,

Windows

* Middleware helps application authors write software
intended to run on more than one machine at a time. ,

Transparency & Middleware

* Recall a distributed system should appear “as if”
it were executing on a single computer
* We often call this transparency:
— User is unaware of multiple machines
— Programmer is unaware of multiple machines
* How “unaware” can vary quite a bit

— e.g. web user aware that there’s network
communication ... but not the number or location of
the machines involved

— e.g. programmer may explicitly code communication,

or may have layers of abstraction: middleware

Classical types of Transparency

Transparency Description

Access Hide differencesin data representation and how a resource
is accessed

Location Hide where a resource is located

Migration Hide that a resource may move to another location

Relocation Hide that a resource may be moved to another location
while in use

I Hide that a resource may be provided by multiple

Replication cooperating systems
Hide that a resource may be simultaneously shared by

Concurrency several competitive users

Failure Hide the failure and recovery of a resource

Persistence Hide whether a (software) resource is in memory or on disk

Scalability increasingly important — “performance transparency”?

In this Course

* We will look at techniques, protocols &
algorithms used in distributed systems

— in many cases, these will be provided for you by a
middleware software suite

— but knowing how things work will still be useful!
e Assume OS & networking support

— processes, threads, synchronization
— basic communication via messages

— (will see later how assumptions about messages will
influence the systems we [can] build)

e Let’s start with a simple client-server systems

10

Client-Server Model

* 1970s: development of Local Area Networks (LANSs)

e 1980s: standard deployment involves small number of
servers, plus many workstations
— Servers: always-on, powerful machines
— Workstations: personal computers

* Workstations request ‘service’ from servers over the
network, e.g. access to a shared file-system:

File server
Client 1 Client 2 &= | Disks on which
shared file system
Request Reply = | is stored
Network 11

Request-Reply Protocols

e Basic scheme:

— Client issues a request message

— Server performs operation, and sends reply
e Simplest version is synchronous:

— client blocks awaiting reply
* Example: HTTP 1.0

— Client (browser) sends “GET /index.html”

— Web server fetches file and returns it

— Browser displays HTML web page

* Later we will talk about asynchronous models:
— Clients can continue work without blocking awaiting reply

12

Handling Errors & Failures

Errors are application-level things => easy ;-)
— E.g. client requests non-existent web page

— Need special reply (e.g. “404 Not Found”)
Failures are system-level things, e.g.:

— lost message, client/server crash, network down,...

* To handle failure, client must timeout if it
doesn’t receive a reply within a certain time T
— On timeout, client can retry request
— (Q: what should we set T to?)

13

Retry Semantics

* Client could timeout because:
1. Request was lost
2. Request was sent, but server crashed on receipt

3. Request was sent & received, and server performed operation
(or some of it?), but crashed before replying

4. Request was sent & received, and server performed operation
correctly, and sent reply ... which was then lost

5. As #4, but reply has just been delayed for longer than T

* Forread-only stateless requests (like HTTP GET), can retry
in all cases, but what if request was an order with Amazon?

— In case #1, we probably want to re-order... and in case #5 we
want to wait for a little bit longer, and otherwise we ... erm?

* Worse: we don’t know what case it actually was!

14

ldeal Semantics

 What we want is exactly-once semantics:

— Our request occurs once no matter how many times
we retry (or if the network duplicates our messages)

* E.g.add a unique ID to every request
— Server remembers IDs, and associated responses
— If sees a duplicate, just returns old response
— Client ignores duplicate responses

* Pretty tricky to ensure exactly-once in practice
— e.g. if server explodes ;-)

15

Practical Semantics

* In practice, protocols guarantee one of:

* All-or-nothing (atomic) semantics Server state
— Use scheme on previous page; persistent log required to
— (similar idea to transaction processing). SUppress

retries

At-most-once semantics
— Request carried out once, or not at all

— If no reply, we don’t know which outcome it was
— e.g. send one request; give up on timeout Server state
At-least-once semantics not required

— Retry on timeout; risk operation occurring again
— Ok if the operation is read-only, or idempotent
Note: Assumption of no network duplication

_—

16

Remote Procedure Call (RPC)

* Request/response protocols are useful — and widely
used — but rather clunky to use

— e.g. need to define the set of requests, including how they
are represented in network messages

* A nicer abstraction is Remote Procedure Call (RPC)
— Programmer simply invokes a procedure...
— ...but it executes on a remote machine (the server)

— RPC subsystem handles message formats, sending &
receiving, handling timeouts, etc

* Aim is to make distribution (mostly) transparent
— Certain failure cases wouldn’t happen locally
— Distributed and local function call performance different

17

Marshalling Arguments

 RPCisintegrated with the programming language
— Some additional magic to specify things are remote

* RPC layer marshals parameters to the call, as well
as any return value(s), e.g.

Caller RPC Service RPC Service Remote
| 1) Marshal args 3) Send Function
l/ 2) Generate ID message /1
4) Start timer —— | 5) Unmarshalargs |
call(C.) 6) Record ID fun(.)
8) Send 7) Marshal
l\ 10) Unmarshal reply return vaIuesv\~
-—
T returnvalues 9) Set timer I
11) Acknowledge |- --_- 5

18

IDLs and Stubs

* To marshal, the RPC layer (on both sides!) must know:
— how many arguments the procedure has,
— how many results are expected, and
— the types of all of the above
* The programmer must specify this by describing thingsin
an Interface Definition Language (IDL)

— In higher-level languages, this may already be included as
standard (e.g. C#, Java)

— In others (e.g. C), IDL is part of the middleware
* The RPC layer can then automatically generate stubs
— Small pieces of code at client and server (see previous)

— May also provide authentication, encryption
— Provides integrity, confidentiality

19

Example: SunRPC

e Developed mid 80’s for Sun Unix systems

* Simple request/response protocol:
— Server registers one or more “programs” (services)

— Client issues requests to invoke specific procedures within
a specific service

* Messages can be sent over any transport protocol
(most commonly UDP/IP and later TCP/IP)

— Requests have a unique transaction ID that can be used to
detect & handle retransmissions

— At-least-once semantics
— Various types of access transparency including byte-order

20

XDR: External Data Representation

* SunRPC used XDR for describing interfaces:

// file: test.x
program test {
version testver {

int get(getargs) 1; // procedure number

int put(putargs) 2; // procedure number
} =1; // version number
} = 0x12345678; // program number

* rpcgen generates [un]marshaling code, stubs
* Single arguments... but recursively convert values
* Some support for following pointers too

e Data on the wire always in big-endian format (oops!)

21

Using SunRPC

1. Write XDR, and use rpcgen to generate skeleton code
2. Fillin blanks (i.e. write client/server parts), compile code
3. Runserver program & register with portmapper (now:
rpcbind)
— Mappings from { prog#, ver#, proto } -> port
— (on Linux/UNIX, try “/usr/sbin/rpcinfo-p”)
— Portmapper is itself an RPC service on a well-known port
4. Server process will then listen(), awaiting clients
5. When a client starts, client stub calls clnt_create()

— Sends { prog#, ver#, proto } to portmapper on server, receives
appropriate port number to use for actual RPC connection

— Client invokes remote procedures as needed
6. Recently: GSS authentication/encryption —e.g., Kerberos

22

Summary + next time

e About this course

* Advantages and challenges of distributed systems
* Types of transparency (+scalability)
 Middleware, the client-server model

* Errors and retry semantics

* RPC, marshalling, SunRPC, and XDR

e Sun’s Network File System (NFS)
* Object-Oriented Middleware (OOM)

23

