
Distributed	systems
Lecture	5:	Consistent	cuts,	process	groups,	and	mutual	exclusion

Dr Robert	N.	M.	Watson

1



Last	time
• Saw	physical	time	can’t	be	kept	exactly	in	sync;	instead	use	

logical	clocks to	track	ordering	between	events:
– Defined	a→ b to	mean	‘a happens-before	b’
– Easy	inside	single	process,	&	use	causal	ordering

(send→ receive)	to	extend	relation	across	processes
– if	sendi(m1)	→ sendj(m2)	then	deliverk(m1)	→ deliverk(m2)

• Lamport	clocks,	L(e):	an	integer
– Increment	to	(max of	(sender,	receiver))	+	1	on	receipt
– But	given	L(a) <	L(b),	know	nothing	about	order	of	a and	b

• Vector	clocks:	 list	of	Lamport	clocks,	one	per	process
– Element	Vi[j] captures	#events	at	Pj observed	by	Pi
– Crucially:	 if	Vi(a)	<	Vj(b),	can	infer	that	a→ b ,	and

if	Vi(a)	~	Vj(b),	can	infer	that	a	~	b

2



Vector	clocks:	example

• When	P2 receives	m1,	it	merges the	entries	from	P1’s	clock
– choose	the	maximum	value	in	each	position

• Similarly	when	P3 receives	m2,	it	merges	in	P2’s	clock
– this	incorporates	the	changes	from	P1 that	P2 already	saw

• Vector	clocks	explicitly	 track	the	transitive	causal	order:	f’s
timestamp	captures	the	history	of	a,	b,	c &	d

3

P1

P2 physical	time

P3

a b

e f

c d

(1,0,0)

m1

m2

(2,0,0)

(2,1,0) (2,2,0)

(0,0,1) (2,2,2)

Send	event

Receive	event



Consistent	global	state
• We	have	the	notion	of		“a happens-before	b” (a→ b)	or	
“a is	concurrent	with	b”	(a ~	b)

• What	about	‘instantaneous’	system-wide	state?
– distributed	debugging,	GC,	deadlock	detection,	 ...

• Chandy/Lamport introduced	consistent	cuts:
– draw	a	(possibly	wiggly)	line	across	all	processes
– this	is	a	consistent	cut	if	the	set	of	events	(on	the	lhs)	is	
closed	under	the	happens-before	 relationship

– i.e.	if	the	cut	includes	event	x,	then	 it	also	includes	all	
events	e which	happened	before	x

• In	practical	terms,	this	means	every	deliveredmessage	
included	in	the	cut	was	also	sentwithin	the	cut

4



Consistent	cuts:	example

• Vertical	cuts	are	always	consistent	(due	to	the	way	we	
draw	these	diagrams),	but	some	curves	are	ok	too:
– providing	we	don’t	 include	any	receive	events	without	
their	corresponding	send	events

• Intuition	is	that	a	consistent	cut	could have	occurred	
during	execution	(depending	on	scheduling	etc),

5

P1

P2 physical	time

P3

a b

i l

f g

c d

e

k

h

j



Observing	consistent	cuts	
• Chandy/Lamport Snapshot	Algorithm	(1985)	
• Distributed	algorithm	to	generate	a	snapshot of	relevant	

system-wide	state	(e.g.	all	memory,	locks	held,	…)
• Flood	a	special	marker	message	M to	all	processes;	causal	

order	of	flood	defines	the	cut
• If	Pi receives	M from	Pj and	it	has	yet	to	snapshot:	

– It	pauses	all	communication,	takes	local	snapshot	&	sets	Cij to	{}
– Then	sends	M to	all	other	processes	Pk and	starts	recording	Cik =	

{	set	of	all	post	local	snapshot	messages	received	from	Pk }
• If	Pi receives	M from	some	Pk after taking	snapshot

– Stops	recording	Cik,	and	saves	alongside	local	snapshot
• Global	snapshot	comprises	all	local	snapshots	&	Cij
• Assumes	reliable,	 in-order	messages,	&	no	failures

6Fear	not! This	is	not	examinable.



Process	groups
• It	is	useful	to	build	distributed	systems	with	process	groups

– Set	of	processes	on	some	number	of	machines
– Possible	to	multicastmessages	to	all	members
– Allows	fault-tolerant	systems	even	if	some	processes	fail

• Membership	can	be	fixed or	dynamic
– if	dynamic,	have	explicit	join() and	leave() primitives

• Groups	can	be	open or	closed:
– Closed	groups	only	allow	messages	from	members

• Internally	can	be	structured	(e.g.	coordinator	and	set	of	
slaves),	or	symmetric	(peer-to-peer)
– Coordinator	makes	e.g.	concurrent	join/leave	easier…	
– …	but	may	require	extra	work	to	elect coordinator	

7
When	we	use	multicast in	distributed	systems,	we	mean	something	stronger	

than	conventional	network	multicasting	using	datagrams	– do	not	confuse	them.



Group	communication:	assumptions

• Assume	we	have	ability	to	send	a	message	to	
multiple	(or	all)	members	of	a	group
– Don’t	care	if	‘true’	multicast	(single	packet	sent,	
received	 by	multiple	recipients)	 or	“netcast”	(send	set	
of	messages,	one	to	each	recipient)

• Assume	also	that	message	delivery	is	reliable,	and	
that	messages	arrive	in	bounded	time
– But	may	take	different	 amounts	of	time	to	reach	
different	 recipients

• Assume	(for	now)	that	processes	don’t	crash
• What	delivery	orderings can	we	enforce?

8



FIFO	ordering

• With	FIFO	ordering,	messages	from	a	particular	process	Pi must	be	
received	at	all	other	processes	Pj in	the	order	they	were	sent
– e.g.	in	the	above,	everyone	must	see	m1 before	m3
– (ordering	of	m2 and	m4 is	not	constrained)

• Seems	easy	but	not	trivial	in	case	of	delays	/	retransmissions
– e.g.	what	if	message	m1 to	P2 takes	a	loooong time?

• Hence	receivers	may	need	to	buffer messages	 to	ensure	order

9

P1

P2
physical	time

P4

m1

P3
m2

m3

m4

?



Receiving	versus	delivering
• Group	communication	middleware	provides	extra	
features	above	‘basic’	communication
– e.g.	providing	 reliability	 and/or	ordering	guarantees	
on	top	of	IP	multicast	or	netcast

• Assume	that	OS	provides	receive() primitive:	
– returns	with	a	packet	when	one	arrives	on	wire

• Receivedmessages	either	delivered	or	held	back:
– Deliveredmeans	inserted	 into	delivery	queue
– Held	back means	inserted	 into	hold-back	 queue
– held-back	messages	are	delivered	 later	as	the	result	of	
the	receipt	 of	another	message…	

10



Implementing	FIFO	ordering

• Each	process	Pi maintains	a	message	sequence	number	(SeqNo)	Si
• Every	message	sent	by	Pi includes	Si,	incremented	after	each	send	

– not	including	retransmissions!
• Pj maintains	Sji :	the	SeqNo of	the	last	delivered message	 from	Pi

– If	receive	message	from	Pi with	SeqNo ≠	(Sji+1),	hold	back
– When	receive	message	with	SeqNo =	(Sji+1),	deliver	 it	…	and	also	

deliver	any	consecutive	messages	 in	hold	back	queue	…	and	update	Sji

11

delivery	queue

hold-back	queue

receive(M from Pi) {
s = SeqNo(M);
if (s == (Sji+1) ) {

deliver(M); 
s = flush(hbq);
Sji = s;

} else holdback(M);
}

add	M to	delivery	Q

messages	consumed	by	application

held	back	message	delivered



Stronger	orderings
• Can	also	implement	FIFO	ordering	by	just	using	a	
reliable	FIFO	transport	like	TCP/IP

• But	the	general	‘receive	versus	deliver’	model	also	
allows	us	to	provide	strongerorderings:
– Causal	ordering:	if	event	multicast(g,	m1)→multicast(g,	
m2),	then	all	processes	will	see	m1 before	m2

– Total	ordering:	if	any	processes	delivers	a	message	m1
before	m2,	then	all	processes	will	deliver	m1 before	m2

• Causal	ordering	implies	FIFO	ordering,	since	any	two	
multicasts	by	the	same	process	are	related	by	→

• Total	ordering	(as	defined)	does	not	imply	FIFO	(or	
causal)	ordering,	just	says	that	all	processes	must	agree
– Often	want	FIFO-total ordering	(combines	the	two)

12



Causal	ordering

• Same	example	as	previously,	but	now	causal	ordering	means	that
(a)	everyone	must	see	m1 before	m3 (as	with	FIFO),	and
(b)	everyone	must	see	m1 before	m2 (due	to	happens-before)

• Is	this	ok?
– No!	m1→ m2,	but	P2 sees	m2 before	m1
– To	be	correct,	must	hold	back	(delay)	delivery	of	m2 at	P2
– But	how	do	we	know	this?

13

P1

P2
physical	time

P4

m1

P3
m2

m3

m4



Have	(0,0,0)	!=	(1,0,2),	so	must	
hold	back	m2 until	missing	

events	seen

Once	m1	received,	can	deliver	
m1 and	then	m2

Implementing	causal	ordering
• Turns	out	this	is	pretty	easy!
– Start	with	receive	algorithm	for	FIFO	multicast…
– and	replace	sequence	 numbers	with	vector	clocks

14

• Some	care	needed	with	dynamic	groups

P1

P2

m1

P3
m2

→(1,0,0)

→(1,0,1)

→(2,0,2)

→(1,0,2)

→(1,1,0)



Total	ordering
• Sometimes	we	want	all	processes	to	see	exactly	the	
same,	FIFO,	sequence	of	messages
– particularly	for	state	machine	replication	(see	later)

• One	way	is	to	have	a	‘can	send’	token:
– Token	passed	round-robin	between	processes
– Only	process	with	token	can	send	(if	he	wants)

• Or	use	a	dedicated	sequencer	process
– Other	processes	ask	for	global	sequence	no.	(GSN),	and	
then	send	with	this	in	packet

– Use	FIFO	ordering	algorithm,	but	on	GSNs
• Can	also	build	non-FIFO total-order	multicast	by	having	
processes	generate	GSNs	themselves	and	resolving	ties

15



Ordering	and	asynchrony
• FIFO	ordering	allows	quite	a	lot	of	asynchrony

– E.g.	any	process	can	delay	sending	a	message	until	it	has	a	
batch	(to	improve	performance)

– Or	can	just	tolerate	variable	and/or	long	delays
• Causal	ordering	also	allows	some	asynchrony

– But	must	be	careful	queues	don’t	grow	too	large!
• Traditional	total	order	multicast	not	so	good:

– Since	every	message	delivery	transitively	depends	on	
every	other	one,	delays	holds	up	the	entire	system

– Instead	tend	to	an	(almost)	synchronous	model,	but	this	
performs	poorly,	particularly	over	the	wide	area	;-)

– Some	clever	work	on	virtual	synchrony (for	the	interested)

16



Distributed	mutual	exclusion
• In	first	part	of	course,	saw	need	to	coordinate	
concurrent	processes	/	threads
– In	particular	considered	how	to	ensure	mutual	exclusion:	
allow	only	1	thread	in	a	critical	section

• A	variety	of	schemes	possible:
– test-and-set	 locks;	semaphores;	monitors;	active	objects

• But	most	of	these	ultimately	rely	on	hardware	support	
(atomic	operations,	or	disabling	interrupts…)
– not	available	across	an	entire	distributed	system

• Assuming	we	have	some	shared	distributed	resources,	
how	can	we	provide	mutual	exclusion	in	this	case?

17



Solution	#1:	central	lock	server

• Nominate	one	process	C	as	coordinator
– If	Pi wants	to	enter	critical	section,	simply	sends	 lockmessage	 to	

C,	and	waits	for	a	reply
– If	resource	free,	C	replies	to	Pi		with	a	grantmessage;	otherwise	

C	adds	Pi to	a	wait	queue
– When	finished,	Pi sends	unlockmessage	 to	C
– C	sends	grantmessage	 to	first	process	in	wait	queue

18

P1

P2 physical	time

C

...execute	critical	section



Central	lock	server:	pros	and	cons

• Central	lock	server	has	some	good	properties:
– Simple to	understand	and	verify
– Live (providing	delays	are	bounded,	and	no	failure)
– Fair (if	queue	 is	fair,	e.g.	FIFO),	and	easily	supports	
priorities	 if	we	want	them

– Decent	performance:	lock	acquire	 takes	one	round-
trip,	and	release	is	‘free’	with	asynchronous	messages

• But	C	can	become	a	performance	bottleneck…
• …	and	can’t	distinguish	crash	of	C	from	long	wait
– can	add	additional	messages,	at	some	cost

19



Solution	#2:	token	passing

• Avoid	central	bottleneck
• Arrange	processes	in	a	logical	ring

– Each	process	knows	its	predecessor	&	successor
– Single	token	passes	continuously	around	ring
– Can	only	enter	critical	section	when	possess	token;	pass	
token	on	when	finished	(or	if	don’t	need	to	enter	CS)

20

P0

P4
P3

P1

P2

P5

Initial	 token	
generated	by	P0 Passes	clockwise	

around	‘ring’
If	e.g.	P4	wants	to	
enter	CS,	holds	onto	
token	for	duration



Token	passing:	pros	and	cons
• Several	advantages	:

– Simple	to	understand:	only	1	process	ever	has	token	=>	
mutual	exclusion	guaranteed	 by	construction

– No	central	server	bottleneck
– Liveness	guaranteed	(in	the	absence	of	failure)
– So-so	performance	(between	0	and	N	messages	until	a	
waiting	process	enters,	1	message	to	leave)

• But:	
– Doesn’t	guarantee	fairness	(FIFO	order)
– If	a	process	crashes	must	repair	ring	(route	around)
– And	worse:	may	need	to	regenerate	 token	– tricky!

• And	constant	network	traffic:	an	advantage???

21



Solution	#3:	totally	ordered	multicast

• Scheme	due	to	Ricart &	Agrawala (1981)
• Consider	N processes,	where	each	process	maintains	local	

variable	state which	is	one	of	{	FREE,	WANT,	HELD }
• To	obtain	lock,	a	process	Pi sets	state:= WANT,	and	then	

multicasts	lock	request	to	all	other	processes
• When	a	process	Pj receives	a	request	from	Pi:

– If	Pj’s local	state	is	FREE,	then	Pj replies	immediately	 with	OK
– If	Pj’s local	state	is	HELD,	Pj queues	the	request	to	reply	later

• A	requesting	process	Piwaits	for	OK from	N-1	processes
– Once	received,	sets	state:= HELD,	and	enters	critical	section
– Once	done,	sets	state:= FREE,	&	replies	to	any	queued	requests

• What	about	concurrent	requests?	

22

By	concurrent	we	mean:	Pj is	already	in	the	WANT	
state	when	it	receives	a	request	from	Pi



Handling	concurrent	requests
• Need	to	decide	upon	a	total	order:

– Each	processes	maintains	a	Lamport	timestamp,	Ti
– Processes	put	current	Ti into	request	message
– Insufficient	on	its	own	(recall	that	Lamport	timestamps	can	
be	identical)	=>	use	process	id	(or	similar)	to	break	ties

• Hence	if	a	process	Pj receives	a	request	from	Pi and	Pj
has	an	outstanding	request	(i.e.	Pj’s local	state	is	WANT)
– If	(Tj,	Pj)	<	(Ti,	Pi)	then	queue	request	 from	Pi
– Otherwise,	reply	with	OK,	and	continue	waiting

• Note	that	using	the	total	order	ensures	correctness,	
but	not	fairness (i.e.	no	FIFO	ordering)
– Q:	can	we	fix	this	by	using	vector	clocks?

23



Totally	ordered	multicast:	example

• Imagine	P1 and	P2 simultaneously	 try	to	acquire	lock…
– Both	set	state	to	WANT,	and	both	send	multicast	message
– Assume	that	timestamps	are	17	(for	P1)	and	9	(for	P2)

• P3	has	no	interest	(state	is	FREE),	so	replies	Ok	to	both
• Since	9	<	17,	P1 replies	Ok;	P2 stays	quiet	&	queues	P1’s	request
• P2 enters	the	critical	section	and	executes…	
• …	and	when	done,	replies	to	P1 (who	can	now	enter	critical	section)

24

P3
17 17

17

9

9 9

P2

P1 P3
OK

P2

P1 P3

P2

P1

OKOK

OK



Additional	details
• Completely	unstructured	decentralized	 solution	...	but:

– Lots	of	messages	(1	multicast	+	N-1 unicast)
– Ok	for	most	recent	holder	to	re-enter	CS	without	any	messages

• Variant	scheme	(Lamport)	-multicast	for	total	ordering
– To	enter,	process	Pi multicasts	request(Pi,	Ti) [same	as	before]
– On	receipt	of	a	message,	Pj replies	with	an	ack(Pj,Tj)
– Processes	keep	all	requests	and	acks in	ordered	queue
– If	process	Pi sees	his	request	is	earliest,	can	enter	CS	…	and	

when	done,	multicasts	a	release(Pi,	Ti)message	
– When	Pj receives	release,	removes	Pi’s	request	from	queue
– If	Pj’s request	is	now	earliest	 in	queue,	can	enter	CS…	

• Both	Ricart &	Agrawala and	Lamport’s scheme	have	N
points	of	failure:	doomed	if	any process	dies	:-(

25



Summary	+	next	time
• (More)	vector	clocks
• Consistent	global	state	+	consistent	cuts
• Process	groups	and	reliable	multicast
• Implementing	order
• Distributed	mutual	exclusion

• Leader	elections	and	distributed	consensus
• Distributed	transactions	and	commit	protocols
• Replication	and	consistency

26


