
Distributed	systems
Lecture	6:	Elections, distributed	transactions,	and	replication

Dr Robert	N.	M.	Watson

1



Last	time

• Saw	how	we	can	build	ordered	multicast
– Messages	between	processes	in	a	group
– Need	to	distinguish	receipt and	delivery
– Several	 ordering	options:	FIFO,	causal or	total

• Considered	distributed	mutual	exclusion:
– Want	to	limit	one	process	to	a	CS	at	a	time
– Central	 server	OK;	but	bottleneck	 &	SPoF
– Token	passing	OK:	but	traffic,	 repair,	token	 loss
– Totally-Ordered	Multicast:	OK,	but	high	number	of	
messages	and	problems	with	failures

2



Leader	election
• Many	schemes	are	built	on	the	notion	of	having	a	well-
defined	‘leader’	(master,	coordinator)
– examples	seen	so	far	include	the	Berkeley	time	
synchronization	protocol,	and	the	central	lock	server

• An	election	algorithm	is	a	dynamic	scheme	to	choose	a	
unique	process	to	play	a	certain	role
– assume	Pi contains	state	variable	electedi
– when	a	process	first	joins	the	group,	electedi =	UNDEFINED

• By	the	end	of	the	election,	for	every	Pi,
– electedi =	Px,	where	Px is	the	winner	of	the	election,	or
– electedi =	UNDEFINED,	 or	
– Pi has	crashed	or	otherwise	 left	the	system

3Common	 idea:	live	node	with	the	highest	ID	wins



Ring-based	election

• System	has	coordinator	who	crashes
• Some	process	notices,	and	starts	an	election	

– Find	node	with	highest	ID	who	will	be	new	leader
– Puts	its	ID	into	a	message,	and	sends	to	its	successor
– On	receipt,	a	process	acks to	sender	(not	shown),	and	then	

appends	its	id	and	forwards	the	election	message
– Finished	when	a	process	receives	message	containing	its	ID

4

C

P4
P3

P1

P2

P5

P2 notices	C has	
crashed	and	
starts	election	

P4 has	also	
crashed,	so	P3
routes	around

(2)
(2,3)

(2,3,5)
(1,2,3,5)

P2 can	multicast	
winner	(or	can	
continue	to	P5)

(2,3)



The	Bully	Algorithm
• Algorithm	proceeds	by	attempting	to	elect	the	process	still	

alive	with	the	highest	ID
– Assume	that	we	know	the	IDs	of	all	processes
– Assumes	we	can	reliably	detect	failures	by	timeouts

• If	process	Pi sees	current	leader	has	crashed,	sends	election
message	to	all	processes	with	higher	IDs,	and	starts	a	timer
– Concurrent	election	initiation	by	multiple	processes	is	fine
– Processes	receiving	an	election	message	reply	OK to	sender,	and	

start	an	election	of	their	own	(if	not	already	in	progress)
– If	a	process	hears	nothing	back	before	timeout,	 it	declares	itself	

the	winner,	and	multicasts	result
• A	dead	process	that	recovers	(or	new	process	that	joins)	

also	starts	an	election:	can	ensure	highest	ID	always	elected		

5



Problems	with	elections

• Algorithms	rely	on	timeouts	to	reliably	detect	failure
• However	 it	is	possible	for	networks	to	fail:	a	network	partition	

– Some	processes	can	speak	to	others,	but	not	all
• Can	lead	to	split-brain	syndrome:

– Every	partition	independently	elects	a	leader	→	too	many	bosses!
• To	fix,	need	some	secondary	(&	tertiary?)	communication	scheme

– e.g.	secondary	network,	shared	disk,	serial	cables,	…	

6

P0
P4 P2

P8
P5

P3
P6 P7

P1



Aside on	consensus
• Elections	are	a	specific	example	of	a	more	general	
problem:	consensus
– Given	a	set	of	n processes	in	a	distributed	system,	how	can	
we	get	them	all	to	agree	on	something?

• Classical	treatment	has	every	process	Pi propose	
something	(a	value	Vi)
– Want	to	arrive	at	some	deterministic	function	of	Vi’s	(e.g.	
‘majority’	or	‘maximum’	will	work	for	election)

• A	correct	solution	to	consensus	must	satisfy:
– Agreement:	all	nodes	arrive	at	the	same	answer
– Validity:	answer	is	one	that	was	proposed	by	someone
– Termination:	all	nodes	eventually	decide

7



“Consensus	is	impossible”
• Famous	result	due	to	Fischer,	Lynch	&	Patterson	(1985)

– Focuses	on	an	asynchronous	 network	(unbounded	delays)	
with	at	least	one	process	failure

– Shows	that	it	is	possible	to	get	an	infinite	sequence	 of	
states,	and	hence	never	terminate

– Given	the	Internet	 is	an	asynchronous	network,	 then	this	
seems	to	have	major	consequences!!

• Not	really:
– Result	actually	says	we	can’t	always	guarantee	consensus,	
not that	we	can	never	achieve	consensus	

– And	in	practice,	we	can	use	tricks	to	mask	failures	(such	as	
reboot,	or	replication),	and	to	ignore	asynchrony

– Have	seen	solutions	already,	and	will	see	more	later

8



Transaction	processing	systems
• Last	term	looked	at	transactions:

– ACID properties
– Support	 for	composite	operations	(i.e.	a	collection	of	reads	
and	updates	to	a	set	of	objects)

• A	transaction	is	atomic (“all-or-nothing”)
– If	it	commits,	all	operations	 are	applied
– If	it	aborts,	it’s	as	if	nothing	ever	happened

• A	committed	transaction	moves	system	from	one	
consistent state	to	another

• Transaction	processing	systems	also	provide:
– isolation (between	 concurrent	transactions)
– durability (committed	transactions	survive	a	crash)		

9



Distributed	transactions
• Scheme	described	last	term	was	client/server

– E.g.,	a	program	(client)	accessing	a	database	(server)
• However	distributed	transactions are	those	which	
span	multiple transaction	processing	servers

• E.g.	booking	a	complex	trip	from	London	to	Vail,	CO
– Could	fly	LHR	->	LAX	->	EGE	+	hire	a	car…	
– …	or	fly	LHR	->	ORD	->	DEN	+	take	a	public	bus

• Want	a	complete	trip	(i.e.	atomicity)
– Not	get	stuck	in	an	airport	with	no	onward	transport!

• Must	coordinate	actions	across	multiple	parties

10



A	model	of	distributed	transactions

• Multiple	servers	(S1,	S2,	S3,	…),	each	holding	some	objects	which	can	
be	read and	writtenwithin	client	transactions

• Multiple	concurrent	clients	(C1,	C2,	…)	who	perform	transactions	
that	interact	with	one	or	more	servers
– e.g.	T1 reads	x,	z from	S1,	writes	a on	S2,	and	reads	&	writes	j on	S3
– e.g.	T2 reads	i,	j from	S3,	then	writes	z on	S1

• A	successful	commit	implies	 agreement	at	all	servers

11

C1 C2

x=5
y=0
z=3

a=7
b=8
c=1

i=2
j=4

S1

S2

S3

T1 transaction {
if(x<2) abort;
a:= z; 
j:= j + 1;

}

T2 transaction {
z:= (i+j);

}



Implementing	distributed	transactions

• Can	build	on	top	of	solution	for	single	server:
– e.g.	use	locking or	shadowing to	provide	 isolation
– e.g.	use	write-ahead	 log	for	durability

• Need	to	coordinate	to	either	commit or	abort
– Assume	clients	create	unique	transaction	 ID:	TXID
– Uses	TXID in	every	 read	or	write	request	to	a	server	Si
– First	time	Si sees	a	given	TXID,	it	starts	a	tentative	
transaction	 associated	with	that	transaction	 id

– When	client	wants	to	commit,	must	perform	atomic	
commit	of	all	tentative	transactions	 across	all	servers

12



Atomic	commit	protocols
• A	naïve	solution	would	have	client	simply	invoke	

commit(TXID)	on	each	server	in	turn
– Will	work	only	if	no	concurrent	conflicting	clients,	every	server	

commits	(or	aborts),	and	no	server	crashes
• To	handle	concurrent	clients,	 introduce	a	coordinator:

– A	designated	machine	(can	be	one	of	the	servers)
– Clients	ask	coordinator	to	commit	on	their	behalf…	and	hence	

coordinator	can	serialize concurrent	commits
• To	handle	inconsistency/crashes,	 the	coordinator:

– Asks	all	involved	servers	if	they	could commit	TXID
– Servers	Si reply	with	a	vote	Vi =	{	COMMIT,	ABORT }
– If	all	Vi =	COMMIT,	coordinator	multicasts	doCommit(TXID)
– Otherwise,	 coordinator	multicasts	doAbort(TXID)

13



Two-phase	commit	(2PC)

• This	scheme	is	called	two-phase	commit	(2PC):
– First	phase	is	voting:	collect	votes	from	all	parties
– Second	phase	is	completion:	either	abort	or	commit

• Doesn’t	require	ordered	multicast,	but	needs	reliability
– If	server	fails	to	respond	by	timeout,	treat	as	a	vote	to	abort

• Once	all	ACKs received,	inform	client	of	successful	commit	

14

C

S1
physical	time

S3

canCommit(TxID)?

S2

doCommit(TxID)



2PC:	additional	details
• Client	(or	any	server)	can	abort	during	execution:	
simply	multicasts	doAbort(TXID)	to	all	servers
– E.g.,	if	client	transaction	throws	exception	or	server	fails

• If	a	server	votes	NO,	can	immediately	abort	locally
• If	a	server	votes	YES,	it	mustbe	able	to	commit	if	
subsequently	asked	by	coordinator:
– Before	voting	to	commit,	server	will	prepare by	writing	
entries	into	log	and	flushing	to	disk

– Also	records	all	requests	from	&	responses	to	coordinator
– Hence	even	if	crashes	after voting	to	commit,	will	be	able	
to	recover	on	reboot

15



2PC:	coordinator	crashes
• Coordinator	must	also	persistently	log	events:

– Including	initial	message	from	client,	requesting	votes,	
receiving	replies,	and	final	decision	made

– Lets	it	reply	if	(restarted)	client	or	server	asks	for	outcome
– Also	lets	coordinator	recover	from	reboot,	e.g.	re-send	any	
vote	requests	without	responses,	or	reply	to	client

• One	additional	problem	occurs	if	coordinator	crashes	
after	phase	1,	but	before	initiating	phase	2:
– Servers	will	be	uncertain	of	outcome…
– If	voted	to	commit,	will	have	to	continue	to	hold	locks,	etc

• Other	schemes	(3PC,	Paxos,	…)	can	deal	with	this

16



Replication
• Many	distributed	systems	involve	replication

– Multiple	copies	of	some	object	stored	at	different	servers
– Multiple	servers	capable	of	providing	some	operation(s)

• Three	key	advantages:
– Load-Balancing:	 if	have	many	replicas,	then	can	spread	out	
work	from	clients	between	them

– Lower	Latency:	if	replicate	an	object/server	close	to	a	
client,	will	get	better	performance

– Fault-Tolerance:	 can	tolerate	the	failure	of	some	replicas	
and	still	provide	service

• Examples	include	DNS,	web	&	file	caching	(&	content-
distribution	networks),	replicated	databases,	…	

17



Replication	in	a	single	system
• A	good	single-system	example	is	RAID:

– RAID	=	Redundant	Array	of	Inexpensive	Disks
– Disks	are	cheap,	so	use	several	instead	of	just	one	
– If	replicate	data	across	disks,	can	tolerate	disk	crash
– If	don’t	replicate	data,	appearance	of	a	single	larger	disk

• A	variety	of	different	configurations	(levels)
– RAID	0:	stripe data	across	disks,	i.e.	block	0	to	disk	0,	block	1	to	

disk	1,	block	2	to	disk	0,	and	so	on
– RAID	1:	mirror (replicate)	data	across	disks,	i.e.	block	0	written	

on	disk	0	and	disk	1
– RAID	5:	parity – write	block	0	to	disk	0,	block	1	to	disk	1,	and	

(block	0	XOR block	1)	to	disk	2
• Get	improved	performance	since	can	access	disks	in	parallel
• With	RAID	1,	5	also	get	fault-tolerance

18



Distributed	data	replication
• Have	some	number	of	servers	(S1,	S2,	S3,	…)

– Each	holds	a	copy	of	all	objects
• Each	client	Ci can	access	any	replica	(any	Si)

– E.g.	clients	can	choose	closest,	or	least	loaded
• If	objects	are	read-only,	then	trivial:

– Start	with	one	primary	server	P having	all	data
– If	client	asks	Si for	an	object,	Si returns	a	copy
– (Si fetches	a	copy	from	P if	it	doesn’t	already	have	a	fresh	one)

• Can	easily	extend	to	allow	updates	by	P
– When	updating	object	O,	send	invalidate(O)	to	all	Si

• In	essence,	this	is	how	web	caching	/	CDNs	work	today
• But	what	if	clients	can	perform	updates?

19



Replication	and	consistency
• Gets	more	challenging	if	clients	can	perform	updates
• For	example,	imagine	x has	value	3 (in	all	replicas)

– C1 requests	write(x,	5) from	S4
– C2 requests	read(x) from	S3
– What	should	occur?		

• With	strong	consistency,	the	distributed	system	
behaves	as	if	there	is	no	replication	present:
– i.e.	in	above,	C2 should	get	the	value	5
– requires	coordination	between	all	servers

• With	weak	consistency,	C2may	get	3	or	5	(or	…?)
– Less	satisfactory,	but	much	easier	to	implement

20



Replication	for	fault	tolerance
• Replication	for	services,	not	just	data	objects
• Easiest	is	for	a	stateless	services:
– Simply	duplicate	 functionality	 over	kmachines
– Clients	use	any	(e.g.	closest),	fail	over	to	another

• Very	few	totally	stateless	services	
– But	e.g.	many	web	apps	have	per-session	soft	state
– State	generated	 per-client,	 lost	when	client	 leaves

• For	example:	multi-tier	web	farms	(Facebook,	…):

21

App	server

App	server

App	server

Cache	server

Cache	server

Cache	server

Database

Database

Web	server

Web	server

Web	server

session	soft	state	only consistent	replication	(transactions)



Passive	replication
• A	solution	for	stateful services	is	primary/backup:

– Backup	server	takes	over	in	case	of	failure
• Based	around	persistent	logs	and	system	checkpoints:

– Periodically	(or	continuously)	checkpoint	primary
– If	detect	failure,	start	backup	from	checkpoint

• A	few	variants	trade-off	fail-over	time:
– Cold-standby:	 backup	server	must	start	service	(software),	
load	checkpoint	&	parse	logs

– Warm-standby:	backup	server	has	software	running	in	
anticipation	– just	needs	to	load	primary	state

– Hot-standby:	backup	server	mirrors	primary	work,	but	
output	 is	discarded;	on	failure,	enable	output

22



Active	replication
• Alternative:	have	k replicas	running	at	all times
• Front-end	server	acts	as	an	ordering	node:

– Receives	requests	from	client	and		forwards	them	to	all	
replicas	using	totally	ordered	multicast

– Replicas	each	perform	operation	and	respond	to	front-end
– Front-end	gathers	responses,	and	replies	to	client

• Typically	require	replicas	to	be	“state	machines”:
– i.e.	act	deterministically	based	on	input
– Idea	is	that	all	replicas	operate	 ‘in	lock	step’

• Active	replication	is	expensive	(in	terms	of	resources)…
– …	and	not	really	worth	it	in	the	common	case.	
– However	valuable	if	consider	Byzantine	failures

23



Summary	+	next	time
• Leader	elections	+	distributed	consensus
• Distributed	transactions	+	atomic	commit	protocols
• Replication	+	consistency

• (More)	replication	and	consistency
– Strong	consistency
– Quorum-based	systems
– Weaker	consistency

• Consistency,	availability	and	partitions
• Further	replication	models
• Start	of	Google	case	studies

24


