
Distributed	systems
Lecture	3:	Further	RPC	and	OOM	systems;	Clocks

Dr.	Robert	N.	M.	Watson

1



The	Story	So	Far…

• Distributed	systems	are	hard
• Looking	at	simple	client/server	interaction,	
and	use	of	Remote	Procedure	Call	(RPC)
– invoking	methods	on	server	over	the	network
– middleware	generates	stub	code	which	can	
marshal /	unmarshal arguments	and	replies

– saw	case	study	of	NFS	(RPC-based	file	system)
• Object-Oriented	Middleware	(OOM)
• CORBA

2



Object-Oriented	Middleware
• SunRPC /	DCE	RPC	forward	functions,	and	do	not	have	
support	for	more	complex	types,	exceptions,	or	
polymorphism

• Object-Oriented	Middleware	(OOM)	arose	in	the	early	
90s	to	address	this
– Assume	programmer	is	writing	in	OO-style
– ’Remote	objects’	will	behave	 like	local	objects,	but	they	
methods	will	be	forwarded	over	the	network	a	la	RPC

– References	to	objects	can	be	passed	as	arguments	of	
return	values	– e.g.,	passing	a	directory	object	reference

• Makes	it	much	easier	to	program	– especially	if	your	
program	is	object	oriented!

3

From	last	lecture



Microsoft	DCOM	(1996)
• An	alternative	to	CORBA:
– MS	had	invested	in	COM	(object-oriented	 local	IPC	
scheme)	so	didn’t	fancy	moving	to	OMA

• Service	Control	Manager	(SCM) on	each	machine	
responsible	for	object	creation,	invocation,	...	
– essentially	a	lightweight	 ‘ORB’	

• Added	remote	operation	using	MSRPC:
– based	on	DCE	RPC,	but	extended	to	support	objects
– augmented	IDL	called	MIDL:	DCE	IDL	+	objects
– requests	include	 interface	 pointer	 IDs	(IPIDs)	to	
identify	object	&	interface	 to	be	invoked

4



DCOM	vs.	CORBA
• Both	are	language	neutral,	and	object-oriented
• DCOM	supports	objects	with	multiple	interfaces

– but	not,	like	CORBA,	multiple	inheritance	of	interfaces
• DCOM	handles	distributed	garbage	collection:

– remote	objects	are	reference	counted	(via	explicit	calls)
– ping	protocol	handles	abnormal	client	termination

• DCOM	is	widely	used	(e.g.	SMB/CIFS,	RDP,	...	)
• But	DCOM	is	MS	proprietary	(not	standard)...	

– and	no	support	for	exceptions	(return	code	based)..	
– and	lacks	many	of	CORBAs	services	(e.g.	trading)

• Deprecated	today	in	favor	of	.NET

5



Java	RMI
• 1995:	Sun	extended	Java	to	allow	RMI
– RMI	= Remote	Method	Invocation

• Essentially	an	OOM	scheme	for	Java	with	clients,	
servers	and	an	object	registry
– object	 registry	maps	from	names	to	objects
– supports	bind()/rebind(),	lookup(),	unbind(),	list()

• RMI	was	designed	for	Java	only
– no	goal	of	OS	or	language	interoperability
– hence	cleaner	design,	tighter	language	integration
– E.g.,	distributed	garbage	collection

6



RMI:	new	classes
• remote	class:
– one	whose	instances	can	be	used	remotely
– within	home	address	space,	a	regular	object
– within	 foreign	address	spaces,	referenced	 indirectly	
via	an	object	handle

• serializable	class:	[nothing	 to	do	with	transactions!]
– object	 that	can	be	marshalled/unmarshalled
– if	a	serializable	object	 is	passed	as	a	parameter	 or	
return	value	of	a	remote	method	invocation,	 the	value	
will	be	copied	 from	one	address	space	to	another

– (for	remote	objects,	only	the	object	 handle	is	copied)

7



RMI:	new	classes
• remote	class:
– one	whose	instances	can	be	used	remotely
– within	home	address	space,	a	regular	object
– within	 foreign	address	spaces,	referenced	 indirectly	
via	an	object	handle

• serializable	class:	
– object	 that	can	be	marshalled/unmarshalled
– if	a	serializable	object	 is	passed	as	a	parameter	 or	
return	value	of	a	remote	method	invocation,	 the	value	
will	be	copied	 from	one	address	space	to	another

– (for	remote	objects,	only	the	object	 handle	is	copied)

8

needed	for	remote	objects

needed	for	parameters



RMI:	the	big	picture

• Registry	can	be	on	server...	or	one	per	distributed	system
– client	and	server	 can	find	it	via	the	LocateRegistry class

• Objects	being	serialized	are	annotated	with	a	URL	for	the	class
– unless	they	implement	Remote =>	replaced	with	a	remote	reference

9

stub

registryclient	
application

stub

remote	object	
implementation
remote	interface

f(args) f(args)return/exception return/exn

marshal	stream

bind()lookup()

remote
reference



Distributed	garbage	collection
• With	RMI,	can	have	local	&	remote	object	references	
scattered	around	a	set	of	machines

• Build	distributed	garbage	collection	over	local	GC:
– When	a	server	exports	object	O,	it	creates	a	skeleton	 S[O]
– When	a	client	obtains	a	remote	reference	to	O,	it	creates	a	
proxy	object	P[O],	and	remotely	invokes	dirty(O)

– Local	GC	will	track	the	liveness	of	P[O];	when	it	is	locally	
unreachable,	client	remotely	 invokes	clean(O)

– If	server	notices	no	remote	references,	can	free	S[O]
– If	S[O]	was	last	reference	to	O,	then	 it	too	can	be	freed

• Like	DCOM,	server	removes	a	reference	if	it	doesn’t	
hear	from	that	client	for	a	while	(default	10	mins)

10



OOM:	summary

• OOM	enhances	RPC	with	objects
– types,	interfaces,	 exceptions,	…

• Seen	CORBA,	DCOM	and	Java	RMI	
– All	plausible,	and	all	still	used	today
– CORBA	most	general	 (language	and	OS	agnostic),	but	
also	the	most	complex:	design	by	committee

– DCOM	is	MS-only;	 being	phased	out	for	.NET	
– Java	RMI	decent	 starting	point	for	simple	distributed	
systems…	but	lacks	many	features

– (EJB	is	a	modern	CORBA/RMI/<stuff>	megalith)

11



XML-RPC

• Systems	seen	so	far	all	developed	by	large	
industry,	and	work	fine	in	the	local	area…	
– But	don’t	(or	didn’t)	do	well	through	firewalls	 ;-)

• In	1998,	Dave	Winer developed	XML-RPC
– Use	XML	to	encode	method	invocations	 (method	
names,	parameters,	etc)

– Use	HTTP	POST	to	invoke;	response	contains	the	
result,	also	encoded	 in	XML

– Looks	like	a	regular	web	session,	and	so	works	fine	
with	firewalls,	NAT	boxes,	transparent	 proxies,	…

12



XML-RPC	example

• Client	side	names	method	(as	a	string),	and	lists	
parameters,	tagged	with	simple	types

• Server	receives	message	(via	HTTP),	decodes,	performs	
operation,	and	replies	with	similar	XML

• Inefficient	&	weakly	typed…	but	simple,	language	
agnostic,	extensible,	and	eminently	practical!

13

<?xml	version="1.0"?>	
<methodCall>	
<methodName>util.InttoString</methodName>	
<params>
<param>	
<value><i4>55</i4></value>

</param>
</params>	
</methodCall>	

<?xml	version="1.0"?>	
<methodResponse>
<params>
<param>	
<value><string>Fifty	Five</string></value>

</param>	
</params>
</methodResponse>

XML-RPC	Request XML-RPC	Response



SOAP	&	web	services

• XML-RPC	was	a	victim	of	its	own	success
• WWW	consortium	decided	to	embrace	it,	extend	
it,	and	generally	complify it	up
– SOAP	(Simple	Object	Access	Protocol)	is	basically	
XML-RPC,	but	with	more	XML	bits

– Support	 for	namespaces,	user-defined	 types,	multi-
hop	messaging,	recipient	 specification,	…

– Also	allows	transport	 over	SMTP	(!),	TCP	&	UDP
• SOAP	is	part	of	the	Web	Services world
– As	complex	as	CORBA,	but	with	more	XML	;-)	

14



Moving	away	from	RPC
• SOAP	1.2	defined	in	2003
– Less	focus	on	RPC,	and	more	on	moving	XML	
messages	from	A	to	B	(perhaps	via	C	&	D)

• One	major	problem	with	all	RPC	schemes	is	that	
they	were	synchronous:
– Client	is	blocked	until	server	 replies
– Poor	responsiveness,	particularly	 in	wide	area

• 2006	saw	introduction	of	AJAX
– Asynchronous	 Javascript with	XML	
– Chief	benefit:	 can	update	web	page	without	 reloading

• Examples:	Google	Maps,	Gmail,	Google	Docs,	…

15



REST
• AJAX	still	does	RPC	(just	asynchronously)
• Is	a	procedure	call	/	method	invocation	really	the	
best	way	to	build	distributed	systems?

• Representational	State	Transfer	(REST)	is	an	
alternative	‘paradigm’	(or	a	throwback?)	
– Resources	have	a	name:	URL	or	URI
– Manipulate	 them	via	POST	(create),	GET	(select),
PUT	(create/overwrite),	 and	DELETE	(delete)

– More	recently	added:	PATCH	(partial	update	in	place)
– Send	state	along	with	operations

• Very	widely	used	today	(Amazon,	Flickr,	Twitter)

16



Client-server	interaction:	summary

• Server	handles	requests	from	client
– Simple	request/response	 protocols	 (like	HTTP)	useful,	
but	lack	language	integration	

– RPC	schemes	(SunRPC,	DCE	RPC)	address	this
– OOM	schemes	(CORBA,	DCOM,	RMI)	extend	RPC	to	
understand	objects,	 types,	interfaces,	 exns,	…

• Recent	WWW	developments	move	away	from	
traditional	RPC/RMI:
– Avoid	explicit	IDLs	since	can	slow	evolution
– Enable	asynchrony,	or	return	 to	request/response

17



Clocks	and	distributed	time

• Distributed	systems	need	to	be	able	to:	
– order	events	produced	 by	concurrent	 processes;
– synchronize	senders	and	receivers	of	messages;
– serialize	concurrent	 accesses	to	shared	objects;	and
– generally	 coordinate	 joint	activity

• This	can	be	provided	by	some	sort	of	“clock”:
– physical	clocks keep	 time	of	day

• (must	be	kept	consistent	across	multiple	nodes	– why?)	
– logical	clocks keep	track	of	event	ordering

• Relativity	can’t	be	ignored:	think	satellites

18



Physical	clock	technology
• Quartz	Crystal	Clocks	(1929)
– resonator	 shaped	like	a	tuning	fork
– laser-trimmed	 to	vibrate	at	32,768	Hz
– standard	resonators	accurate	 to	6ppm	at	31°C...	so	
will	gain/lose	around	0.5	seconds	per	day

– stability	better	than	accuracy	 (about	2s/month)
– best	resonators	get	accuracy	 of	~1s		in	10	years

• Atomic	clocks	(1948)
– count	transitions	of	the	cesium	133	atom
– 9,192,631,770	periods	defined	 to	be	1	second	
– accuracy	 is	better	than	1	second	in	6	million	years...

19



Coordinated	Universal	Time	(UTC)

• Physical	clocks	provide	‘ticks’	but	we	want	to	
know	the	actual	time	of	day
– determined	 by	astronomical	phenomena

• Several	variants	of	universal	time
– UT0:	mean	solar	time	on	Greenwich	meridian
– UT1:	UT0	corrected	 for	polar	motion;	measured	via	
observations	of	quasars,	laser	ranging,	&	satellites

– UT2:	UT1	corrected	 for	seasonal	variations
– UTC:	civil	time,	tracked	 using	atomic	clocks,	but	kept	
within	0.9s	of	UT1	by	occasional	 leap	seconds

20



Computer	clocks

• Typically	have	a	Real-Time	Clock	(RTC)
– CMOS	clock	driven	by	a	quartz	oscillator
– battery-backed	so	continues	when	power	is	off

• Also	have	range	of	other	clocks	(PIT,	ACPI,	
HPET,	TSC,	...),	mostly	higher	frequency
– free	running	clocks	driven	by	quartz	oscillator
– mapped	to	real	time	by	OS	at	boot	time
– programmable	to	generate	interrupts	after	some	
number	of	ticks	(~=	some	amount	of	real	time)

21



Operating-system	use	of	clocks
• OSes use	time	for	many	things

– Periodic	events	– e.g.,	time	sharing,	statistics,	at,	cron
– Local	I/O	functions	– e.g.,	peripheral	 timeouts;	entropy
– Network	protocols	– e.g.,	TCP	DELACK,	retries,	keep-alive
– Cryptographic	certificate/ticket	generation,	 expiration
– Performance	profiling	and	sampling	features

• “Ticks”	trigger	interrupts
– Historically,	timers	at	fixed	intervals	(e.g.,	100Hz)
– Now,	“tickless”:	timer	reprogrammed	for	next	event
– Saves	energy,	CPU	resources	– especially	as	cores	scale	up

22

Which	of	these	require	“physical	time”	vs “logical	time”?
What	will	happen	to	each	if	the	real-time	clock	drifts	or	steps	due	to	synchronisation?



The	clock	synchronization	problem
• In	distributed	systems,	we’d	like	all	the	different	
nodes	to	have	the	same	notion	of	time,	but
– quartz	oscillators	oscillate	at	slightly	different	
frequencies	 (time,	temperature,	manufacture)

• Hence	clocks	tick	at	different	rates:
– create	ever-widening	 gap	in	perceived	 time
– this	is	called	clock	drift

• The	difference	between	two	clocks	at	a	given	
point	in	time	is	called	clock	skew

• Clock	synchronization	aims	to	minimize	clock	
skew	between	two	(or	a	set	of)	different	clocks

23



Clock	skew	and	clock	drift

February	18,	2012
08:00:00

24

08:00:00 08:00:00

NB:	Steve	Hand’s	watches,	not	mine.



Clock	skew	and	clock	drift

25

March	23,	2012
08:00:00

08:01:24 08:01:48
Skew =	84	seconds
Drift =	84s	/	34	days

=	+2.47s	per	day

Skew	=	108	seconds
Drift =	108s	/	34	days

=	+3.18s	per	day



Summary	+	next	time	(!)
• More	Object-Oriented	Middleware	(OOM)

– DCOM,	RMI,	XML-RPC,	SOAP,	REST
• Clocks	and	distributed	time

– Physical	clock	technology,	UTC
– Skew	and	drift

• More	on	physical	time
• Time	synchronisation
• Ordering

– The	“happens-before”	 relation
– Logical	and	vector	clocks

26


