PCF evaluation relation

takes the form

$$M \downarrow_{\tau} V$$

where

- τ is a PCF type
- $M, V \in \mathrm{PCF}_{\tau}$ are closed PCF terms of type τ
- V is a value,

$$V ::= \mathbf{0} \mid \mathbf{succ}(V) \mid \mathbf{true} \mid \mathbf{false} \mid \mathbf{fn} \ x : \tau . M.$$

PCF evaluation (sample rules)

$$(\Downarrow_{\mathrm{val}}) \quad V \Downarrow_{\tau} V \qquad (V \text{ a value of type } \tau)$$

PCF evaluation (sample rules)

$$(\downarrow_{\mathrm{val}})$$
 $V \downarrow_{\tau} V$ $(V \text{ a value of type } \tau)$

$$(\Downarrow_{\mathrm{cbn}}) \frac{M_1 \Downarrow_{\tau \to \tau'} \mathbf{fn} \, x : \tau \, . \, M_1' \qquad M_1'[M_2/x] \Downarrow_{\tau'} V}{M_1 \, M_2 \Downarrow_{\tau'} V}$$

PCF evaluation (sample rules)

$$(\downarrow_{\mathrm{val}})$$
 $V \downarrow_{\tau} V$ $(V \text{ a value of type } \tau)$

$$(\downarrow_{\text{cbn}}) \frac{M_1 \downarrow_{\tau \to \tau'} \mathbf{fn} \, x : \tau . M_1' \qquad M_1' [M_2/x] \downarrow_{\tau'} V}{M_1 M_2 \downarrow_{\tau'} V}$$

$$(\Downarrow_{\text{fix}}) \quad \frac{M(\mathbf{fix}(M)) \Downarrow_{\tau} V}{\mathbf{fix}(M) \Downarrow_{\tau} V}$$

Two phoases of a programming language are contextually

equivalent if any occurrences of the first phrase in a complete program can be replaced by the second phrase without affecting the <u>observable results</u> of executing the program.

 $M_1 \cong M_2$

Contextual equivalence of PCF terms

Given PCF terms M_1, M_2 , PCF type au, and a type environment Γ , the relation $\Gamma \vdash M_1 \cong_{\operatorname{ctx}} M_2 : au$ is defined to hold iff

- ullet Both the typings $\Gamma \vdash M_1 : au$ and $\Gamma \vdash M_2 : au$ hold.
- For all PCF contexts $\mathcal C$ for which $\mathcal C[M_1]$ and $\mathcal C[M_2]$ are closed terms of type γ , where $\gamma=nat$ or $\gamma=bool$, and for all values $V:\gamma$,

$$\mathcal{C}[M_1] \Downarrow_{\gamma} V \Leftrightarrow \mathcal{C}[M_2] \Downarrow_{\gamma} V.$$

• PCF types $\tau \mapsto \text{domains } \llbracket \tau \rrbracket$.

$$[[not 1] = N]$$

$$[bool 7] = B_{\perp}$$

$$[[\sigma \rightarrow z7] = ([\sigma y] \rightarrow [zy])$$

- PCF types $\tau \mapsto \text{domains } \llbracket \tau \rrbracket$.
- Closed PCF terms $M: \tau \mapsto \text{elements } \llbracket M \rrbracket \in \llbracket \tau \rrbracket$. Denotations of open terms will be continuous functions.

- PCF types $\tau \mapsto \text{domains } \llbracket \tau \rrbracket$.
- Closed PCF terms $M: \tau \mapsto \text{elements } \llbracket M \rrbracket \in \llbracket \tau \rrbracket$. Denotations of open terms will be continuous functions.
- Compositionality.

```
In particular: \llbracket M \rrbracket = \llbracket M' \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket = \llbracket \mathcal{C}[M'] \rrbracket.
```

- PCF types $\tau \mapsto \text{domains } \llbracket \tau \rrbracket$.
- Closed PCF terms $M: \tau \mapsto \text{elements } \llbracket M \rrbracket \in \llbracket \tau \rrbracket$. Denotations of open terms will be continuous functions.
- Compositionality.

In particular:
$$\llbracket M \rrbracket = \llbracket M' \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket = \llbracket \mathcal{C}[M'] \rrbracket$$
.

Soundness.

For any type τ , $M \downarrow_{\tau} V \Rightarrow \llbracket M \rrbracket = \llbracket V \rrbracket$.

- ullet PCF types $au \mapsto \text{domains } [\![au]\!]$.
- Closed PCF terms $M: \tau \mapsto \text{elements } \llbracket M \rrbracket \in \llbracket \tau \rrbracket$. Denotations of open terms will be continuous functions.
- Compositionality.

In particular:
$$\llbracket M \rrbracket = \llbracket M' \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket = \llbracket \mathcal{C}[M'] \rrbracket$$
.

Soundness.

For any type
$$\tau$$
, $M \downarrow_{\tau} V \Rightarrow \llbracket M \rrbracket = \llbracket V \rrbracket$.

Adequacy.

For
$$\tau = bool$$
 or nat , $\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \tau \rrbracket \implies M \Downarrow_{\tau} V$.

Theorem. For all types τ and closed terms $M_1, M_2 \in \mathrm{PCF}_{\tau}$, if $\llbracket M_1 \rrbracket$ and $\llbracket M_2 \rrbracket$ are equal elements of the domain $\llbracket \tau \rrbracket$, then $M_1 \cong_{\mathrm{ctx}} M_2 : \tau$.

Assume
$$(M_1) = (M_2) - Consider 6[-]: 8$$

$$6[M_1] \lor \lor \Rightarrow [[6[M_2]]] = [[V]] \quad Soundhers$$

$$\Rightarrow [[6[M_2]]] = [[V]] \quad Conspirabily$$

$$\Rightarrow 6[M_2] \lor \lor \quad \partial deque cay$$

$$M_1 = M_2$$

Theorem. For all types τ and closed terms $M_1, M_2 \in \mathrm{PCF}_{\tau}$, if $\llbracket M_1 \rrbracket$ and $\llbracket M_2 \rrbracket$ are equal elements of the domain $\llbracket \tau \rrbracket$, then $M_1 \cong_{\mathrm{ctx}} M_2 : \tau$.

Proof.

and symmetrically.

$$\mathcal{C}[M_1] \Downarrow_{nat} V \Rightarrow \llbracket \mathcal{C}[M_1] \rrbracket = \llbracket V \rrbracket \quad ext{(compositionality on } \llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket ext{)}$$
 $\Rightarrow \mathcal{C}[M_2] \Downarrow_{nat} V \quad ext{(adequacy)}$

71

Proof principle

To prove

$$M_1 \cong_{\operatorname{ctx}} M_2 : \tau$$

it suffices to establish

$$\llbracket M_1
rbracket = \llbracket M_2
rbracket$$
 in $\llbracket au
rbracket$

$$\frac{IM_1 I = ILM_2 I}{M_1 \leq A_{\infty} M_2}$$

Proof principle

To prove

$$M_1 \cong_{\operatorname{ctx}} M_2 : \tau$$

it suffices to establish

$$\llbracket M_1
rbracket = \llbracket M_2
rbracket$$
 in $\llbracket au
rbracket$

? The proof principle is sound, but is it complete? That is, is equality in the denotational model also a necessary condition for contextual equivalence?

Topic 6

Denotational Semantics of PCF

Denotational semantics of PCF

To every typing judgement

$$\Gamma \vdash M : \tau$$

we associate a continuous function

$$\llbracket\Gamma \vdash M\rrbracket : \llbracket\Gamma\rrbracket \to \llbracket\tau\rrbracket$$

between domains.

Denotational semantics of PCF types

$$[nat] \stackrel{\text{def}}{=} \mathbb{N}_{\perp}$$
 (flat domain)

$$\llbracket bool \rrbracket \stackrel{\text{def}}{=} \mathbb{B}_{\perp}$$
 (flat domain)

where
$$\mathbb{N} = \{0, 1, 2, \dots\}$$
 and $\mathbb{B} = \{true, false\}$.

Denotational semantics of PCF types

$$[nat] \stackrel{\text{def}}{=} \mathbb{N}_{\perp}$$
 (flat domain)

$$\llbracket bool \rrbracket \stackrel{\text{def}}{=} \mathbb{B}_{\perp}$$
 (flat domain)

$$\llbracket \tau \to \tau' \rrbracket \stackrel{\text{def}}{=} \llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket$$
 (function domain).

where
$$\mathbb{N} = \{0, 1, 2, \dots\}$$
 and $\mathbb{B} = \{true, false\}$.

The partial function from variables to types
If x is a variable in the domainst definition of The parties the type associated to x in T.

$$T = (x_1; x_1, \dots, x_n; x_n) \sim T: [x_i \mapsto x_i]_{i=1-n}$$

 $\begin{aligned}
& = (\lambda_1, \dots, \lambda_n) & = (\lambda_1, \dots, \lambda_n) \\
& = (\lambda_1, \dots, \lambda_n) & \text{where } \lambda_i \in [\lambda_i]
\end{aligned}$

Denotational semantics of PCF type environments

Denotational semantics of PCF type environments

$$\llbracket \Gamma \rrbracket \stackrel{\mathrm{def}}{=} \prod_{x \in dom(\Gamma)} \llbracket \Gamma(x) \rrbracket$$
 (Γ -environments)

= the domain of partial functions ρ from variables to domains such that $dom(\rho)=dom(\Gamma)$ and $\rho(x)\in \llbracket\Gamma(x)\rrbracket$ for all $x\in dom(\Gamma)$

Example:

1. For the empty type environment \emptyset ,

Firenament
$$\emptyset$$
,

$$[\emptyset] = \{\bot\} = \emptyset$$

$$[\psi] = \{\bot\}$$

$$[\psi] = \{\bot\}$$

where \perp denotes the unique partial function with $dom(\perp) = \emptyset$.

2.
$$[\![\langle x \mapsto \tau \rangle]\!] = (\{x\} \to [\![\tau]\!])$$

2.
$$[\![\langle x \mapsto \tau \rangle]\!] = (\{x\} \to [\![\tau]\!]) \cong [\![\tau]\!]$$

2.
$$[\![\langle x \mapsto \tau \rangle]\!] = (\{x\} \to [\![\tau]\!]) \cong [\![\tau]\!]$$

3.

$T+M: T \sim TP+MJ: TTJ \rightarrow TZJ$ Denotational semantics of PCF terms, I cont

Denotational semantics of PCF terms, I

$$\llbracket\Gamma \vdash \mathbf{0}\rrbracket(\rho) \stackrel{\text{def}}{=} 0 \in \llbracket nat \rrbracket$$

$$\llbracket\Gamma \vdash \mathbf{true}\rrbracket(\rho) \stackrel{\text{def}}{=} true \in \llbracket bool \rrbracket$$

$$\llbracket\Gamma \vdash \mathbf{false}\rrbracket(\rho) \stackrel{\text{def}}{=} false \in \llbracket bool \rrbracket$$

$$\llbracket\Gamma \vdash x\rrbracket(\rho) \stackrel{\text{def}}{=} \rho(x) \in \llbracket\Gamma(x)\rrbracket \qquad (x \in dom(\Gamma))$$

$$\llbracket x_1 : \tau_1 - \tau_2 : \tau_1 \vdash x_1 : \tau_2 \vdash \tau_3 \vdash \tau_4 \vdash x_2 : \tau_4 \vdash x_3 \vdash \tau_4 \vdash x_4 \vdash \tau_4 \vdash$$

Denotational semantics of PCF terms, II

$$\begin{split} & \big[\! \big[\Gamma \vdash \mathbf{succ}(M) \big] \! \big] (\rho) \\ & \stackrel{\mathrm{def}}{=} \begin{cases} \big[\! \big[\Gamma \vdash M \big] \! \big] (\rho) + 1 & \text{if } \big[\! \big[\Gamma \vdash M \big] \! \big] (\rho) \neq \bot \\ & \text{if } \big[\! \big[\Gamma \vdash M \big] \! \big] (\rho) = \bot \\ \end{split}$$

Denotational semantics of PCF terms, II

$$\begin{split} & \begin{bmatrix} \Gamma \vdash \mathbf{succ}(M) \end{bmatrix} (\rho) \\ & \stackrel{\mathrm{def}}{=} \begin{cases} \llbracket \Gamma \vdash M \rrbracket (\rho) + 1 & \text{if } \llbracket \Gamma \vdash M \rrbracket (\rho) \neq \bot \\ \bot & \text{if } \llbracket \Gamma \vdash M \rrbracket (\rho) = \bot \end{cases} \end{split}$$

$$\begin{split} & \stackrel{\mathrm{def}}{=} \begin{cases} \llbracket \Gamma \vdash M \rrbracket (\rho) - 1 & \text{if } \llbracket \Gamma \vdash M \rrbracket (\rho) > 0 \\ \bot & \text{if } \llbracket \Gamma \vdash M \rrbracket (\rho) = 0, \bot \end{cases} \end{split}$$

Denotational semantics of PCF terms, II

Denotational semantics of PCF terms, III

Denotational semantics of PCF terms, III

$\llbracket\Gamma \vdash \mathbf{if} \ M_1 \ \mathbf{then} \ M_2 \ \mathbf{else} \ M_3 \rrbracket(\rho)$

$$\stackrel{\text{def}}{=} \begin{cases} \llbracket \Gamma \vdash M_2 \rrbracket(\rho) & \text{if } \llbracket \Gamma \vdash M_1 \rrbracket(\rho) = true \\ \llbracket \Gamma \vdash M_3 \rrbracket(\rho) & \text{if } \llbracket \Gamma \vdash M_1 \rrbracket(\rho) = false \\ \bot & \text{if } \llbracket \Gamma \vdash M_1 \rrbracket(\rho) = \bot \end{cases}$$

NB: $\rho[x \mapsto d] \in \llbracket \Gamma[x \mapsto \tau] \rrbracket$ is the function mapping x to $d \in \llbracket \tau \rrbracket$ and otherwise acting like ρ .

Denotational semantics of PCF terms, V

$$\llbracket \Gamma \vdash \mathbf{fix}(M) \rrbracket(\rho) \stackrel{\text{def}}{=} fix(\llbracket \Gamma \vdash M \rrbracket(\rho))$$

Recall that fix is the function assigning least fixed points to continuous functions.

Denotational semantics of PCF

Proposition. For all typing judgements $\Gamma \vdash M : \tau$, the denotation

$$\llbracket\Gamma \vdash M\rrbracket : \llbracket\Gamma\rrbracket \to \llbracket\tau\rrbracket$$

is a well-defined continous function.

