
Hoare Logic and Model Checking

Alan Mycroft

Computer Laboratory, University of Cambridge, UK
http://www.cl.cam.ac.uk/˜am21

CST Part II – 2015/16

Acknowledgement: slides heavily based on those for Mike Gordon’s 2014/15 courses

Alan Mycroft Hoare Logic and Model Checking 1 / 265

Lecture 1: Introduction

What’s the course about?
◮ Showing programs do what they’re intended to do (this

includes them not doing bad things, e.g. buffer overflow).
◮ Can’t testing do this?

“Testing shows the presence, not the absence of bugs”
[Edsger W. Dijkstra, winner of the 1972 Turing Award]

◮ Incidentally, Software Testing is more than “just writing a
few unit tests and systems tests”.
Off-scope for this course, but see for example:

https://en.wikipedia.org/wiki/Code_coverage
https://en.wikipedia.org/wiki/Software_testing

◮ So we’re going to prove our programs correct.

Alan Mycroft Hoare Logic and Model Checking 2 / 265

Rough Outline

◮ Introduction
◮ Hoare Logic (5–6 lectures)
◮ Lecture 6: 30 mins Q&A with (Sir) Tony Hoare

(Wednesday 24 February 2016)
◮ Temporal Logic and Model Checking (5–6 Lectures)

Two different techniques for proving programs correct.

Based on Mike Gordon’s two courses given in 2014/15 (many
exercises still apply).

Alan Mycroft Hoare Logic and Model Checking 3 / 265

Example 1

What does this program do?

R := 1;
WHILE (N != 0) DO (R := R*N; N := N-1)

It tries to compute factorial – but what formal specification do
we want it to satisfy? (E.g. is it OK that N is corrupted, or that
N<0 causes a loop?)
And how do we prove this it satisfies its specification?

Note: the factorial function doesn’t appear in the source code
anywhere.

We’ll use Hoare Logic for this.

Alan Mycroft Hoare Logic and Model Checking 4 / 265

Example 2

bool flag[2] = {false, false}; int turn;

Thread 1: flag[0] = true;
turn = 1;
while (flag[1] && turn == 1); // busy wait
// critical section
flag[0] = false;
// non-critical stuff
repeat;

Thread 2: flag[1] = true;
turn = 0;
while (flag[0] && turn == 0); // busy wait
// critical section
flag[1] = false;
// non-critical stuff
repeat;

We can use Model Checking to prove this implements mutual
exclusion without using locks (Peterson’s algorithm).

Alan Mycroft Hoare Logic and Model Checking 5 / 265

Programs and Specifications

◮ We can’t prove a program correct in isolation.
◮ Need a specification of what it is intended to do.

◮ Hoare triples {P} C {Q} for Hoare Logic.
◮ Temporal Logic formulae, e.g. G(F available),

for Model Checking.

Alan Mycroft Hoare Logic and Model Checking 6 / 265

Logic and Proof reminder

For Hoare Logic:
◮ Γ |= φ (validity/truth)

Every model which satisfies the formulae in Γ also satisfies
formula φ.

◮ Γ ⊢R φ (provability)
Given a set R of axioms and rules there is a proof
derivation of φ (perhaps using the assumptions in Γ).

For Model Checking we instead use (note the clash of
notation):

◮ M |= φ (model satisfaction)
ModelM satisfies φ.

Alan Mycroft Hoare Logic and Model Checking 7 / 265

Part 1: Hoare Logic

Alan Mycroft Hoare Logic and Model Checking 8 / 265

Hoare Logic
◮ Program specification using Hoare notation
◮ Axioms and rules of Hoare Logic
◮ Soundness and completeness
◮ Mechanised program verification
◮ Pointers, the frame problem and separation logic

Alan Mycroft Hoare Logic and Model Checking 9 / 265

A Little Programming Language

Expressions:

E ::= N | V | E1 + E2 | E1 − E2 | E1 × E2 | . . .

Boolean expressions:

B::= T | F | E1=E2 | E1 ≤ E2 | . . .

Commands:

C::= V := E
| C1 ; C2
| IF B THEN C1 ELSE C2
| WHILE B DO C

Alan Mycroft Hoare Logic and Model Checking 10 / 265

Specification of Imperative Programs

Acceptable
Initial State

Acceptable
Final State

“X is
greater than

zero”

“Y is the
square root

of X”
✲

Action
of the

Program

Alan Mycroft Hoare Logic and Model Checking 11 / 265

Hoare notation

◮ Tony Hoare introduced the following notation called a
partial correctness specification for specifying what a
program does:

{P} C {Q}
where:

◮ C is a command
◮ P and Q are conditions on the program variables used in C

◮ Conditions on program variables will be written using
standard mathematical notations together with logical
operators like:

◮ ∧ (‘and’), ∨ (‘or’), ¬ (‘not’), ⇒ (‘implies’)

◮ Hoare’s original notation was P {C} Q not {P} C {Q}, but
the latter form is now more widely used

Alan Mycroft Hoare Logic and Model Checking 12 / 265

Meaning of Hoare’s Notation

◮ {P} C {Q} is true (i.e. |= {P} C {Q}) if
◮ whenever C is executed in a state satisfying P
◮ and if the execution of C terminates
◮ then the state in which C terminates satisfies Q

◮ Example: {X = 1} X:=X+1 {X = 2}
◮ P is the condition that the value of X is 1
◮ Q is the condition that the value of X is 2
◮ C is the assignment command X:=X+1

◮ {X = 1} X:=X+1 {X = 2} is true
◮ {X = 1} X:=X+1 {X = 3} is false

Alan Mycroft Hoare Logic and Model Checking 13 / 265

Hoare Logic and Verification Conditions

◮ Hoare Logic is a deductive proof system for Hoare triples
{P} C {Q}

◮ Can use Hoare Logic directly to verify programs
◮ original proposal by Hoare
◮ tedious and error prone
◮ impractical for large programs

◮ Can ‘compile’ proving {P} C {Q} to verification conditions
◮ more natural
◮ basis for computer assisted verification

◮ Proof of verification conditions equivalent to proof with
Hoare Logic

◮ Hoare Logic can be used to explain verification conditions

Alan Mycroft Hoare Logic and Model Checking 14 / 265

Partial Correctness Specification

◮ The formula {P} C {Q} is called a partial correctness
specification

◮ P is called its precondition
◮ Q its postcondition

◮ {P} C {Q} is true (i.e. |= {P} C {Q}) if
◮ whenever C is executed in a state satisfying P
◮ and if the execution of C terminates
◮ then the state in which C’s execution terminates satisfies Q

◮ These specifications are ‘partial’ because for {P} C {Q} to
be true it is not necessary for the execution of C to
terminate when started in a state satisfying P

◮ It is only required that if the execution terminates, then Q
holds

Alan Mycroft Hoare Logic and Model Checking 15 / 265

Total Correctness Specification

◮ A stronger kind of specification is a total correctness
specification

◮ there is no standard notation for such specifications
◮ we shall use [P] C [Q]

◮ [P] C [Q] is true (i.e. |= [P] C [Q]) if
◮ whenever C is executed in a state satisfying P the

execution of C terminates
◮ after C terminates Q holds

◮ [X = 1] Y:=X; WHILE T DO X := X [Y = 1]

◮ this says that the execution of Y:=X;WHILE T DO X:=X
terminates when started in a state satisfying X = 1

◮ after which Y = 1 will hold
◮ this is clearly false

Alan Mycroft Hoare Logic and Model Checking 16 / 265

Total Correctness

◮ Informally: Total correctness = Termination + Partial
correctness

◮ Total correctness is the ultimate goal
◮ usually easier to show partial correctness and termination

separately
◮ Termination is usually straightforward to show, but there

are examples where it is not: no one knows whether the
program below terminates for all values of X

WHILE X>1 DO
IF ODD(X) THEN X := 3*X + 1

ELSE X := X DIV 2

◮ DIV is C-style integer division
◮ the Collatz conjecture is that this terminates with X=1

◮ Microsoft’s T2 tool proves systems code terminates

Alan Mycroft Hoare Logic and Model Checking 17 / 265

Auxiliary Variables

◮ {X=x ∧ Y=y} R:=X; X:=Y; Y:=R {X=y ∧ Y=x}
◮ this says that if the execution of R:=X; X:=Y; Y:=R

terminates (which it does)
◮ then the values of X and Y are exchanged

◮ The variables x and y, which don’t occur in the command
and are used to name the initial values of program
variables X and Y

◮ They are called auxiliary variables or ghost variables
◮ Informal convention:

◮ program variable are upper case
◮ auxiliary variable are lower case

Alan Mycroft Hoare Logic and Model Checking 18 / 265

More simple examples not lectured

◮ {X=x ∧ Y=y} X:=Y; Y:=X {X=y ∧ Y=x}
◮ this says that X:=Y; Y:=X exchanges the values of X and
Y

◮ this is not true

◮ {T} C {Q}
◮ this says that whenever C halts, Q holds

◮ {P} C {T}
◮ this specification is true for every condition P and every

command C
◮ because T is always true

◮ [P] C [T]
◮ this says that C terminates if initially P holds
◮ it says nothing about the final state

◮ [T] C [P]
◮ this says that C always terminates and ends in a state

where P holds
Alan Mycroft Hoare Logic and Model Checking 19 / 265

A More Complicated Example not lectured

◮ {T}
RM:=X;
QU:=0;
WHILE Y≤RM DO

(RM:=RM-Y; QU:=QU+1)





C

{RM < Y ∧ X = RM+ (Y× QU)}
◮ This is {T} C {RM < Y ∧ X = RM+ (Y× QU)}

◮ where C is the command indicated by the braces above
◮ the specification is true if whenever the execution of C

halts, then QU is quotient and RM is the remainder resulting
from dividing Y into X

◮ it is true (even if X is initially negative!)
◮ Using Q as a program variable can lead to confusion, hence
QU and RM here.

Alan Mycroft Hoare Logic and Model Checking 20 / 265

Some Easy Exercises not lectured

◮ When is [T] C [T] true?
◮ Write a partial correctness specification which is true if and

only if the command C has the effect of multiplying the
values of X and Y and storing the result in X

◮ Write a specification which is true if the execution of C
always halts when execution is started in a state satisfying
P.
(This implies that Hoare Logic is undecidable – see later.)

Alan Mycroft Hoare Logic and Model Checking 21 / 265

Specification can be Tricky

◮ “The program must set Y to the maximum of X and Y”
◮ [T] C [Y = max(X,Y)]

◮ A suitable program:
◮ IF X >= Y THEN Y := X ELSE X := X

◮ Another?
◮ IF X >= Y THEN X := Y ELSE X := X

◮ Or even?
◮ Y := X

◮ Later you will be able to prove that all these programs are
“correct” which doesn’t seem quite right

◮ The postcondition “Y=max(X,Y)” says “Y is the maximum
of X and Y in the final state”

Alan Mycroft Hoare Logic and Model Checking 22 / 265

Specification can be Tricky (ii)

◮ The intended specification was probably not properly
captured by

⊢ {T} C {Y=max(X,Y)}

◮ The correct formalisation of what was intended is probably
⊢ {X=x ∧ Y=y} C {Y=max(x,y)}

◮ The lesson
◮ it is easy to write the wrong specification!
◮ a proof system will not help since the incorrect programs

could have been proved “correct”
◮ testing would have helped!

Alan Mycroft Hoare Logic and Model Checking 23 / 265

Review of Predicate Calculus

In first-order logic there are two separate syntactic classes
◮ Terms (or expressions): these denote values (e.g.

numbers)
t ::= x | f (t1, . . . , tn)

◮ Formulae (sometimes statements): these are either true or
false

φ ::= P(t1, . . . , tn) | φ ∧ φ | ¬φ | ∀x .φ etc.

Hoare logic adjusts these by adding:
◮ t ::= E (program expressions)
◮ φ ::= {P} C {Q} | B (program boolean expressions)

Alan Mycroft Hoare Logic and Model Checking 24 / 265

Floyd-Hoare Logic

◮ To construct formal proofs of partial correctness
specifications,
axioms and rules of inference are needed

◮ This is what Floyd-Hoare logic provides
◮ the formulation of the deductive system is due to Hoare
◮ some of the underlying ideas originated with Floyd

◮ A proof (or ‘proof derivation’) in Floyd-Hoare logic is a tree
each of whose nodes and leaves are instances of the rules
and axioms of the logic, and whose root (usually drawn at
the bottom of the derivation!) is what we have proved.

◮ A formal proof makes explicit what axioms and rules of
inference are used to arrive at a conclusion

Alan Mycroft Hoare Logic and Model Checking 25 / 265

Preview of Floyd-Hoare rules

(ASS)⊢ {Q[E/V]} V := E {Q} (SEQ)
⊢ {P ∧ B} C {Q} ⊢ {P ∧ ¬B} C′ {Q}

⊢ {P} IF B THEN C ELSE C′ {Q}

(IF)
⊢ {P} C {Q} ⊢ {Q} C′ {R}

⊢ {P} C; C′ {R} (WHILE)
⊢ {P ∧ B} C {P}

⊢ {P} WHILE B DO C {P ∧ ¬B}

(PRE)
⊢arith P ⇒ P′ ⊢ {P′} C {Q}

⊢ {P} C {Q} (POST)
⊢ {P} C {Q′} ⊢arith Q′ ⇒ Q

⊢ {P} C {Q}
Notes (we’ll explain the rules in detail next):

◮ These are like typing rules – one for each syntactic form of
the language (‘syntax-directed’) along with with additional
glue rules (PRE) and (POST); these are a bit like
sub-typing rules or rules for polymorphism.

◮ Note the references to rules of arithmetic ⊢arith.
◮ We’ll neither need assumptions Γ in Γ ⊢ {P} C {Q}

nor use {P} C {Q} other than (as implicitly universally
quantified) at the top-level of a formula.

Alan Mycroft Hoare Logic and Model Checking 26 / 265

Reminder of our little programming language

Expressions

E ::= N | V | E1 + E2 | E1 − E2 | E1 × E2 | . . .

Boolean expressions

B ::= T | F | E1=E2 | E1 ≤ E2 | . . .

Commands

C ::= V := E Assignments
| C1 ; C2 Sequences
| IF B THEN C1 ELSE C2 Conditionals
| WHILE B DO C WHILE-commands

Remark: The Floyd-Hoare rules constitute an axiomatic
semantics of our programming language. (This is a third
alternative to operational and denotational formulations.)

Alan Mycroft Hoare Logic and Model Checking 27 / 265

Judgements not lectured

◮ Three kinds of things that could be true or false:
◮ formulae of mathematics, e.g. (X+ 1)2 = X2 + 2× X+ 1
◮ partial correctness specifications {P} C {Q}
◮ total correctness specifications [P] C [Q]

◮ These three kinds of things are examples of judgements
◮ a logical system gives rules for proving judgements
◮ Floyd-Hoare logic provides rules for proving partial

correctness specifications
◮ the laws of arithmetic provide ways of proving formulae

about integers

◮ ⊢ S means formula S can be proved
◮ how to prove predicate calculus formulae assumed known
◮ this course covers axioms and rules for proving

program correctness formulae

Alan Mycroft Hoare Logic and Model Checking 28 / 265

Syntactic Conventions not lectured

◮ Symbols V , V1, . . . , Vn stand for program variables
◮ examples of particular variables are X, R, Q etc (using Q can

be confusing!).
◮ Symbols x , x ′, y stand for auxiliary (mathematical)

variables
◮ Symbols E , E1, . . . , En stand for arbitrary expressions (or

terms)
◮ these are things like X+ 1,

√
2 etc. which denote values

(usually numbers)

◮ Symbols S, S1, . . . , Sn stand for arbitrary formulae
◮ these are conditions like X < Y, X2 = 1 etc. which are either

true or false
◮ will also use P, Q, R to range over pre and postconditions

◮ Symbols C, C1, . . . , Cn stand for arbitrary commands

Alan Mycroft Hoare Logic and Model Checking 29 / 265

Substitution Notation remindernot lectured

◮ Q[E/V] is the result of replacing all occurrences of
(program variable) V in formula Q by term E

◮ read Q[E/V] as ‘Q with E substituted for V ’
◮ for example: (X+1 > X)[Y+Z/X] = ((Y+Z)+1 > Y+Z)
◮ In this course we won’t have local variable bindings so don’t

have to worry about variable capture)
◮ In this course we will only use substitution on program

variables not auxiliary variables
◮ Same notation for substituting into terms, e.g. E1[E2/V]

Alan Mycroft Hoare Logic and Model Checking 30 / 265

The Assignment Axiom (Hoare)
◮ Syntax: V:= E
◮ Semantics: value of V in final state is value of E in initial

state
◮ Example: X:=X+1 (adds one to the value of the variable X)

The Assignment Axiom

⊢ {Q[E/V]} V:=E {Q}

for any variable V , expression E and formula Q.

◮ Instances of the assignment axiom are
◮ ⊢ {E = x} V := E {V = x}
◮ ⊢ {Y = 2} X := 2 {Y = X}
◮ ⊢ {X+ 1 = n+ 1} X := X+ 1 {X = n+ 1}
◮ ⊢ {E = E} X := E {X = E} (if X does not occur in E)

Alan Mycroft Hoare Logic and Model Checking 31 / 265

The Backwards Fallacy

◮ Many people feel the assignment axiom is ‘backwards’
◮ One common erroneous intuition is that it should be

⊢ {P} V:=E {P[V/E]}

◮ which isn’t really a proper substitution
◮ this has the false consequence ⊢ {X=0} X:=1 {X=0}

(since (X=0)[X/1] equals X=0 (1 doesn’t occur in X=0))

◮ Another erroneous intuition is that it should be

⊢ {P} V:=E {P[E/V]}

◮ this has the false consequence ⊢ {X=0} X:=1 {1=0}
(got by taking P to be X=0, V to be X and E to be 1)

Alan Mycroft Hoare Logic and Model Checking 32 / 265

Validity

◮ Important to establish the validity of axioms and rules
◮ Later will give a formal semantics of our little programming

language
◮ then prove axioms and rules of inference of Floyd-Hoare

logic are sound
◮ this will only increase our confidence in the axioms and

rules to the extent that we believe the correctness of the
formal semantics!

◮ The Assignment Axiom is not valid for ‘real’ programming
languages

◮ In an early PhD on Hoare Logic G. Ligler showed that the
assignment axiom can fail to hold in six different ways for
the language Algol 60

Alan Mycroft Hoare Logic and Model Checking 33 / 265

Expressions with Side-effects (just say ‘no’)
◮ The validity of the assignment axiom depends on

expressions not having side effects
◮ Reason 1. It would break substitution in the assignment

rule
◮ Reason 2. Suppose that our language had a C-like

comma-expression:

((Y:=1), 2)

◮ this expression has value 2, but its evaluation also ‘side
effects’ the variable Y by storing 1 in it

◮ If the assignment axiom applied to comma expressions,
then it could be used to deduce

⊢ {Y=0} X := ((Y:=1), 2) {Y=0}
◮ since (Y=0)[E/X] = (Y=0) as Y=0 does not contain X
◮ this is unsound; after the assignment Y=1

Alan Mycroft Hoare Logic and Model Checking 34 / 265

Floyd’s Forwards Assignment Axiom not examinable

The original semantics of assignment due to Floyd:

◮ ⊢ {P} V:=E {∃v . V = E[v/V] ∧ P[v/V]}
◮ where v is a new auxiliary variable (i.e. doesn’t equal V or

occur in P or E)

◮ Example instance
⊢ {X=1} X:=X+1 {∃v . X = X+1[v/X] ∧ X=1[v/X]}

◮ Simplifying the postcondition
⊢ {X=1} X:=X+1 {∃v . X = X+1[v/X] ∧ X=1[v/X]}
⊢ {X=1} X:=X+1 {∃v . X = v + 1 ∧ v = 1}
⊢ {X=1} X:=X+1 {∃v . X = 1+ 1 ∧ v = 1}
⊢ {X=1} X:=X+1 {X = 1+ 1 ∧ ∃v . v = 1}
⊢ {X=1} X:=X+1 {X = 2 ∧ T}
⊢ {X=1} X:=X+1 {X = 2}

Forwards Axiom equivalent to standard one but harder to use

Alan Mycroft Hoare Logic and Model Checking 35 / 265

Hoare Logic – Axioms and Rules

Alan Mycroft Hoare Logic and Model Checking 36 / 265

The Assignment Axiom (reprise)

The Assignment Axiom

⊢ {Q[E/V]} V:=E {Q}

for any variable V , expression E and formula Q.

Alan Mycroft Hoare Logic and Model Checking 37 / 265

Precondition Strengthening

Precondition strengthening

⊢ P ⇒ P ′ ⊢ {P ′} C {Q}
⊢ {P} C {Q}

◮ Note the two hypotheses are different kinds of judgements.
You may prefer to write ⊢arith for the first one.

Alan Mycroft Hoare Logic and Model Checking 38 / 265

Example

Here we’re using an auxiliary (mathematical) variable n instead
of using a specific number like 42.

◮ The assignment axiom allows us to deduce
⊢ {X+ 1 = n+ 1} X := X+ 1 {X = n+ 1}

(but cannot prove ⊢ {X = n} X := X+ 1 {X = n+ 1})
◮ But we have ⊢arith {X = n} ⇒ {X+ 1 = n+ 1}.
◮ Combining the two previous facts with the

precondition-strengthening rule gives the desired
⊢ {X = n} X := X+ 1 {X = n+ 1}

In other words – precondition strengthening acts as a glue rule.

Exercise: prove ⊢ {X = n− 1} X := X+ 1 {X = n}

Alan Mycroft Hoare Logic and Model Checking 39 / 265

Postcondition weakening

Just as the previous rule allows the precondition of a partial
correctness specification to be strengthened, the following one
allows us to weaken the postcondition:

Postcondition weakening

⊢ {P} C {Q′} ⊢ Q′ ⇒ Q
⊢ {P} C {Q}

Also acts as a glue rule.

Alan Mycroft Hoare Logic and Model Checking 40 / 265

An Example Formal Proof

◮ Here is a little formal proof (exercise: draw this as a proof
tree):

1. ⊢ {R=X ∧ 0=0} Q:=0 {R=X ∧ Q=0} By the assignment axiom
2. ⊢arith R=X ⇒ R=X ∧ 0=0 By pure logic
3. ⊢ {R=X} Q:=0 {R=X ∧ Q=0} By precondition strengthening
4. ⊢arith R=X ∧ Q=0 ⇒ R=X+(Y× Q) By laws of arithmetic
5. ⊢ {R=X} Q:=0 {R=X+(Y× Q)} By postcondition weakening

◮ The rules precondition strengthening and postcondition
weakening are sometimes called the rules of consequence

Alan Mycroft Hoare Logic and Model Checking 41 / 265

The sequencing rule

◮ Syntax: C1; · · · ;Cn

◮ Semantics: the commands C1, · · · , Cn are executed in
that order

◮ Example: R:=X; X:=Y; Y:=R

◮ the values of X and Y are swapped using R as a temporary
variable

◮ note side effect : value of R changed to the old value of X

The sequencing rule

⊢ {P} C1 {Q}, ⊢ {Q} C2 {R}
⊢ {P} C1;C2 {R}

Alan Mycroft Hoare Logic and Model Checking 42 / 265

Example Proof

By the assignment axiom:

i ⊢ {X=x∧Y=y} R:=X {R=x∧Y=y}
ii ⊢ {R=x∧Y=y} X:=Y {R=x∧X=y}
iii ⊢ {R=x∧X=y} Y:=R {Y=x∧X=y}

Hence by (i), (ii) and the sequencing rule

iv ⊢ {X=x∧Y=y} R:=X; X:=Y {R=x∧X=y}
Hence by (iv) and (iii) and the sequencing rule

v ⊢ {X=x∧Y=y} R:=X; X:=Y; Y:=R {Y=x∧X=y}
(which is what we expect).

Alan Mycroft Hoare Logic and Model Checking 43 / 265

Conditionals

◮ Syntax: IF S THEN C1 ELSE C2

◮ Semantics:
◮ if the statement S is true in the current state, then C1 is

executed
◮ if S is false, then C2 is executed

◮ Example: IF X<Y THEN MAX:=Y ELSE MAX:=X

◮ the value of the variable MAX it set to the maximum of the
values of X and Y

Alan Mycroft Hoare Logic and Model Checking 44 / 265

The Conditional Rule
The conditional rule

⊢ {P ∧ S} C1 {Q}, ⊢ {P ∧ ¬S} C2 {Q}
⊢ {P} IF S THEN C1 ELSE C2 {Q}

◮ From Assignment Axiom + Precondition Strengthening and
⊢ (X≥Y ⇒ X = max(X,Y)) ∧ (¬(X≥Y)
⇒ Y = max(X,Y))
it follows that
⊢ {T ∧ X≥Y} MAX:=X {MAX=max(X,Y)}

and
⊢ {T ∧ ¬(X≥Y)} MAX:=Y

{MAX=max(X,Y)}

◮ Then by the conditional rule it follows that
⊢ {T} IF X≥Y THEN MAX:=X ELSE

MAX:=Y {MAX=max(X,Y)}
Alan Mycroft Hoare Logic and Model Checking 45 / 265

WHILE-commands

◮ Syntax: WHILE S DO C
◮ Semantics:

◮ if the statement S is true in the current state, then C is
executed and the WHILE-command is repeated

◮ if S is false, then nothing is done
◮ thus C is repeatedly executed until the value of S becomes

false
◮ if S never becomes false, then the execution of the

command never terminates

◮ Example: WHILE ¬(X=0) DO X:= X-2

◮ if the value of X is non-zero, then its value is decreased by
2 and then the process is repeated

◮ This WHILE-command will terminate (with X having value
0) if the value of X is an even non-negative number

◮ in all other states it will not terminate

Alan Mycroft Hoare Logic and Model Checking 46 / 265

Invariants

◮ Suppose ⊢ {P ∧ S} C {P}
◮ P is said to be an invariant of C whenever S holds
◮ The WHILE-rule says that

◮ if P is an invariant of the body of a WHILE-command
whenever the test condition holds

◮ then P is an invariant of the whole WHILE-command

◮ In other words
◮ if executing C once preserves the truth of P
◮ then executing C any number of times also preserves the

truth of P

◮ The WHILE-rule also expresses the fact that after a
WHILE-command has terminated, the test must be false

◮ otherwise, it wouldn’t have terminated

Alan Mycroft Hoare Logic and Model Checking 47 / 265

The WHILE-Rule

The WHILE-rule

⊢ {P ∧ S} C {P}
⊢ {P} WHILE S DO C {P ∧ ¬S}

◮ It is easy to show
⊢ {X=R+(Y×Q)∧Y≤R} R:=R-Y; Q:=Q+1
{X=R+(Y×Q)}

◮ Hence by the WHILE-rule with P = ‘X=R+(Y×Q)’ and
S = ‘Y≤R’

⊢ {X=R+(Y×Q)}
WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)
{X=R+(Y×Q) ∧ ¬(Y≤R)}

Alan Mycroft Hoare Logic and Model Checking 48 / 265

Example
◮ From the previous slide

⊢ {X=R+(Y×Q)}
WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)
{X=R+(Y×Q) ∧ ¬(Y≤R)}

◮ It is easy to deduce that

⊢ {T} R:=X; Q:=0 {X=R+(Y×Q)}

◮ Hence by the sequencing rule and postcondition
weakening

⊢ {T}
R:=X;
Q:=0;
WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)
{R<Y ∧ X=R+(Y×Q)}

Alan Mycroft Hoare Logic and Model Checking 49 / 265

Summary

◮ We have given:
◮ a notation for specifying what a program does
◮ a way of proving that it meets its specification

◮ Now we look at ways of finding proofs and organising
them:

◮ finding invariants
◮ derived rules
◮ backwards proofs
◮ annotating programs prior to proof

◮ Then we see how to automate program verification
◮ the automation mechanises some of these ideas

Alan Mycroft Hoare Logic and Model Checking 50 / 265

How does one find an invariant?
The WHILE-rule

⊢ {P ∧ S} C {P}
⊢ {P} WHILE S DO C {P ∧ ¬S}

◮ Look at the facts:
◮ invariant P must hold initially
◮ with the negated test ¬S the invariant P must establish the

result
◮ when the test S holds, the body must leave the invariant P

unchanged
◮ Think about how the loop works – the invariant should say

that:
◮ what has been done so far together with what

remains to be done
◮ holds at each iteration of the loop
◮ and gives the desired result when the loop terminates

Alan Mycroft Hoare Logic and Model Checking 51 / 265

Example
◮ Consider a factorial program

{X=n ∧ Y=1}
WHILE X6=0 DO

(Y:=Y×X; X:=X-1)
{X=0 ∧ Y=n!}

◮ Look at the facts
◮ initially X=n and Y=1
◮ finally X=0 and Y=n!
◮ on each loop Y is increased and, X is decreased

◮ Think how the loop works
◮ Y holds the result so far
◮ X! is what remains to be computed
◮ n! is the desired result

◮ The invariant is X!×Y = n!
◮ ‘stuff to be done’ × ‘result so far’ = ‘desired result’
◮ decrease in X combines with increase in Y to make invariant

Alan Mycroft Hoare Logic and Model Checking 52 / 265

Related example

{X=0 ∧ Y=1}
WHILE X<N DO (X:=X+1; Y:=Y×X)
{Y=N!}

◮ Look at the Facts
◮ initially X=0 and Y=1
◮ finally X=N and Y=N!
◮ on each iteration both X an Y increase: X by 1 and Y by X

◮ An invariant is Y = X!

◮ At end need Y = N!, but WHILE-rule only gives ¬(X<N)
◮ Ah Ha! Invariant needed: Y = X! ∧ X≤N
◮ At end X ≤ N ∧¬(X<N) ⇒ X=N

◮ Often need to strengthen invariants to get them to work
◮ typical to add stuff to ‘carry along’ like X≤N

Alan Mycroft Hoare Logic and Model Checking 53 / 265

Conjunction and Disjunction
Specification conjunction

⊢ {P1} C {Q1}, ⊢ {P2} C {Q2}
⊢ {P1 ∧ P2} C {Q1 ∧Q2}

Specification disjunction

⊢ {P1} C {Q1}, ⊢ {P2} C {Q2}
⊢ {P1 ∨ P2} C {Q1 ∨Q2}

◮ Useful for splitting a proof into independent bits
◮ they enable {P} C {Q1 ∧Q2} to be proved by proving

separately that both {P} C {Q1} and also that {P} C {Q2}
◮ Any proof with these rules could be done without using

them
◮ i.e. they are theoretically redundant (proof omitted)
◮ however, useful in practice

Alan Mycroft Hoare Logic and Model Checking 54 / 265

Derived rules for finding proofs
◮ Suppose the goal is to prove
{Precondition} Command {Postcondition}

◮ If there were a rule of the form

⊢ H1, · · · , ⊢ Hn

⊢ {P} C {Q}

then we could instantiate (think Prolog)

P 7→ Precondition, C 7→ Command , Q 7→ Postcondition

to get instances of H1, · · · ,Hn as subgoals
◮ Some of the rules are already in this form e.g. the

sequencing rule
◮ We will derive rules of this form for all commands
◮ Then we use these derived rules for mechanising Hoare

Logic proofs

Alan Mycroft Hoare Logic and Model Checking 55 / 265

Derived Rules
We will establish derived rules of the following form:

· · ·
⊢ {P} V:=E {Q}· · ·
⊢ {P} C1;C2 {Q}· · ·

⊢ {P} IF S THEN C1 ELSE C2 {Q}· · ·
⊢ {P} WHILE S DO C {Q}

◮ These support ‘backwards proof’ starting from a goal
{P} C {Q}

◮ Useful intuition: think of Hoare-Logic rules as a 3-argument
Prolog predicate. This just means the P and Q parameter
are variables which match everything, and are not
restricted to special forms P ∧ ¬B.

Alan Mycroft Hoare Logic and Model Checking 56 / 265

The Derived Assignment Rule
◮ An example proof

1. ⊢ {R=X ∧ 0=0} Q:=0 {R=X ∧ Q=0} By the assignment axiom.
2. ⊢ R=X ⇒ R=X ∧ 0=0 By pure logic.
3. ⊢ {R=X} Q:=0 {R=X ∧ Q=0} By precondition strengthening.

◮ Can generalise this proof to a proof schema:
1. ⊢ {Q[E/V]} V:=E {Q} By the assignment axiom.
2. ⊢ P ⇒ Q[E/V] By assumption.
3. ⊢ {P} V:=E {Q} By precondition strengthening.

◮ This proof schema justifies:

Derived Assignment Rule

⊢ P ⇒ Q[E/V]
⊢ {P} V:=E {Q}

◮ Note: Q[E/V] is the weakest liberal precondition
wlp(V:=E ,Q) – see later.

◮ Example proof above can now be done in one less step
1. ⊢ R=X ⇒ R=X ∧ 0=0 By pure logic.
2. ⊢ {R=X} Q:=0 {R=X ∧ Q=0} By derived assignment.

Alan Mycroft Hoare Logic and Model Checking 57 / 265

Derived Sequenced Assignment Rule

◮ The following rule will be useful later

Derived Sequenced Assignment Rule

⊢ {P} C {Q[E/V]}
⊢ {P} C;V:=E {Q}

◮ Intuitively work backwards:
◮ push Q ‘through’ V:=E , changing it to Q[E/V]

◮ Example: By the assignment axiom:
◮ ⊢ {X=x∧Y=y} R:=X {R=x∧Y=y}
◮ Hence by the sequenced assignment rule
◮ ⊢ {X=x∧Y=y} R:=X; X:=Y {R=x∧X=y}

Alan Mycroft Hoare Logic and Model Checking 58 / 265

The Derived While Rule

Derived While Rule

⊢ P ⇒ R ⊢ {R ∧ S} C {R} ⊢ R ∧ ¬S ⇒ Q
⊢ {P} WHILE S DO C {Q}

This follows from the While Rule and the rules of consequence.
As an example: it is easy to show

◮ ⊢ R=X ∧ Q=0⇒ X=R+(Y×Q)
◮ ⊢ {X=R+(Y×Q)∧Y≤R} R:=R-Y; Q:=Q+1 {X=R+(Y×Q)}
◮ ⊢ X=R+(Y×Q)∧¬(Y≤R)⇒ X=R+(Y×Q)∧¬(Y≤R)

Then, by the derived While rule
⊢ {R=X ∧ Q=0}

WHILE Y≤R DO (R:=R-Y; Q:=Q+1)
{X=R+(Y×Q) ∧ ¬(Y≤R)}

Alan Mycroft Hoare Logic and Model Checking 59 / 265

The Derived Sequencing Rule

◮ The rule below follows from the sequencing and
consequence rules

The Derived Sequencing Rule

⊢ P ⇒ P1
⊢ {P1} C1 {Q1} ⊢ Q1 ⇒ P2
⊢ {P2} C2 {Q2} ⊢ Q2 ⇒ P3
· · · · · ·
⊢ {Pn} Cn {Qn} ⊢ Qn ⇒ Q
⊢ {P} C1; . . . ; Cn {Q}

◮ Exercise: why no derived conditional rule?

Alan Mycroft Hoare Logic and Model Checking 60 / 265

Forwards and backwards proof
◮ Previously it was shown how to prove {P}C{Q} by

◮ proving properties of the components of C and
◮ then putting these together, with appropriate proof rules,

to get the desired property of C

◮ For example, to prove ⊢ {P}C1;C2{Q}
◮ First prove ⊢ {P}C1{R} and ⊢ {R}C2{Q}
◮ then deduce ⊢ {P}C1;C2{Q} by sequencing rule

◮ This method is called forward proof
◮ move forward from axioms via rules to conclusion

◮ The problem with forwards proof is that it is not always
easy to see what you need to prove to get where you want
to be

◮ It is often more natural to work backwards (think Prolog):
◮ starting from the goal of showing {P}C{Q}
◮ generate subgoals until problem solved

Alan Mycroft Hoare Logic and Model Checking 61 / 265

Mechanised verification

Alan Mycroft Hoare Logic and Model Checking 62 / 265

NEW TOPIC: Mechanising Program Verification

◮ The architecture of a simple program verifier will be
described

◮ Justified with respect to the rules of Floyd-Hoare logic
◮ It is clear that

◮ proofs are long and boring, even if the program being
verified is quite simple

◮ lots of fiddly little details to get right, many of which are
trivial, e.g.

⊢ (R=X ∧ Q=0) ⇒ (X = R+ Y×Q)

Alan Mycroft Hoare Logic and Model Checking 63 / 265

Mechanisation
Goal: automate the routine bits of proofs in Floyd-Hoare logic
◮ Unfortunately, logicians have shown that it is impossible in

principle to design a decision procedure to decide
automatically the truth or falsehood of an arbitrary
mathematical statement

◮ This does not mean that one cannot have procedures that
will prove many useful theorems

◮ the non-existence of a general decision procedure merely
shows that one cannot prove everything automatically

◮ in practice, it is quite possible to build a system that will
mechanise the boring and routine aspects of verification

The standard approach to this will be described in the course
◮ ideas very old (JC King’s 1969 CMU PhD, Stanford verifier

in 1970s)
◮ used by program verifiers (e.g. Gypsy and SPARK verifier)
◮ provides a verification front end to different provers (see

Why system)
Alan Mycroft Hoare Logic and Model Checking 64 / 265

Architecture of a Verifier
Specification to be proved

❄
• human expert

Annotated specification

❄
• VC generator

Set of logic statements
(VCs)

❄
• theorem prover

Simplified set of
verification conditions

❄
• human expert

End of proof

Alan Mycroft Hoare Logic and Model Checking 65 / 265

Commentary

◮ Input: a Hoare triple annotated with mathematical
statements (formulae)

◮ these annotations describe relationships between variables
◮ think C-like assert() but checked before run time

◮ The system generates a set of purely mathematical
statements called verification conditions (or VCs)

◮ If the verification conditions are provable (⊢arith) then the
original specification can be deduced (⊢) from the axioms
and rules of Hoare logic

◮ The verification conditions are passed to a theorem prover
program which attempts to prove them automatically

◮ if it fails, advice is sought from the user

Alan Mycroft Hoare Logic and Model Checking 66 / 265

Verification conditions
The three steps in proving {P}C{Q} with a verifier:

1 The program C is annotated by inserting statements
(assertions) expressing conditions that are meant to hold
at intermediate points

◮ tricky: needs intelligence and good understanding of how
the program works

◮ automating it is an artificial intelligence problem

2 A set of logic statements called verification conditions
(VCs) is then generated from the annotated specification

◮ this is purely mechanical and easily done by a program

3 The verification conditions are proved
◮ needs automated theorem proving

◮ To improve automated verification one can try to
◮ reduce the number and complexity of the annotations

required
◮ increase the power of the theorem prover
◮ still a research area

Alan Mycroft Hoare Logic and Model Checking 67 / 265

Validity of Verification Conditions

◮ It will be shown that
◮ if one can prove all the verification conditions generated

from {P}C{Q}
◮ then ⊢ {P}C{Q}

◮ Step 2 converts a verification problem into a conventional
mathematical problem

◮ The process will be illustrated with:
{T}

R:=X;
Q:=0;
WHILE Y≤R DO
(R:=R-Y; Q:=Q+1)

{X = R+Y×Q ∧ R<Y}

◮ Beware the difference between Q (program variable) and Q
(postcondition).

Alan Mycroft Hoare Logic and Model Checking 68 / 265

Example

◮ Step 1 is to insert annotations (formulae) φ1 and φ2
{T}

R:=X;
Q:=0; {R=X ∧ Q=0} ←− φ1
WHILE Y≤R DO {X = R+Y×Q} ←− φ2
(R:=R-Y; Q:=Q+1)

{X = R+Y×Q ∧ R<Y}

◮ The annotations φ1 and φ2 state conditions which are
intended to hold whenever control reaches them

◮ Control only reaches the point at which φ1 is placed once
◮ It reaches φ2 each time the WHILE body is executed

◮ whenever this happens X=R+Y×Q holds, even though the
values of R and Q vary

◮ φ2 is an invariant of the WHILE-command

Alan Mycroft Hoare Logic and Model Checking 69 / 265

Generating and Proving Verification Conditions

◮ Step 2 will generate the following four verification
conditions

i T ⇒ (X=X ∧ 0=0)
ii (R=X ∧ Q=0) ⇒ (X = R+(Y×Q))
iii (X = R+(Y×Q)) ∧ Y≤R) ⇒ (X =

(R-Y)+(Y×(Q+1)))
iv (X = R+(Y×Q)) ∧ ¬(Y≤R) ⇒ (X =

R+(Y×Q) ∧ R<Y)

◮ Notice that these are statements of arithmetic
◮ the constructs of our programming language have been

‘compiled away’

◮ Step 3 consists in proving the four verification conditions
◮ easy with modern automatic theorem provers

Alan Mycroft Hoare Logic and Model Checking 70 / 265

Annotation of Commands

◮ An annotated command is a command with statements
(assertions) embedded within it

◮ A command is properly annotated if statements have been
inserted at the following places

i before C2 in C1;C2 if C2 is not an assignment command
ii after the word DO in WHILE commands

◮ The inserted assertions should express the conditions one
expects to hold whenever control reaches the point at
which the assertion occurs

◮ Can reduce number of annotations using weakest
preconditions
(see later)

Alan Mycroft Hoare Logic and Model Checking 71 / 265

Annotation of Specifications

◮ A properly annotated specification is a specification
{P}C{Q} where C is a properly annotated command

◮ Example: To be properly annotated, assertions should be
at points ℓ1 and ℓ2 of the specification below
{X = n}

Y:=1; ←− ℓ1
WHILE X6=0 DO ←− ℓ2
(Y:=Y×X; X:=X-1)

{X = 0 ∧ Y = n!}
◮ Suitable statements would be

◮ ℓ1: {Y = 1 ∧ X = n}
◮ ℓ2: {Y× X! = n!}

Alan Mycroft Hoare Logic and Model Checking 72 / 265

Verification Condition Generation

◮ The VCs generated from an annotated specification
{P}C{Q} are obtained by considering the various
possibilities for C

◮ We will describe it command by command using rules of
the form:

◮ The VCs for C〈C1,C2〉 are
◮ vc1, ... , vcn generated by C itself
◮ together with the VCs for its subphrases C1 and C2

◮ Each VC rule corresponds to either a primitive or derived
rule

Alan Mycroft Hoare Logic and Model Checking 73 / 265

A VC Generation Program

◮ The algorithm for generating verification conditions is
recursive on the structure of commands

◮ The rule just given corresponds to a simple recursive
function:

VC (C〈C1,C2〉) = [vc1, ... ,vcn]@ (VC C1) @ (VC C2)
◮ The rules are chosen so that only one VC rule applies in

each case
◮ applying them is then purely mechanical
◮ the choice is based on the syntax
◮ only one rule applies in each case so VC generation is

deterministic

Alan Mycroft Hoare Logic and Model Checking 74 / 265

Justification of VCs

◮ This process will be justified by showing that

⊢ {P}C{Q}

if all the verification conditions can be proved
◮ We will prove that for any C

◮ assuming the VCs of {P}C{Q} are provable (⊢arith)
◮ then ⊢ {P}C{Q} is a theorem of the logic

Alan Mycroft Hoare Logic and Model Checking 75 / 265

Justification of Verification Conditions

◮ The argument that the verification conditions are sufficient
will be by induction on the structure of C

◮ Such inductive arguments have two parts
◮ show the result holds for atomic commands,

i.e. assignments
◮ show that when C is not an atomic command, then if the

result holds for the constituent commands of C (this is
called the induction hypothesis), then it holds also for C

◮ The first of these parts is called the basis of the induction
◮ The second is called the step
◮ The basis and step entail that the result holds for all

commands

Alan Mycroft Hoare Logic and Model Checking 76 / 265

VC for Assignments

Assignment commands
The single verification condition generated by

{P} V:=E {Q}

is
P ⇒ Q[E/V]

◮ Example: The verification condition for
{X=0} X:=X+1 {X=1}

is
X=0 ⇒ (X+1)=1 (true by arithmetic)

◮ Note: Q[E/V] = wlp(V:=E , Q) (see later)

Alan Mycroft Hoare Logic and Model Checking 77 / 265

Justification of Assignment VC

◮ We must show that if the VCs of {P} V := E {Q} are
provable
then ⊢ {P} V := E {Q}

◮ Proof:
◮ Assume ⊢ P ⇒ Q[E/V] as it is the VC
◮ From derived assignment rule it follows that
⊢ {P} V := E {Q}

Alan Mycroft Hoare Logic and Model Checking 78 / 265

VCs for Conditionals

Conditionals
The verification conditions generated from

{P} IF S THEN C1 ELSE C2 {Q}

are
i the verification conditions generated by
{P ∧ S} C1 {Q}

ii the verifications generated by
{P ∧ ¬S} C2 {Q}

Example: The verification conditions for
{T} IF X≥Y THEN R:=X ELSE R:=Y {R=max(X,Y)}
are

i the VCs for {T ∧ X≥Y} R:=X {R=max(X,Y)}

ii the VCs for {T ∧ ¬(X≥Y)} R:=Y {R=max(X,Y)}

Alan Mycroft Hoare Logic and Model Checking 79 / 265

Justification for the Conditional VCs (1)

◮ Must show that if VCs of
{P} IF S THEN C1 ELSE C2 {Q}

are provable, then
⊢ {P} IF S THEN C1 ELSE C2 {Q}

◮ Proof:
◮ Assume the VCs {P ∧ S} C1 {Q} and {P ∧ ¬S} C2 {Q}
◮ The inductive hypotheses tell us that if these VCs are

provable then the corresponding Hoare Logic theorems are
provable

◮ i.e. by induction ⊢ {P ∧ S} C1 {Q} and
⊢ {P ∧ ¬S} C2 {Q}

◮ Hence by the conditional rule
⊢ {P} IF S THEN C1 ELSE C2 {Q}

Alan Mycroft Hoare Logic and Model Checking 80 / 265

Review of Annotated Sequences

◮ If C1;C2 is properly annotated, then either

Case 1: it is of the form C1;{R}C2 and
C2 is not an assignment

Case 2: it is of the form C;V := E

◮ And C, C1 and C2 are properly annotated

Alan Mycroft Hoare Logic and Model Checking 81 / 265

VCs for Sequences

Sequences
1. The verification conditions generated by

{P} C1 {R} C2 {Q}

(where C2 is not an assignment) are the union of:
i the verification conditions generated by {P} C1 {R}
ii the verifications generated by {R} C2 {Q}

2. The verification conditions generated by

{P} C;V:=E {Q}

are the verification conditions generated by

{P} C {Q[E/V]}

Alan Mycroft Hoare Logic and Model Checking 82 / 265

Example
◮ The verification conditions generated from

{X=x ∧ Y=y} R:=X; X:=Y; X:=R
{X=y ∧ R=x}

◮ Are those generated by
{X=x ∧ Y=y} R:=X; X:=Y
{(X=y ∧ Y=x)[R/Y]}

◮ This simplifies to
{X=x ∧ Y=y} R:=X; X:=Y {X=y ∧ R=x}

◮ The verification conditions generated by this are those
generated by

{X=x ∧ Y=y} R:=X {(X=y ∧ R=x)[Y/X]}

◮ Which simplifies to
{X=x ∧ Y=y} R:=X {Y=y ∧ R=x}

Alan Mycroft Hoare Logic and Model Checking 83 / 265

Example Continued

◮ The only verification condition generated by
{X=x ∧ Y=y} R:=X {Y=y ∧ R=x}

is
X=x ∧ Y=y ⇒ (Y=y ∧ R=x)[X/R]

◮ Which simplifies to
X=x ∧ Y=y ⇒ Y=y ∧ X=x

◮ Thus the single verification condition from
{X=x ∧ Y=y} R:=X; X:=Y; X:=R
{X=y ∧ R=x}

is
X=x ∧ Y=y ⇒ Y=y ∧ X=x

which is logically equivalent to true.

Alan Mycroft Hoare Logic and Model Checking 84 / 265

Justification of VCs for Sequences (1)

◮ Case 1: If the verification conditions for

{P} C1 ; {R} C2 {Q}

are provable
◮ Then the verification conditions for

{P} C1 {R} and {R} C2 {Q}

must both be provable
◮ Hence by induction

⊢ {P} C1 {R} and ⊢ {R} C2 {Q}

◮ Hence by the sequencing rule
⊢ {P} C1;C2 {Q}

Alan Mycroft Hoare Logic and Model Checking 85 / 265

Justification of VCs for Sequences (2)

◮ Case 2: If the verification conditions for

{P} C; V := E {Q}

are provable, then the verification conditions for
{P} C {Q[E/V}

are also provable
◮ Hence by induction

⊢ {P} C {Q[E/V]}

◮ Hence by the derived sequenced assignment rule
⊢ {P} C; V := E {Q}

Alan Mycroft Hoare Logic and Model Checking 86 / 265

VCs for WHILE-Commands
◮ A correctly annotated specification of a WHILE-command

has the form
{P} WHILE S DO {R} C {Q}

◮ The annotation R is called an invariant

WHILE-commands
The verification conditions generated by

{P} WHILE S DO {R} C {Q}

are
i P ⇒ R
ii R ∧ ¬S ⇒ Q
iii the verification conditions generated by
{R ∧ S} C{R}

Alan Mycroft Hoare Logic and Model Checking 87 / 265

Example

◮ The verification conditions for
{R=X ∧ Q=0}
WHILE Y≤R DO {X=R+Y×Q}

(R:=R-Y; Q:=Q+1)
{X = R+(Y×Q) ∧ R<Y}
are:

i R=X ∧ Q=0 ⇒ (X = R+(Y×Q))
ii X = R+Y×Q ∧ ¬(Y≤R) ⇒ (X = R+(Y×Q) ∧ R<Y)

together with the verification condition for
{X = R+(Y×Q) ∧ (Y≤R)}
(R:=R-Y; Q:=Q+1)
{X=R+(Y×Q)}
which consists of the single condition

iii X = R+(Y×Q) ∧ (Y≤R) ⇒ X = (R-Y)+(Y×(Q+1))

Alan Mycroft Hoare Logic and Model Checking 88 / 265

Example Summarised

◮ By previous slide
⊢ {R=X ∧ Q=0}

WHILE Y≤R DO
(R:=R-Y; Q:=Q+1)

{X = R+(Y×Q) ∧ R<Y}
if
⊢ R=X ∧ Q=0 ⇒

(X = R+(Y×Q))
and
⊢ X = R+(Y×Q) ∧ ¬(Y≤R)⇒

(X = R+(Y×Q) ∧ R<Y)
and
⊢ X = R+(Y×Q) ∧ (Y≤R) ⇒

X = (R-Y)+(Y×(Q+1))

Alan Mycroft Hoare Logic and Model Checking 89 / 265

Justification of WHILE VCs

◮ If the verification conditions for
{P} WHILE S DO {R} C {Q}
are provable, then
⊢ P ⇒ R
⊢ (R ∧ ¬S) ⇒ Q

and the verification conditions for
{R ∧ S} C {R}
are provable

◮ By induction
⊢ {R ∧ S} C {R}

◮ Hence by the derived WHILE-rule
⊢ {P} WHILE S DO C {Q}

Alan Mycroft Hoare Logic and Model Checking 90 / 265

Summary

◮ Have outlined the design of an automated program verifier
◮ Annotated specifications compiled to mathematical

statements
◮ if the statements (VCs) can be proved, the program is

verified

◮ Human help is required to give the annotations and prove
the VCs

◮ The algorithm was justified by an inductive proof
◮ it appeals to the derived rules

◮ All the techniques introduced earlier are used
◮ backwards proof
◮ derived rules
◮ annotation

Alan Mycroft Hoare Logic and Model Checking 91 / 265

Other uses of {P} C {Q}

◮ So far we’ve assumed P, C, Q are given, and tried to
automate finding a proof derivation ending in ⊢ {P} C {Q}.

◮ But we’ve all used Prolog.
◮ What if we’re given P and C, can we infer a Q?

Is there a best? (‘Strongest Postcondition’)
◮ What if we’re given C and Q, can we infer a P?

Is there a best? (‘Weakest Precondition’)
◮ What if we’re given P and Q, can we infer a C?

(‘Program Refinement’ or ‘Program synthesis’).

(Aside: you can even see the derived rules above as a
Prolog-like re-writing of a rule to “accept any argument by
making its formal parameters into variables”).

Alan Mycroft Hoare Logic and Model Checking 92 / 265

Weakest Preconditions, Strongest Postconditions,
Refinement

Alan Mycroft Hoare Logic and Model Checking 93 / 265

Dijkstra’s weakest preconditions

◮ Weakest preconditions is a theory of refinement
◮ idea is to calculate a program to achieve a postcondition
◮ not a theory of post-hoc verification

◮ Non-determinism a key idea in Dijkstra’s presentation
◮ start with a non-deterministic high level pseudo-code
◮ refine to deterministic and efficient code

◮ Weakest preconditions (wp) are for total correctness
◮ Weakest liberal preconditions (wlp) for partial correctness
◮ If C is a command and Q a predicate, then informally:

wlp(C,Q) =‘The weakest predicate P such that {P} C {Q}’
wp(C,Q) =‘The weakest predicate P such that [P] C [Q]’

(If P and Q are formulae then Q ⇒ P means P is ‘weaker’ than Q)

Alan Mycroft Hoare Logic and Model Checking 94 / 265

Rules for weakest preconditions
◮ Relation with Hoare specifications:

{P} C {Q} ⇔ P ⇒ wlp(C,Q)
[P] C [Q] ⇔ P ⇒ wp(C,Q)

◮ Dijkstra gives rules for computing weakest preconditions:

wp(V:=E ,Q) = Q[E/V]
wp(C1;C2, Q) = wp(C1,wp(C2, Q))
wp(IF S THEN C1 ELSE C2, Q)

= (S ⇒ wp(C1,Q)) ∧ (¬S ⇒ wp(C2,Q))

◮ for deterministic loop-free code the same equations hold
for wlp

◮ Rule for WHILE-commands doesn’t give a first-order result
◮ Weakest preconditions closely related to VCs
◮ VCs for {P} C {Q} are related to P ⇒ wlp(C,Q)

◮ VCs use annotations to ensure first-order formulae can be
generated

Alan Mycroft Hoare Logic and Model Checking 95 / 265

Using wlp to improve verification condition method

◮ If C is loop-free then VC for {P} C {Q} is P ⇒ wlp(C,Q)

◮ no annotations needed in sequences!

◮ Cannot in general compute a finite formula for
wlp(WHILE S DO C, Q)

◮ The following holds
wlp(WHILE S DO C, Q) ⇔

if S then wlp(C, wlp(WHILE S DO C, Q)) else Q
but this doesn’t in general define wlp(C,Q) as a finite
formula

◮ Could use a hybrid VC and wlp method

Alan Mycroft Hoare Logic and Model Checking 96 / 265

Strongest postconditions

◮ Define sp(C,P) to be ‘strongest’ Q such that {P} C {Q}
◮ partial correctness: {P} C {sp(C,P)}
◮ strongest means if {P} C {Q} then sp(C,P)⇒ Q

◮ Note that wlp goes ‘backwards’, but sp goes ‘forwards’
◮ verification condition for {P} C {Q} is: sp(C,P)⇒ Q

◮ By ‘strongest’ and Hoare logic postcondition weakening

◮ {P} C {Q} if and only if sp(C,P)⇒ Q

Alan Mycroft Hoare Logic and Model Checking 97 / 265

Strongest postconditions for loop-free code

◮ Only considering loop-free code

sp(V:=E , P) = ∃v . V = E[v/V] ∧ P[v/V]
sp(C1;C2, P) = sp(C2, sp(C1, P))
sp(IF S THEN C1 ELSE C2, P)

= sp(C1, P ∧ S) ∨ sp(C2, P ∧ ¬S)

◮ sp(V:=E , P) corresponds to Floyd assignment axiom
◮ Can dynamically prune conditionals because sp(C,F) = F
◮ Computing strongest postconditions is symbolic execution

Alan Mycroft Hoare Logic and Model Checking 98 / 265

Computing sp versus wlp

◮ Computing sp is like execution
◮ can simplify as one goes along with the ‘current state’
◮ may be able to resolve branches, so can avoid executing

them
◮ Floyd assignment rule complicated in general
◮ sp used for symbolically exploring ‘reachable states’

(related to model checking)

◮ Computing wlp is like backwards proof
◮ don’t have ‘current state’, so can’t simplify using it
◮ can’t determine conditional tests, so get big
if-then-else trees

◮ Hoare assignment rule simpler for arbitrary formulae
◮ wlp used for improved verification conditions

Alan Mycroft Hoare Logic and Model Checking 99 / 265

Exercises not lectured

◮ Compute

sp(R := 0;
K := 0;
IF I < J THEN K := K+ 1 ELSE K := K;
IF K = 1 ∧ ¬(I = J) THEN R := J− I ELSE R := I− J,
(I = i ∧ J = j ∧ j ≤ i))

◮ Hence show

{(I = i ∧ J = j ∧ j ≤ i}
R := 0;
K := 0;
IF I < J THEN K := K+ 1 ELSE K := K;
IF K = 1 ∧ ¬(I = J) THEN R := J− I ELSE R := I− J)

{R = i−j}
◮ Do same example use wlp

Alan Mycroft Hoare Logic and Model Checking 100 / 265

Using sp to generate verification conditions

◮ If C is loop-free then VC for {P} C {Q} is sp(C, P)⇒ Q
◮ Cannot in general compute a finite formula for

sp(WHILE S DO C, P)

◮ The following holds
consp(WHILE S DO C, P) ⇔

sp(WHILE S DO C, sp(C, (P ∧ S))) ∨ (P ∧ ¬S)
but this doesn’t in general define wlp(C,Q) as a finite
formula

◮ As with wlp, can use a hybrid VC and sp method

Alan Mycroft Hoare Logic and Model Checking 101 / 265

Summary

◮ Annotate then generate VCs is the classical method
◮ practical tools: Gypsy (1970s), SPARK (current)
◮ weakest preconditions are alternative explanation of VCs
◮ wlp needs fewer annotations than VC method described

earlier
◮ wlp also used for refinement

◮ VCs and wlp go backwards, sp goes forward
◮ sp provides verification method based on symbolic

simulation
◮ widely used for loop-free code
◮ current research potential for forwards full proof of

correctness
◮ probably need mixture of forwards and backwards methods

(Hoare’s view)

Alan Mycroft Hoare Logic and Model Checking 102 / 265

Range of methods for proving {P}C{Q}

◮ Bounded model checking (BMC)
◮ unwind loops a finite number of times
◮ then symbolically execute
◮ check states reached satisfy decidable properties
◮ therefore not fully sound

◮ Full proof of correctness
◮ add invariants to loops
◮ generate verification conditions
◮ prove verification conditions with a theorem prover

◮ Research goal: unifying framework for a spectrum of
methods

decidable checking proof of correctness

Alan Mycroft Hoare Logic and Model Checking 103 / 265

New Topic: Refinement
◮ So far we have focused on proving programs meet

specifications
◮ An alternative is to ensure a program is

correct by construction
◮ The proof is performed in conjunction with the development

◮ errors are spotted earlier in the design process
◮ the reasons for design decisions are available

◮ Programming becomes less of a black art and more like an
engineering discipline

◮ Rigorous development methods such as the B-Method,
SPARK and the Vienna Development Method (VDM) are
based on this idea

◮ The approach here is based on “Programming From
Specifications”

◮ a book by Carroll Morgan
◮ simplified and with a more concrete semantics

Alan Mycroft Hoare Logic and Model Checking 104 / 265

Refinement Laws

◮ Laws of Programming refine a specification to a program
◮ As each law is applied, proof obligations are generated
◮ The laws are derived from the Hoare logic rules
◮ Several laws will be applicable at a given time

◮ corresponding to different design decisions
◮ and thus different implementations

◮ The “Art” of Refinement is in choosing appropriate laws to
give an efficient implementation

◮ For example, given a specification that an array should be
sorted:

◮ one sequence of laws will lead to Bubble Sort
◮ a different sequence will lead to Insertion Sort
◮ see Morgan’s book for an example of this

Alan Mycroft Hoare Logic and Model Checking 105 / 265

Refinement Specifications

◮ A refinement specification has the form [P, Q]
◮ P is the precondition
◮ Q is the postcondition

◮ Unlike a partial or total correctness specification, a
refinement specification does not include a command

◮ Goal: derive a command that satisfies the specification
◮ P and Q correspond to the pre and post condition of a total

correctness specification
◮ A command is required which, if started in a state

satisfying P, will terminate in a state satisfying Q

Alan Mycroft Hoare Logic and Model Checking 106 / 265

Example

◮ [T, X=1]
◮ this specifies that the code provided should terminate in a

state where X has value 1 whatever state it is started in
◮ [X>0, Y=X2]

◮ from a state where X is greater than zero, the program
should terminate with Y the square of X

Alan Mycroft Hoare Logic and Model Checking 107 / 265

A Little Wide-Spectrum Programming Language

◮ Let P, Q range over (predicate calculus) formulae
◮ Add specifications to commands

E ::= N | V | E1 + E2 | E1 − E2 | E1 × E2 | . . .

B ::= T | F | E1=E2 | E1 ≤ E2 | . . .

C ::= SKIP (does nothing, SKIP-Axiom is ⊢ [P] SKIP [P])
| V := E
| C1 ; C2

| IF B THEN C1 ELSE C2

| BEGIN VAR V 1 ; .. VAR V 1 ; C END
| WHILE B DO C
| [P, Q]

Alan Mycroft Hoare Logic and Model Checking 108 / 265

Specifications as Sets of Commands
◮ Refinement specifications can be mixed with other

commands but are not in general executable
◮ Example
R:=X;
Q:=0;

[R=X ∧ Y> 0 ∧ Q=0, X=R+Y×Q]
◮ Think of a specification as defining the set of

implementations

[P, Q] = { C | ⊢ [P] C [Q] }

◮ Don’t confuse use of {· · · } as set brackets and in Hoare
triples

◮ For example

[T, X=1] = {"X:=1", "IF ¬(X=1) THEN X:=1", "X:=2;X:=X-1", · · · }

Alan Mycroft Hoare Logic and Model Checking 109 / 265

Refinement-based program development
◮ The client provides a non-executable program (the

specification)
◮ The programmer’s job is to transform it into an executable

program
◮ It will pass through a series of stages in which some parts

are executable, but others are not
◮ Specifications give lots of freedom about how a result is

obtained
◮ executable code has no freedom
◮ mixed programs have some freedom

◮ We use the notation p1⊇ p2 to mean program p2 is more
refined (i.e. has less freedom) than program p1

◮ N.B. The standard notation is p1 ⊑ p2

◮ A program development takes us from the specification,
through a series of mixed programs to (we hope)
executable code spec⊇ mixed1⊇ ...⊇ mixedn⊇code

Alan Mycroft Hoare Logic and Model Checking 110 / 265

Various Laws (based on Hoare Logic) are used
The Skip Law

[P, P] ⊇ {SKIP}
The Assignment Law

[P[E/V], P] ⊇ {V := E}
Precondition Weakening (beware name)

[P, Q] ⊇ [R, Q] provided ⊢ P ⇒ R

Postcondition Strengthening (beware name)
[P, Q] ⊇ [P, R] provided ⊢ R ⇒ Q

Derived Assignment Law
[P, Q] ⊇ {V:=E} provided ⊢ P ⇒ Q[E/V]

The Sequencing Law
[P, Q] ⊇ [P, R]; [R, Q]

The Conditional Law
[P, Q] ⊇ IF S THEN [P ∧ S, Q] ELSE [P ∧ ¬S, Q]

(Details beyond this course, see Mike Gordon’s notes)
Alan Mycroft Hoare Logic and Model Checking 111 / 265

Summary

◮ Refinement ‘laws’ based on the Hoare logic can be used to
develop programs formally

◮ See Mike Gordon’s notes for details of the laws
◮ A program is gradually converted from an unexecutable

specification to executable code
◮ By applying different laws, different programs are obtained

◮ may reach unrefinable specifications (blind alleys)
◮ but will never get incorrect code

◮ A program developed in this way will meet its formal
specification

◮ one approach to ‘Correct by Construction’ (CbC) software
engineering

(There is also a notion of ‘Data Refinement Laws’ which enable
programs using abstract data types to be refined to use concrete data
types. Our laws are really just ‘Operation Refinement Laws’.)

Alan Mycroft Hoare Logic and Model Checking 112 / 265

Total Correctness

Alan Mycroft Hoare Logic and Model Checking 113 / 265

Total Correctness Specification

◮ So far our discussion has been concerned with partial
correctness

◮ what about termination
◮ A total correctness specification [P] C [Q] is true if and

only if
◮ whenever C is executed in a state satisfying P,

then the execution of C terminates
◮ after C terminates Q holds

◮ Except for the WHILE-rule, all the axioms and rules
described so far are sound for total correctness as well as
partial correctness

Alan Mycroft Hoare Logic and Model Checking 114 / 265

Termination of WHILE-Commands
◮ WHILE-commands are the only commands that might not

terminate
◮ Consider now the following proof

1. ⊢ {T} X := X {T} (assignment axiom)

2. ⊢ {T ∧ T} X := X {T} (precondition strengthening)

3. ⊢ {T} WHILE T DO X := X {T ∧ ¬T} (2 and the WHILE-rule)

◮ If the WHILE-rule worked for total correctness, then this
would show:

⊢ [T] WHILE T DO X := X [T ∧ ¬T]

◮ Thus the WHILE-rule is unsound for total correctness

Alan Mycroft Hoare Logic and Model Checking 115 / 265

Rules for Non-Looping Commands

◮ Replace { and } by [and], respectively, in:
◮ Assignment axiom (see next slide for discussion)
◮ Consequence rules
◮ Conditional rule
◮ Sequencing rule

◮ The following is a valid derived rule

⊢ {P} C {Q}
⊢ [P] C [Q]

if C contains no WHILE-commands

Alan Mycroft Hoare Logic and Model Checking 116 / 265

Total Correctness Assignment Axiom

◮ Assignment axiom for total correctness
⊢ [P[E/V]] V:=E [P]

◮ Note that the assignment axiom for total correctness states
that assignment commands always terminate

◮ So all function applications in expressions must terminate
◮ This might not be the case if functions could be defined

recursively
◮ Consider X := fact(−1), where fact(n) is defined

recursively:
fact(n) = if n = 0 then 1 else n × fact(n−1)

◮ (See the restrictions in Agda or Coq about all functions
being total.)

Alan Mycroft Hoare Logic and Model Checking 117 / 265

Error Termination

◮ We assume erroneous expressions like 1/0 don’t cause
problems

◮ Most programming languages will raise an error on division
by zero

◮ In our logic it follows that

⊢ [T] X := 1/0 [X = 1/0]

◮ The assignment X := 1/0 halts in a state in which X = 1/0
holds

◮ This assumes that 1/0 denotes some value that X can
have

Alan Mycroft Hoare Logic and Model Checking 118 / 265

Two Possibilities

◮ There are two possibilities
i 1/0 denotes some number;
ii 1/0 denotes some kind of ‘error value’.

◮ It seems at first sight that adopting (ii) is the most natural
choice

◮ this makes it tricky to see what arithmetical laws should
hold

◮ is (1/0)× 0 equal to 0 or to some ‘error value’?
◮ if the latter, then it is no longer the case that ∀n. n× 0 = 0 is

valid

◮ It is possible to make everything work with undefined
and/or error values, but the resultant theory is a bit messy

Alan Mycroft Hoare Logic and Model Checking 119 / 265

Example

◮ We assume that arithmetic expressions always denote
numbers

◮ In some cases exactly what the number is will be not fully
specified

◮ for example, we will assume that m/n denotes a number for
any m and n

◮ only assume: ¬(n = 0) ⇒ (m/n)× n = m
◮ it is not possible to deduce anything about m/0 from this
◮ in particular it is not possible to deduce that (m/0)× 0 = 0
◮ but (m/0)× 0 = 0 does follow from ∀n. n × 0 = 0

◮ People still argue about this – e.g. advocate “three-valued”
logics

Alan Mycroft Hoare Logic and Model Checking 120 / 265

WHILE-rule for Total Correctness (i)

◮ WHILE-commands are the only commands in our little
language that can cause non-termination

◮ they are thus the only kind of command with a non-trivial
termination rule

◮ The idea behind the WHILE-rule for total correctness is
◮ to prove WHILE S DO C terminates
◮ show that some non-negative quantity decreases on each

iteration of C
◮ this decreasing quantity is called a variant

Alan Mycroft Hoare Logic and Model Checking 121 / 265

WHILE-Rule for Total Correctness (ii)

◮ In the rule below, the variant is E , and the fact that it
decreases is specified with an auxiliary variable n

◮ The hypothesis ⊢ P ∧ S ⇒ E ≥ 0 ensures the variant is
non-negative

WHILE-rule for total correctness

⊢ [P ∧ S ∧ (E = n)] C [P ∧ (E < n)], ⊢ P ∧ S ⇒ E ≥ 0
⊢ [P] WHILE S DO C [P ∧ ¬S]

where E is an integer-valued expression
and n is an identifier not occurring in P, C, S or E .

Alan Mycroft Hoare Logic and Model Checking 122 / 265

Example

◮ We show

⊢ [Y > 0] WHILE Y≤R DO (R:=R-Y; Q:=Q+1) [T]

◮ Take
P = Y > 0
S = Y ≤ R
E = R
C = (R:=R-Y; Q:=Q+1)

◮ We want to show ⊢ [P] WHILE S DO C [T]
◮ By the WHILE-rule for total correctness it is sufficient to

show
i ⊢ [P ∧ S ∧ (E = n)] C [P ∧ (E < n)]
ii ⊢ P ∧ S ⇒ E ≥ 0

Alan Mycroft Hoare Logic and Model Checking 123 / 265

Example Continued (1)
◮ From previous slide:

P = Y > 0
S = Y ≤ R
E = R
C = (R:=R-Y; Q:=Q+1)

◮ We want to show
i ⊢ [P ∧ S ∧ (E = n)] C [P ∧ (E < n)]
ii ⊢ P ∧ S ⇒ E ≥ 0

◮ The first of these, (i), can be proved by establishing

⊢ {P ∧ S ∧ (E = n)} C {P ∧ (E < n)}

◮ Then using the total correctness rule for non-looping
commands

Alan Mycroft Hoare Logic and Model Checking 124 / 265

Example Continued (2)
◮ From previous slide:

P = Y > 0
S = Y ≤ R
E = R
C = R:=R-Y; Q:=Q+1)

◮ The verification condition for
{P ∧ S ∧ (E = n)} C {P ∧ (E < n)} is:

Y > 0 ∧ Y ≤ R ∧ R = n ⇒
(Y > 0 ∧ R < n)[Q+1/Q][R−Y/R]

i.e. Y > 0 ∧ Y ≤ R ∧ R = n ⇒ Y > 0 ∧ R−Y < n
which follows from the laws of arithmetic

◮ The second subgoal, (ii), is just ⊢ Y > 0 ∧ Y ≤ R⇒ R ≥ 0

Alan Mycroft Hoare Logic and Model Checking 125 / 265

Termination Specifications

◮ The relation between partial and total correctness is
informally given by the equation

Total correctness = Termination + Partial
correctness

◮ This informal equation can be represented by the following
two rules of inferences

⊢ {P} C {Q} ⊢ [P] C [T]

⊢ [P] C [Q]

⊢ [P] C [Q]

⊢ {P} C {Q} ⊢ [P] C [T]

Alan Mycroft Hoare Logic and Model Checking 126 / 265

Derived Rules

◮ Multiple step rules for total correctness can be derived in
the same way as for partial correctness

◮ the rules are the same up to the brackets used
◮ same derivations with total correctness rules replacing

partial correctness ones

Alan Mycroft Hoare Logic and Model Checking 127 / 265

The Derived While Rule

◮ The derived WHILE-rule needs to handle the variant

Derived WHILE-rule for total correctness

⊢ P ⇒ R

⊢ R ∧ S ⇒ E ≥ 0

⊢ R ∧ ¬S ⇒ Q

⊢ [R ∧ S ∧ (E = n)] C [R ∧ (E < n)]

⊢ [P] WHILE S DO C [Q]

Alan Mycroft Hoare Logic and Model Checking 128 / 265

VCs for Termination

◮ Verification conditions are easily extended to total
correctness

◮ To generate total correctness verification conditions for
WHILE-commands, it is necessary to
add a variant as an annotation in addition to an invariant

◮ Variant added directly after the invariant, in square
brackets

◮ No other extra annotations are needed for total correctness
◮ VCs for WHILE-free code same as for partial correctness

Alan Mycroft Hoare Logic and Model Checking 129 / 265

WHILE Annotation

◮ A correctly annotated total correctness specification of a
WHILE-command thus has the form

[P] WHILE S DO {R}[E] C [Q]

where R is the invariant and E the variant

◮ Note that the variant is intended to be a non-negative

expression that decreases each time around the WHILE
loop

◮ The other annotations, which are enclosed in curly
brackets, are meant to be conditions that are true
whenever control reaches them (as before)

Alan Mycroft Hoare Logic and Model Checking 130 / 265

WHILE VCs
◮ A correctly annotated specification of a WHILE-command

has the form

[P] WHILE B DO {R}[E] C [Q]

WHILE-commands
The verification conditions generated from

[P] WHILE B DO {R}[E] C [Q]
are

i P ⇒ R
ii R ∧ ¬B ⇒ Q
iii R ∧ B ⇒ E ≥ 0
iv the verification conditions generated by

[R ∧ B ∧ (E = n)] C[R ∧ (E < n)]
where n is a variable not occurring in P, R, E , C, B, or Q.

Alan Mycroft Hoare Logic and Model Checking 131 / 265

Example

◮ The verification conditions for
[R=X ∧ Q=0]
WHILE Y≤R DO {X=R+Y×Q}[R]

(R:=R-Y; Q=Q+1)
[X = R+(Y×Q) ∧ R<Y]
are:

i R=X ∧ Q=0 ⇒ (X = R+(Y×Q))
ii X = R+Y×Q ∧ ¬(Y≤R) ⇒ (X = R+(Y×Q) ∧ R<Y)
iii X = R+Y×Q ∧ Y≤R ⇒ R≥0

together with the verification condition for
[X = R+(Y×Q) ∧ (Y≤R) ∧ (R=n)]
(R:=R-Y; Q:=Q+1)

[X=R+(Y×Q) ∧ (R<n)]

Alan Mycroft Hoare Logic and Model Checking 132 / 265

Example Continued

◮ The single verification condition for
[X = R+(Y×Q) ∧ (Y≤R) ∧ (R=n)]
(R:=R-Y; Q:=Q+1)

[X=R+(Y×Q) ∧ (R<n)]
is

iv X = R+(Y×Q) ∧ (Y≤R) ∧ (R=n) ⇒
X = (R-Y)+(Y×(Q+1)) ∧ ((R-Y)<n)

◮ But this isn’t true
◮ take Y=0

◮ To prove R-Y<n we need to know Y>0

◮ Exercise: Explain why one would not expect to be able to
prove the verification conditions of this last example

◮ Hint: Consider the original specification

Alan Mycroft Hoare Logic and Model Checking 133 / 265

Summary

◮ We have given rules for total correctness
◮ They are similar to those for partial correctness
◮ The main difference is in the WHILE-rule

◮ because WHILE commands are the only ones that can fail
to terminate

◮ Must prove a non-negative expression is decreased by the
loop body

◮ Derived rules and VC generation rules for partial
correctness easily extended to total correctness

◮ Interesting stuff on the web
◮ http://www.crunchgear.com/2008/12/31/zune-bug-

explained-in-detail
◮ http://research.microsoft.com/en-us/projects/t2/

Alan Mycroft Hoare Logic and Model Checking 134 / 265

Soundness, Completeness

Alan Mycroft Hoare Logic and Model Checking 135 / 265

Summary: soundness, decidability, completeness

◮ Hoare logic is sound
◮ Hoare logic is undecidable

◮ deciding {T}C{F} is halting problem

◮ Hoare logic for our simple language is relatively complete
◮ All failures to prove ⊢ {P} C {Q}, for a valid statement
|= {P} C {Q}, can be traced back to a failure to prove
⊢arith φ for some valid arithmetic statement |=arith φ.

The incompleteness of the proof system for simple Hoare
logic stems from the weakness of the proof system of the
assertion language logic, not any weakness of the Hoare
logic proof system.

◮ Clarke showed relative completeness fails for
more-complex languages

Alan Mycroft Hoare Logic and Model Checking 136 / 265

Richer Languages, Separation Logic

Alan Mycroft Hoare Logic and Model Checking 137 / 265

Limits to Hoare Logic as presented

◮ All the axioms and rules given so far were quite
straightforward

◮ may have given a false sense of simplicity

◮ Hard to give rules for anything other than very simple
constructs

◮ an incentive for using simple languages

◮ We already saw with the assignment axiom that intuition
over how to formulate a rule might be wrong

Some sources of additional difficulty:

◮ blocks and local variables need additional work
◮ pointers and aliasing can cause problems
◮ concurrency can cause problems

We’ll look at some ways to address these issues.

Alan Mycroft Hoare Logic and Model Checking 138 / 265

Array assignments

◮ Syntax: V (E1):=E2

◮ Semantics: the state is changed by assigning the value of
the term E2 to the E1-th component of the array variable V

◮ Example: A(X+1) := A(X)+2

◮ if the the value of X is x
◮ and the value of the x-th component of A is n
◮ then the value stored in the (x+1)-th component of A

becomes n+2

Alan Mycroft Hoare Logic and Model Checking 139 / 265

Naive Array Assignment Axiom Fails

◮ The axiom
⊢ {P[E2/A(E1)]} A(E1):=E2 {P}

doesn’t work
◮ Take P ≡ ‘X=Y ∧ A(Y)=0’, E1 ≡ ‘X’, E2 ≡ ‘1’

◮ since A(X) does not occur in P
◮ it follows that P[1/A(X)] = P
◮ hence the axiom yields: ⊢ {X=Y ∧ A(Y)=0} A(X):=1
{X=Y ∧ A(Y)=0}

◮ Must take into account possibility that changes to A(X)
may change A(Y), A(Z) etc

◮ since X might equal Y, Z etc (i.e. aliasing)

◮ Related to the Frame Problem in AI

Alan Mycroft Hoare Logic and Model Checking 140 / 265

Reasoning About Arrays
◮ The naive array assignment axiom

⊢ {P[E2/A(E1)]} A(E1):=E2 {P}

fails: changes to A(X) may also change A(Y), A(Z), . . .
◮ The solution, due to Hoare, is to treat an array assignment

A(E1):=E2

as an ordinary assignment (albeit one which overwrites the
whole array)

A := A{E1 ← E2}

where the term A{E1 ← E2} denotes an array identical to
A, except that the E1-th component is changed to have the
value E2

◮ Side-steps the general problem of how to treat aliasing

Alan Mycroft Hoare Logic and Model Checking 141 / 265

Array Assignment axiom

Array assignment is now a special case of ordinary assignment:
A:=A{E1 ← E2}

◮ So the array assignment axiom is just ordinary assignment
axiom
⊢ {P[A{E1 ← E2}/A]} A:=A{E1 ← E2} {P}

◮ Thus:

The array assignment axiom

⊢ {P[A{E1 ← E2}/A]} A(E1):=E2 {P}

Here A is an array variable, E1 is an integer valued expres-
sion, P is any statement and the notation A{E1 ← E2}
denotes the array identical to A, except that A(E1) = E2.

Alan Mycroft Hoare Logic and Model Checking 142 / 265

Array Axioms

In order to reason about arrays, we need the following axioms
in ⊢arith to define the meaning of the notation A{E1 ← E2}

The array axioms

⊢ A{E1 ← E2}(E1) = E2
⊢ E1 6= E3 ⇒ A{E1 ← E2}(E3) = A(E3)

◮ Second of these is a Frame Axiom
◮ it captures that E1 and E3 are equal as values, not just

syntactically equal as when used in substitution
◮ don’t confuse with Frame Rule of Separation Logic (later)
◮ “frame” is a rather overloaded word!

Alan Mycroft Hoare Logic and Model Checking 143 / 265

Concurrency
Hoare logic as we have seen it so far has a fundamental
problem with shared-variable concurrency. Consider the two
commands:

◮ C1 ≡ (X := X+1; X := X+1)

◮ C2 ≡ (X := X+2)

◮ In sequential code C1 and C2 have identical meanings and
hence {P} C1 {Q} ⇔ {P} C2 {Q}

◮ But suppose the program maintains X as an even integer.
An unfortunate read of X in C2 might see an odd integer
but this is not possible in C1.

◮ Solutions:
◮ Rely-guarantee reasoning – as well as precondition P and

postcondition Q our logic has assumptions A it assumes
and guarantees G it makes.

◮ Concurrent Separation Logic. We’ll now look at the
sequential part of separation logic.

Alan Mycroft Hoare Logic and Model Checking 144 / 265

New Topic: Separation logic

◮ One of several competing methods for reasoning about
pointers

◮ Details took 30 years to evolve
◮ Shape predicates due to Rod Burstall in the 1970s
◮ Separation logic: by O’Hearn, Reynolds and Yang around

2000
◮ Several partially successful attempts before separation

logic
◮ Very active research area
◮ QMUL, UCL, Cambridge, Harvard, Princeton, Yale
◮ Microsoft

Alan Mycroft Hoare Logic and Model Checking 145 / 265

Pointers and the state

◮ So far the state just determined the values of variables
◮ values assumed to be numbers
◮ preconditions and postconditions are first-order logic

statements
◮ state same as a valuation s : Var→ Val
◮ To model pointers – e.g. as in C – add heap to state
◮ heap maps locations (pointers) to their contents
◮ store maps variables to values (previously called state)
◮ contents of locations can be locations or values
X 7→ l1 7→ l2 7→ v

store heap heap
◮ or if you prefer, values are integers but any integer can be

treated as a (pointer to a) location

Alan Mycroft Hoare Logic and Model Checking 146 / 265

Adding pointer operations to our language

Expressions:
E ::= N | V | E1 + E2 | E1 − E2 | E1 × E2 | . . .

Boolean expressions:
B ::= T | F | E1=E2 | E1 ≤ E2 | . . .

Commands:
C ::= V := E value assignments
| V:=[E] fetch assignments
| [E1]:=E2 heap assignments (heap mutation)
| V:=cons(E1, . . . ,En) allocation assignments
| dispose(E) pointer disposal
| C1 ; C2 sequences
| IF B THEN C1 ELSE C2 conditionals
| WHILE B DO C while commands

Alan Mycroft Hoare Logic and Model Checking 147 / 265

Pointer manipulation constructs and faulting
◮ Commands executed in a state (s, h)
◮ Reading, writing or disposing pointers might fault
◮ Fetch assignments: V:=[E]
◮ evaluate E to get a location l
◮ fault if l is not in the heap
◮ otherwise assign contents of l in heap to the variable V
◮ Heap assignments: [E1]:=E2
◮ evaluate E1 to get a location l
◮ fault if the l is not in the heap
◮ otherwise store the value of E2 as the new contents of l in

the heap
◮ Pointer disposal: dispose(E)
◮ evaluate E to get a pointer l (a number)
◮ fault if l is not in the heap
◮ otherwise remove l from the heap

Alan Mycroft Hoare Logic and Model Checking 148 / 265

Allocation assignments

◮ Allocation assignments: V:=cons(E1, . . . ,En)

◮ choose n consecutive locations that are not in the heap,
say l , l+1, . . .

◮ extend the heap by adding l , l+1, . . . to it
◮ assign l to the variable V in the store
◮ make the values of E1,E2, . . . be the new contents of

l , l+1, . . . in the heap
◮ Allocation assignments never fault
◮ Allocation assignments are non-deterministic
◮ any suitable l , l+1, . . . not in the heap can be chosen
◮ always exists because the heap is finite during execution

Alan Mycroft Hoare Logic and Model Checking 149 / 265

Example (different from the background reading)

X:=cons(0,1,2); [X]:=Y+1; [X+1]:=Z; Y:=[Y+Z]

◮ X:=cons(0,1,2) allocates three new pointers, say l ,
l+1, l+2

◮ l initialised with contents 0, l+1 with 1 and l+2 with 2

◮ variable X is assigned l as its value in store
◮ [X]:=Y+1 changes the contents of l
◮ l gets value of Y+1 as new contents in heap
◮ [X+1]:=Z changes the contents of l+1
◮ l+1 gets the value of Z as new contents in heap
◮ Y:=[Y+Z] changes the value of Y in the store
◮ Y assigned in the store the contents of Y+Z in the heap
◮ faults if the value of Y+Z is not in the heap

Alan Mycroft Hoare Logic and Model Checking 150 / 265

Separating Conjunction
◮ Separating conjunction P ⋆Q

◮ heap can be split into two disjoint components
◮ P is true of one component and Q of the other
◮ allows local reasoning – aliases are temporarily banned
◮ ⋆ is commutative and associative

We’ve already said that Hoare Logic cannot deal with
shared-variable concurrency, so the rule

⊢ {P} C {Q} ⊢ {P ′} C′ {Q′}
⊢ {P ∧ P ′} C PAR C′ {Q ∧Q′}

is unsound. But the rule

⊢ {P} C {Q} ⊢ {P ′} C′ {Q′}
⊢ {P ⋆ P ′} C PAR C′ {Q ⋆Q′}

is sound as the heaps used by C and C′ must be disjoint (we’re
also assuming that C and C′ use disjoint variables).

Alan Mycroft Hoare Logic and Model Checking 151 / 265

Separation logic formulae

There are more formulae for the heap component of states:
◮ emp is true only of an empty heap
◮ l 7→ v is true only for a heap with one heap location l which

stores the value v
Along with the frame rule

The frame rule

⊢ {P} C {Q}
⊢ {P ⋆ R} C {Q ⋆ R}

where no variable modified by C occurs free in R.
These enable us to reason about the heap effectively (details
beyond these notes), when used along with the traditional
Hoare-logic axioms (but using a Floyd-like Assignment rule).

Alan Mycroft Hoare Logic and Model Checking 152 / 265

Part 2: Temporal Logic and Model Checking

Alan Mycroft Hoare Logic and Model Checking 153 / 265

Temporal Logic and Model Checking

◮ Model
◮ mathematical structure extracted from hardware or software

◮ Temporal logic

◮ provides a language for specifying functional properties

◮ Model checking

◮ checks whether a given property holds of a model

◮ Model checking is a kind of static verification
◮ dynamic verification is simulation (HW) or testing (SW)

Alan Mycroft Hoare Logic and Model Checking 154 / 265

Models

◮ A model is (for now) specified by a pair (S,R)

◮ S is a set of states
◮ R is a transition relation

◮ Models will get more components later
◮ (S,R) also called a transition system

◮ R s s′ means s′ can be reached from s in one step
◮ here R : S → (S → B) (where B = {true, false})
◮ more conventional to have R ⊆ S × S, which is equivalent
◮ i.e. R(this course) s s′ ⇔ (s, s′) ∈ R(some textbooks)

Alan Mycroft Hoare Logic and Model Checking 155 / 265

A simple example model
◮ A simple model: ({0, 1, 2, 3}︸ ︷︷ ︸

S

, λn n′. n′ = n+1(mod 4)︸ ︷︷ ︸
R

)

◮ where “λx . · · · x · · · ” is the function mapping x to · · · x · · ·
◮ so R n n′ = (n′ = n+1(mod 4))

◮ e.g. R 0 1 ∧ R 1 2 ∧ R 2 3 ∧ R 3 0

0 1 2 3

◮ Might be extracted from:

[Acknowledgement: http://eelab.usyd.edu.au/digital_tutorial/part3/t-diag.htm]

Alan Mycroft Hoare Logic and Model Checking 156 / 265

DIV: a software example
◮ Perhaps a familiar program:

0: R:=X;
1: Q:=0;
2: WHILE Y≤R DO
3: (R:=R-Y;
4: Q:=Q+1)
5:

◮ State (pc, x , y , r ,q)
◮ pc ∈ {0,1,2,3,4,5} program counter
◮ x , y , r , q ∈ Z are the values of X, Y, R, Q

◮ Model (SDIV,RDIV) where:
SDIV = [0..5]× Z× Z× Z× Z (where [m..n] = {m,m+1, . . . ,n})
∀x y r q.RDIV (0, x , y , r ,q) (1, x , y , x ,q) ∧

RDIV (1, x , y , r ,q) (2, x , y , r ,0) ∧
RDIV (2, x , y , r ,q) ((if y≤r then 3 else 5), x , y , r ,q) ∧
RDIV (3, x , y , r ,q) (4, x , y , (r−y),q) ∧
RDIV (4, x , y , r ,q) (2, x , y , r , (q+1)

◮ [Above changed from lecture to make RDIV partial!]

Alan Mycroft Hoare Logic and Model Checking 157 / 265

Deriving a transition relation from a state machine

◮ State machine transition function : δ : Inp ×Mem→Mem
◮ Inp is a set of inputs
◮ Mem is a memory (set of storable values)

◮ Model: (Sδ,Rδ) where:

Sδ = Inp ×Mem
Rδ (i ,m) (i ′,m′) = (m′ = δ(i ,m))

and
◮ i ′ arbitrary: determined by environment not by machine
◮ m′ determined by input and current state of machine

◮ Deterministic machine, non-deterministic transition relation

◮ inputs unspecified (determined by environment)
◮ so called “input non-determinism”

Alan Mycroft Hoare Logic and Model Checking 158 / 265

RCV: a state machine specification of a circuit
◮ Part of a handshake circuit:

dackdreq
q0

q0bar
a0

or0
a1

◮ Input: dreq, Memory: (q0,dack)
◮ Relationships between Boolean values on wires:

q0bar = ¬q0
a0 = q0bar ∧ dack
or0 = q0 ∨ a0
a1 = dreq ∧ or0

◮ State machine: δRCV : B× (B×B)→(B×B)
δRCV (dreq︸︷︷︸

Inp

, (q0,dack)︸ ︷︷ ︸
Mem

) = (dreq, dreq ∧ (q0 ∨ (¬q0 ∧ dack)))

◮ RTL model – could have lower level model with clock edges
Alan Mycroft Hoare Logic and Model Checking 159 / 265

RCV: a model of the circuit

◮ Circuit from previous slide:

dackdreq
q0

q0bar
a0

or0
a1

◮ State represented by a triple of Booleans (dreq,q0,dack)

◮ By De Morgan Law: q0 ∨ (¬q0 ∧ dack) = q0 ∨ dack

◮ Hence δRCV corresponds to model (SRCV,RRCV) where:
SRCV = B× B× B
RRCV (dreq,q0,dack) (dreq′,q0′,dack ′) =

(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ dack)))

[Note: we are identifying B× B× B with B× (B× B)]

Alan Mycroft Hoare Logic and Model Checking 160 / 265

Some comments
◮ RRCV is non-deterministic and total

◮ RRCV (1,1,1) (0,1,1) and RRCV (1,1,1) (1,1,1)
(where 1 = true and 0 = false)

◮ RRCV (dreq,q0,dack) (dreq′,dreq, (dreq ∧ (q0 ∨ dack)))

◮ RDIV is deterministic and partial
◮ at most one successor state
◮ no successor when pc = 5

◮ Non-deterministic models are very common, e.g. from:
◮ asynchronous hardware
◮ parallel software (more than one thread)

◮ Can extend any transition relation R to be total:
Rtotal s s′ = if (∃s′′. R s s′′) then R s s′ else (s′ = s)

= R s s′ ∨ (¬(∃s′′. R s s′′) ∧ (s′ = s))
◮ sometimes totality required

(e.g. in the book Model Checking by Clarke et. al)

Alan Mycroft Hoare Logic and Model Checking 161 / 265

JM1: a non-deterministic software example
◮ From Jhala and Majumdar’s tutorial:

Thread 1 Thread 2
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;
2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

◮ Two program counters, state: (pc1,pc2, lock , x)

SJM1 = [0..3]× [0..3]× Z× Z
∀pc1 pc2 lock x .RJM1 (0,pc2,0, x) (1,pc2,1, x) ∧

RJM1 (1,pc2, lock , x) (2,pc2, lock ,1) ∧
RJM1 (2,pc2,1, x) (3,pc2,0, x) ∧
RJM1 (pc1,0,0, x) (pc1,1,1, x) ∧
RJM1 (pc1,1, lock , x) (pc1,2, lock ,2) ∧
RJM1 (pc1,2,1, x) (pc1,3,0, x)

◮ Not-deterministic:
RJM1 (0,0,0, x) (1,0,1, x)
RJM1 (0,0,0, x) (0,1,1, x)

◮ Not so obvious that RJM1 is a correct model

Alan Mycroft Hoare Logic and Model Checking 162 / 265

Atomic properties (properties of states)
◮ Atomic properties are true or false of individual states

◮ an atomic property p is a function p : S → B
◮ can also be regarded as a subset of state: p ⊆ S

◮ Example atomic properties of RCV
(where 1 = true and 0 = false)
Dreq(dreq, q0, dack) = (dreq = 1)
NotQ0(dreq, q0, dack) = (q0 = 0)
Dack(dreq, q0, dack) = (dack = 1)
NotDreqAndQ0(dreq, q0, dack) = (dreq=0) ∧ (q0=1)

◮ Example atomic properties of DIV
AtStart (pc, x , y , r , q) = (pc = 0)
AtEnd (pc, x , y , r , q) = (pc = 5)
InLoop (pc, x , y , r , q) = (pc ∈ {3, 4})
YleqR (pc, x , y , r , q) = (y ≤ r)
Invariant (pc, x , y , r , q) = (x = r + (y × q))

Alan Mycroft Hoare Logic and Model Checking 163 / 265

Model behaviour viewed as a computation tree

◮ Atomic properties are true or false of individual states
◮ General properties are true or false of whole behaviour
◮ Behaviour of (S,R) starting from s ∈ S as a tree:

s

initial state states after
one step

states after
two steps

◮ A path is shown in red
◮ Properties may look at all paths, or just a single path

◮ CTL: Computation Tree Logic (all paths from a state)
◮ LTL: Linear Temporal Logic (a single path)

Alan Mycroft Hoare Logic and Model Checking 164 / 265

Paths

◮ A path of (S,R) is represented by a function π : N→ S
◮ π(i) is the i th element of π (first element is π(0))
◮ might sometimes write π i instead of π(i)
◮ π↓i is the i-th tail of π so π↓i(n) = π(i + n)
◮ successive states in a path must be related by R

◮ Path R s π is true if and only if π is a path starting at s:

Path R s π = (π(0) = s) ∧ ∀i . R (π(i)) (π(i+1))

where:

Path : (S → S → B)︸ ︷︷ ︸
transition
relation

→ S︸︷︷︸
initial
state

→ (N→ S)︸ ︷︷ ︸
path

→ B

Alan Mycroft Hoare Logic and Model Checking 165 / 265

RCV: example hardware properties

◮ Consider this timing diagram:

dreq

dack

◮ Two handshake properties representing the diagram:
◮ following a rising edge on dreq, the value of dreq

remains 1 (i.e. true) until it is acknowledged by a rising
edge on dack

◮ following a falling edge on dreq, the value on dreq
remains 0 (i.e. false) until the value of dack is 0

◮ A property language is used to formalise such properties

Alan Mycroft Hoare Logic and Model Checking 166 / 265

DIV: example program properties

0: R:=X;
1: Q:=0;
2: WHILE Y≤R DO
3: (R:=R-Y;
4: Q:=Q+1)
5:

AtStart (pc, x , y , r , q) = (pc = 0)
AtEnd (pc, x , y , r , q) = (pc = 5)
InLoop (pc, x , y , r , q) = (pc ∈ {3, 4})
YleqR (pc, x , y , r , q) = (y ≤ r)
Invariant (pc, x , y , r , q) = (x = r + (y × q))

◮ Example properties of the program DIV.
◮ on every execution if AtEnd is true then Invariant is true

and YleqR is not true

◮ on every execution there is a state where AtEnd is true

◮ on any execution if there exists a state where YleqR is true
then there is also a state where InLoop is true

◮ Compare these with what is expressible in Hoare logic
◮ execution: a path starting from a state satisfying AtStart

Alan Mycroft Hoare Logic and Model Checking 167 / 265

Recall JM1: a non-deterministic program example
Thread 1 Thread 2
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;
2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

SJM1 = [0..3]× [0..3]× Z× Z
∀pc1 pc2 lock x .RJM1 (0,pc2,0, x) (1,pc2,1, x) ∧

RJM1 (1,pc2, lock , x) (2,pc2, lock ,1) ∧
RJM1 (2,pc2,1, x) (3,pc2,0, x) ∧
RJM1 (pc1,0,0, x) (pc1,1,1, x) ∧
RJM1 (pc1,1, lock , x) (pc1,2, lock ,2) ∧
RJM1 (pc1,2,1, x) (pc1,3,0, x)

◮ An atomic property:
◮ NotAt11(pc1,pc2, lock , x) = ¬((pc1 = 1) ∧ (pc2 = 1))

◮ A non-atomic property:
◮ all states reachable from (0,0,0,0) satisfy NotAt11

◮ this is an example of a reachability property

Alan Mycroft Hoare Logic and Model Checking 168 / 265

State satisfying NotAt11 unreachable from (0,0,0,0)
Thread 1 Thread 2
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;
2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

RJM1 (0, pc2, 0, x) (1, pc2, 1, x)
RJM1 (1, pc2, lock , x) (2, pc2, lock , 1)
RJM1 (2, pc2, 1, x) (3, pc2, 0, x)

RJM1 (pc1, 0, 0, x) (pc1, 1, 1, x)
RJM1 (pc1, 1, lock , x) (pc1, 2, lock , 2)
RJM1 (pc1, 2, 1, x) (pc1, 3, 0, x)

◮ NotAt11(pc1, pc2, lock , x) = ¬((pc1 = 1) ∧ (pc2 = 1))

◮ Can only reach pc1 = 1 ∧ pc2 = 1 via:
RJM1 (0, pc2, 0, x) (1, pc2, 1, x)
RJM1 (pc1, 0, 0, x) (pc1, 1, 1, x)

i.e. a step RJM1 (0, 1, 0, x) (1, 1, 1, x)
i.e. a step RJM1 (1, 0, 0, x) (1, 1, 1, x)

◮ But:
RJM1 (pc1, pc2, lock , x) (pc′

1, pc′
2, lock ′, x ′) ∧ pc′

1=0 ∧ pc′
2=1 ⇒ lock ′=1

∧
RJM1 (pc1, pc2, lock , x) (pc′

1, pc′
2, lock ′, x ′) ∧ pc′

1=1 ∧ pc′
2=0 ⇒ lock ′=1

◮ So can never reach (0, 1, 0, x) or (1, 0, 0, x)

◮ So can’t reach (1, 1, 1, x), hence never (pc1 = 1) ∧ (pc2 = 1)
◮ Hence all states reachable from (0, 0, 0, 0) satisfy NotAt11

Alan Mycroft Hoare Logic and Model Checking 169 / 265

Reachability
◮ R s s′ means s′ reachable from s in one step

◮ Rn s s′ means s′ reachable from s in n steps
R0 s s′ = (s = s′)
Rn+1 s s′ = ∃s′′. R s s′′ ∧ Rn s′′ s′

◮ R∗ s s′ means s′ reachable from s in finite steps
R∗ s s′ = ∃n. Rn s s′

◮ Note: R∗ s s′ ⇔ ∃π n. Path R s π ∧ (s′ = π(n))

◮ The set of states reachable from s is {s′ | R∗ s s′}
◮ Verification problem: all states reachable from s satisfy p

◮ verify truth of ∀s′. R∗ s s′ ⇒ p(s′)

◮ e.g. all states reachable from (0,0,0,0) satisfy NotAt11

◮ i.e. ∀s′. R∗
JM1 (0,0,0,0) s′ ⇒ NotAt11(s′)

Alan Mycroft Hoare Logic and Model Checking 170 / 265

Model Checking a Simple Property

Alan Mycroft Hoare Logic and Model Checking 171 / 265

Models and model checking
◮ Assume a model (S,R)

◮ Assume also a set S0 ⊆ S of initial states
◮ Assume also a set AP of atomic properties

◮ allows different models to have same atomic properties

◮ Assume a labelling function L : S → P(AP)
◮ p ∈ L(s) means “s labelled with p” or “p true of s”
◮ previously properties were functions p : S → B
◮ now p ∈ AP is distinguished from λs. p ∈ L(s)
◮ assume T,F ∈ AP with ∀s: T ∈ L(s) and F /∈ L(s)

◮ A Kripke structure is a tuple (S,S0,R, L)
◮ often the term “model” is used for a Kripke structure
◮ i.e. a model is (S,S0,R,L) rather than just (S,R)

◮ Model checking computes whether (S,S0,R, L) |= φ

◮ φ is a property expressed in a property language
◮ informally M |= φ means “wff φ is true in model M”

Alan Mycroft Hoare Logic and Model Checking 172 / 265

Minimal property language: φ is AGp where p ∈ AP
Our first temporal operator in a very restricted form so far.

◮ Consider properties φ of form AGp where p ∈ AP
◮ “AG ” stands for “Always Globally”
◮ from CTL (same meaning, more elaborately expressed)

◮ Assume M = (S,S0,R, L)

◮ Reachable states of M are {s′ | ∃s ∈ S0. R∗ s s′}
◮ i.e. the set of states reachable from an initial state

◮ Define Reachable M = {s′ | ∃s ∈ S0. R∗ s s′}

◮ M |= AGp means p true of all reachable states of M

◮ If M = (S,S0,R, L) then M |= φ formally defined by:

M |= AGp ⇔ ∀s′. s′ ∈ Reachable M ⇒ p ∈ L(s′)

Alan Mycroft Hoare Logic and Model Checking 173 / 265

Model checking M |= AGp
◮ M |= AGp ⇔ ∀s′. s′ ∈ Reachable M ⇒ p ∈ L(s′)

⇔ Reachable M ⊆ {s′ | p ∈ L(s′)}
checked by:

◮ first computing Reachable M
◮ then checking p true of all its members

◮ Let S abbreviate {s′ | ∃s ∈ S0. R∗ s s′} (i.e. Reachable M)
◮ Compute S iteratively: S = S0 ∪ S1 ∪ · · · ∪ Sn ∪ · · ·

◮ i.e. S =
⋃∞

n=0 Sn

◮ where: S0 = S0 (set of initial states)
◮ and inductively: Sn+1 = Sn ∪ {s′ | ∃s ∈ Sn ∧ R s s′}

◮ Clearly S0 ⊆ S1 ⊆ · · · ⊆ Sn ⊆ · · ·
◮ Hence if Sm = Sm+1 then S = Sm
◮ Algorithm: compute S0, S1, . . . , until no change;

check all members of computed set labelled with p

Alan Mycroft Hoare Logic and Model Checking 174 / 265

compute S0, S1, . . . , until no change;
check p holds of all members of computed set

◮ Does the algorithm terminate?
◮ yes, if set of states is finite, because then no infinite chains:
S0 ⊂ S1 ⊂ · · · ⊂ Sn ⊂ · · ·

◮ How to represent S0, S1, . . . ?
◮ explicitly (e.g. lists or something more clever)
◮ symbolic expression

◮ Huge literature on calculating set of reachable states

Alan Mycroft Hoare Logic and Model Checking 175 / 265

Example: RCV

◮ Recall the handshake circuit:

dackdreq
q0

q0bar
a0

or0
a1

◮ State represented by a triple of Booleans (dreq,q0,dack)
◮ A model of RCV is MRCV where:

M = (SRCV, {(1,1,1)},RRCV,LRCV)

and
RRCV (dreq,q0,dack) (dreq′,q0′,dack ′) =

(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ dack)))
◮ AP and labelling function LRCV discussed later

Alan Mycroft Hoare Logic and Model Checking 176 / 265

RCV state transition diagram

◮ Possible states for RCV:
{000, 001, 010, 011, 100, 101, 110, 111}
where b2b1b0 denotes state
dreq = b2 ∧ q0 = b1 ∧ dack = b0

◮ Graph of the transition relation:

000 100 110 111

101

011

001

010

Alan Mycroft Hoare Logic and Model Checking 177 / 265

Computing Reachable MRCV

000 100 110 111

101

011

001

010

◮ Define:
S0 = {b2b1b0 | b2b1b0 ∈ {111}}

= {111}
Si+1 = Si ∪ {s′ | ∃s ∈ Si . RRCV s s′ }

= Si ∪ {b′
2b′

1b′
0 |

∃b2b1b0 ∈ Si . (b′
1 = b2) ∧ (b′

0 = b2 ∧ (b1 ∨ b0))}

Alan Mycroft Hoare Logic and Model Checking 178 / 265

Computing Reachable MRCV (continued)

000 100 110 111

101

011

001

010

0322

3

1

◮ Compute:

S0 = {111}
S1 = {111} ∪ {011}

= {111,011}
S2 = {111,011} ∪ {000,100}

= {111,011,000,100}
S3 = {111,011,000,100} ∪ {010,110}

= {111,011,000,100,010,110}
Si = S3 (i > 3)

◮ Hence Reachable MRCV = {111,011,000,100,010,110}
Alan Mycroft Hoare Logic and Model Checking 179 / 265

Model checking MRCV |= AGp
◮ M = (SRCV, {111},RRCV,LRCV)

◮ To check MRCV |= AG p
◮ compute Reachable MRCV = {111,011,000,100,010,110}
◮ check Reachable MRCV ⊆ {s | p ∈ LRCV(s)}
◮ i.e. check if s ∈ Reachable MRCV then p ∈ LRCV(s), i.e.:

p ∈ LRCV(111) ∧
p ∈ LRCV(011) ∧
p ∈ LRCV(000) ∧
p ∈ LRCV(100) ∧
p ∈ LRCV(010) ∧
p ∈ LRCV(110)

◮ Example
◮ if AP = {A,B}
◮ and LRCV(s) = if s ∈ {001,101} then {A} else {B}
◮ then MRCV |= AGA is not true, but MRCV |= AGB is true

Alan Mycroft Hoare Logic and Model Checking 180 / 265

Symbolic Boolean model checking of reachability

◮ Assume states are n-tuples of Booleans (b1, . . . , bn)
◮ bi ∈ B = {true, false} (= {1,0})
◮ S = Bn, so S is finite: 2n states

◮ Assume n distinct Boolean variables: v1,. . .,vn
◮ e.g. if n = 3 then could have v1 = x, v2 = y, v3 = z

◮ Boolean formula f (v1, . . . , vn) represents a subset of S
◮ f (v1, . . . , vn) only contains variables v1,. . .,vn

◮ f (b1, . . . ,bn) denotes result of substituting bi for vi

◮ f (v1, . . . , vn)determines{(b1, . . . ,bn) | f (b1, . . . ,bn)⇔ true}
◮ Example ¬(x = y) represents {(true, false), (false, true)}
◮ Transition relations also represented by Boolean formulae

◮ e.g. RRCV represented by:
(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ (¬q0 ∧ dack))))

Alan Mycroft Hoare Logic and Model Checking 181 / 265

Symbolically represent Boolean formulae as BDDs
◮ Key features of Binary Decision Diagrams (BDDs):

◮ canonical (given a variable ordering)
◮ efficient to manipulate

◮ Variables:
v = if v then 1 else 0
¬v = if v then 0 else 1

◮ Example: BDDs of variable v and ¬v

0 1

v

0 1

v

◮ Example: BDDs of v1 ∧ v2 and v1 ∨ v2

0 1

v1

v2

01

v1

v2

Alan Mycroft Hoare Logic and Model Checking 182 / 265

More BDD examples

◮ BDD of v1 = v2

0 1

v1

v2 v2

◮ BDD of v1 6= v2

0 1

v1

v2 v2

Alan Mycroft Hoare Logic and Model Checking 183 / 265

BDD of a transition relation

◮ BDDs of

(v1′ = (v1 = v2)) ∧ (v2′ = (v1 6= v2))

with two different variable orderings

0 1

v1

v2 v2

v1’ v1’

v2’ v2’

01

v1’

v1 v1

v2v2 v2 v2

v2’ v2’

◮ Exercise: draw BDD of RRCV

Alan Mycroft Hoare Logic and Model Checking 184 / 265

Standard BDD operations
◮ If formulae f1, f2 represents sets S1, S2, respectively

then f1 ∧ f2, f1 ∨ f2 represent S1 ∩ S2, S1 ∪ S2 respectively

◮ Standard algorithms compute Boolean operation on BDDs

◮ Abbreviate (v1, . . . , vn) to ~v

◮ If f (~v) represents S
and g(~v , ~v ′) represents {(~v , ~v ′) | R ~v ~v ′)}
then ∃~u. f (~u) ∧ g(~u, ~v) represents {~v | ∃~u. ~u ∈ S ∧ R ~u ~v}

◮ Can compute BDD of ∃~u. h(~u, ~v) from BDD of h(~u, ~v)
◮ e.g. BDD of ∃v1. h(v1, v2) is BDD of h(T, v2) ∨ h(F, v2)

◮ From BDD of formula f (v1, . . . , vn) can compute b1, . . ., bn
such that if v1 = b1, . . ., vn = bn then f (b1, . . . , bn)⇔ true

◮ b1, . . ., bn is a satisfying assignment (SAT problem)
◮ used for counterexample generation (see later)

Alan Mycroft Hoare Logic and Model Checking 185 / 265

Reachable States via BDDs
◮ Assume M = (S,S0,R, L) and S = Bn

◮ Represent R by Boolean formulae g(~v , ~v ′)

◮ Iteratively define formula fn(~v) representing Sn

f0(~v) = formula representing S0

fn+1(~v) = fn(~v) ∨ (∃~u. fn(~u) ∧ g(~u, ~v))

◮ Let B0, BR be BDDs representing f0(~v), g(~v , ~v ′)

◮ Iteratively compute BDDs Bn representing fn
Bn+1 = Bn ∨ (∃~u. Bn[~u/~v] ∧ BR[~u, ~v/~v , ~v ′])

◮ efficient using (blue underlined) standard BDD algorithms
(renaming, conjunction, disjunction, quantification)

◮ BDD Bn only contains variables ~v : represents Sn ⊆ S

◮ At each iteration check Bn+1 = Bn efficient using BDDs
◮ when Bn+1 = Bn can conclude Bn represents Reachable M
◮ we call this BDD BM in a later slide (i.e. BM = Bn)

Alan Mycroft Hoare Logic and Model Checking 186 / 265

Example BDD optimisation: disjunctive partitioning

δ

δ

δ

x

y

z

x

y

z

Three state transition functions in parallel

δx , δy , δz : B× B× B→B

◮ Transition relation (asynchronous interleaving semantics):

R (x , y , z) (x ′, y ′, z ′) =
(x ′ = δx(x , y , z) ∧ y ′ = y ∧ z ′ = z) ∨
(x ′ = x ∧ y ′ = δy (x , y , z) ∧ z ′ = z) ∨
(x ′ = x ∧ y ′ = y ∧ z ′ = δz(x , y , z))

Alan Mycroft Hoare Logic and Model Checking 187 / 265

Avoiding building big BDDs

◮ Transition relation for three transition functions in parallel
R(x , y , z) (x ′, y ′, z ′) =
(x ′ = δx(x , y , z) ∧ y ′ = y ∧ z ′ = z) ∨
(x ′ = x ∧ y ′ = δy (x , y , z) ∧ z ′ = z) ∨
(x ′ = x ∧ y ′ = y ∧ z ′ = δz(x , y , z))

◮ Recall symbolic iteration:
fn+1(~v) = fn(~v) ∨ (∃~u. fn(~u) ∧ g(~u, ~v))

◮ For this particular R (see next slide):
fn+1(x , y , z)
= fn(x , y , z) ∨ (∃x y z. fn(x , y , z) ∧ R (x , y , z) (x , y , z))
= fn(x , y , z) ∨

(∃x . fn(x , y , z) ∧ x = δx(x , y , z)) ∨
(∃y . fn(x , y , z) ∧ y = δy (x , y , z)) ∨
(∃z. fn(x , y , z) ∧ z = δz(x , y , z))

◮ Don’t need to calculate BDD of R!
Alan Mycroft Hoare Logic and Model Checking 188 / 265

Disjunctive partitioning – Exercise: understand this
∃x y z. fn(x , y , z) ∧ R (x , y , z) (x , y , z)

= ∃x y z. fn(x , y , z) ∧ ((x = δx(x , y , z) ∧ y = y ∧ z = z) ∨
(x = x ∧ y = δy (x , y , z) ∧ z = z) ∨
(x = x ∧ y = y ∧ z = δz(x , y , z)))

= (∃x y z. fn(x , y , z) ∧ x = δx(x , y , z) ∧ y = y ∧ z = z) ∨
(∃x y z. fn(x , y , z) ∧ x = x ∧ y = δy (x , y , z) ∧ z = z) ∨
(∃x y z. fn(x , y , z) ∧ x = x ∧ y = y ∧ z = δz(x , y , z))

= (∃x y z. fn(x , y , z) ∧ x = δx(x , y , z) ∧ y = y ∧ z = z) ∨
(∃x y z. fn(x , y , z) ∧ x = x ∧ y = δy (x , y , z) ∧ z = z) ∨
(∃x y z. fn(x , y , z) ∧ x = x ∧ y = y ∧ z = δz(x , y , z))

= ((∃x . fn(x , y , z) ∧ x=δx(x , y , z)) ∧ (∃y . y=y) ∧ (∃z. z=z)) ∨
((∃x . x=x) ∧ (∃y . fn(x , y , z) ∧ y=δy (x , y , z)) ∧ (∃z. z=z)) ∨
((∃x . x=x) ∧ (∃y . y=y) ∧ (∃z. fn(x , y , z) ∧ z=δz(x , y , z)))

= (∃x . fn(x , y , z) ∧ x = δx(x , y , z)) ∨
(∃y . fn(x , y , z) ∧ y = δy (x , y , z)) ∨
(∃z. fn(x , y , z) ∧ z = δz(x , y , z))

Alan Mycroft Hoare Logic and Model Checking 189 / 265

Verification and counterexamples

◮ Typical safety question:
◮ is property p true in all reachable states?
◮ i.e. check M |= AG p
◮ i.e. is ∀s. s ∈ Reachable M ⇒ p s

◮ Check using BDDs
◮ compute BDD BM of Reachable M
◮ compute BDD Bp of p(~v)
◮ check if BDD of BM ⇒ Bp is the single node 1

◮ Valid because true represented by a unique BDD
(canonical property)

◮ If BDD is not 1 can get counterexample

Alan Mycroft Hoare Logic and Model Checking 190 / 265

Generating counterexamples (general idea)

BDD algorithms can find satisfying assignments (SAT)

◮ Suppose not all reachable states of model M satisfy p
◮ i.e. ∃s ∈ Reachable M. ¬(p(s))
◮ Set of reachable state S given by: S =

⋃∞
n=0 Sn

◮ Iterate to find least n such that ∃s ∈ Sn. ¬(p(s))
◮ Use SAT to find bn such that bn ∈ Sn ∧ ¬(p(bn))

◮ Use SAT to find bn−1 such that bn−1 ∈ Sn−1 ∧ R bn−1 bn

◮ Use SAT to find bn−2 such that bn−2 ∈ Sn−2 ∧ R bn−2 bn−1
...

◮ Iterate to find b0, b1, . . ., bn−1, bn where bi ∈ Si ∧ R bi−1 bi

◮ Then b0 b1 · · · bn−1 bn is a path to a counterexample

Alan Mycroft Hoare Logic and Model Checking 191 / 265

Use SAT to find sn−1 such that sn−1 ∈ Sn−1 ∧ R sn−1 sn

◮ Suppose states s, s′ symbolically represented by ~v , ~v ′

◮ Suppose BDD Bi represents ~v ∈ Si (1 ≤ i ≤ n)

◮ Suppose BDD BR represents R ~v ~v ′

◮ Then BDD
(Bn−1 ∧ BR[~bn/~v ′])
represents
~v ∈ Sn−1 ∧ R ~v ~bn

◮ Use SAT to find a valuation ~bn−1 for ~v

◮ Then BDD
(Bn−1 ∧ BR[~bn/~v ′])[~bn−1/~v]
represents
~bn−1 ∈ Sn−1 ∧ R ~bn−1

~bn

Alan Mycroft Hoare Logic and Model Checking 192 / 265

Generating counterexamples with BDDs
BDD algorithms can find satisfying assignments (SAT)

◮ M = (S,S0,R, L) and B0, B1, . . . , BM , BR, Bp as earlier
◮ Suppose BM ⇒ Bp is not 1

◮ Must exist a state s ∈ Reachable M such that ¬(p s)
◮ Let B¬p be the BDD representing ¬(p ~v)
◮ Iterate to find first n such that Bn ∧ B¬p

◮ Use SAT to find ~bn such that (Bn ∧ B¬p)[~bn/~v]

◮ Use SAT to find ~bn−1 such that (Bn−1 ∧ BR[~bn/~v ′])[~bn−1/~v]

◮ For 0 < i < n find ~bi−1 such that (Bi−1 ∧ BR[~bi/~v ′])[~bi−1/~v]

◮ ~b0,. . .,~bi ,. . .,~bn is a counterexample trace
◮ Sometimes can use partitioning to avoid constructing BR

Alan Mycroft Hoare Logic and Model Checking 193 / 265

Example (from an exam)
Consider a 3x3 array of 9 switches

1 2 3

4 5 6

7 8 9

Suppose each switch 1,2,...,9 can either be on or off, and that toggling any switch will
automatically toggle all its immediate neighbours. For example, toggling switch 5 will
also toggle switches 2, 4, 6 and 8, and toggling switch 6 will also toggle switches 3, 5
and 9.

(a) Devise a state space [4 marks] and transition relation [6 marks] to represent the
behaviour of the array of switches

You are given the problem of getting from an initial state in which even numbered
switches are on and odd numbered switches are off, to a final state in which all the
switches are off.

(b) Write down predicates on your state space that characterises the initial [2 marks]
and final [2 marks] states.

(c) Explain how you might use a model checker to find a sequences of switches to
toggle to get from the initial to final state. [6 marks]

You are not expected to actually solve the problem, but only to explain how to represent
it in terms of model checking.

Alan Mycroft Hoare Logic and Model Checking 194 / 265

Solution
A state is a vector (v1,v2,v3,v4,v5,v6,v7,v8,v9), where vi ∈ B
A transition relation Trans is then defined by:

Trans(v1,v2,v3,v4,v5,v6,v7,v8,v9)(v1’,v2’,v3’,v4’,v5’,v6’,v7’,v8’,v9’)
= ((v1’=¬v1)∧(v2’=¬v2)∧(v3’=v3)∧(v4’=¬v4)∧(v5’=v5)∧

(v6’=v6)∧(v7’=v7)∧(v8’=v8)∧(v9’=v9)) (toggle switch 1)
∨ ((v1’=¬v1)∧(v2’=¬v2)∧(v3’=¬v3)∧(v4’=v4)∧(v5’=¬v5)∧

(v6’=v6)∧(v7’=v7)∧(v8’=v8)∧(v9’=v9)) (toggle switch 2)
∨ ((v1’=v1)∧(v2’=¬v2)∧(v3’=¬v3)∧(v4’=v4)∧(v5’=v5)∧

(v6’=¬v6)∧(v7’=v7)∧(v8’=v8)∧(v9’=v9)) (toggle switch 3)
∨ ((v1’=¬v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=¬v4)∧(v5’=¬v5)∧

(v6’=v6)∧(v7’=¬v7)∧(v8’=v8)∧(v9’=v9)) (toggle switch 4)
∨ ((v1’=v1)∧(v2’=¬v2)∧(v3’=v3)∧(v4’=¬v4)∧(v5’=¬v5)∧

(v6’=¬v6)∧(v7’=v7)∧(v8’=¬v8)∧(v9’=v9)) (toggle switch 5)
∨ ((v1’=v1)∧(v2’=v2)∧(v3’=¬v3)∧(v4’=v4)∧(v5’=¬v5)∧

(v6’=¬v6)∧(v7’=v7)∧(v8’=v8)∧(v9’=¬v9)) (toggle switch 6)
∨ ((v1’=v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=¬v4)∧(v5’=v5)∧

(v6’=v6)∧(v7’=¬v7)∧(v8’=¬v8)∧(v9’=v9)) (toggle switch 7)
∨ ((v1’=v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=v4)∧(v5’=¬v5)∧

(v6’=v6)∧(v7’=¬v7)∧(v8’=¬v8)∧(v9’=¬v9)) (toggle switch 8)
∨ ((v1’=v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=v4)∧(v5’=v5)∧

(v6’=¬v6)∧(v7’=v7)∧(v8’=¬v8)∧(v9’=¬v9)) (toggle switch 9)

Alan Mycroft Hoare Logic and Model Checking 195 / 265

Solution (continued)

Predicates Init, Final characterising the initial and final states,
respectively, are defined by:

Init(v1,v2,v3,v4,v5,v6,v7,v8,v9) =
¬v1 ∧ v2 ∧ ¬v3 ∧ v4 ∧ ¬v5 ∧ v6 ∧ ¬v7 ∧ v8 ∧ ¬v9

Final(v1,v2,v3,v4,v5,v6,v7,v8,v9) =
¬v1 ∧ ¬v2 ∧ ¬v3 ∧ ¬v4 ∧ ¬v5 ∧ ¬v6 ∧ ¬v7 ∧ ¬v8 ∧ ¬v9

Model checkers can find counter-examples to properties, and
sequences of transitions from an initial state to a
counter-example state. Thus we could use a model checker to
find a trace to a counter-example to the property that
¬Final(v1,v2,v3,v4,v5,v6,v7,v8,v9)

Alan Mycroft Hoare Logic and Model Checking 196 / 265

More Interesting Properties (LTL)

Alan Mycroft Hoare Logic and Model Checking 197 / 265

More General Properties
◮ ∀s∈S0.∀s′.R∗ s s′ ⇒ p s′ says p true in all reachable states
◮ Might want to verify other properties

1. DeviceEnabled holds infinitely often along every path
2. From any state it is possible to get to a state where

Restart holds
3. After a three or more consecutive occurrences of Req there

will eventually be an Ack

◮ Temporal logic can express such properties
◮ There are several temporal logics in use

◮ LTL is good for the first example above
◮ CTL is good for the second example
◮ PSL is good for the third example

◮ Model checking:
◮ Emerson, Clarke & Sifakis: Turing Award 2008
◮ widely used in industry: first hardware, later software

Alan Mycroft Hoare Logic and Model Checking 198 / 265

Temporal logic (originally called “tense logic”)
Originally devised for investigating: “the relationship
between tense and modality attributed to the Megarian
philosopher Diodorus Cronus (ca. 340-280 BCE)”.

Mary Prior, his wife, recalls “I remember his waking me
one night [in 1953], coming and sitting on my bed, ... and
saying he thought one could make a formalised tense logic”.

A. N. Prior
1914-1969

◮ Temporal logic: deductive system for reasoning about time
◮ temporal formulae for expressing temporal statements
◮ deductive system for proving theorems

◮ Temporal logic model checking
◮ uses semantics to check truth of temporal formulae in models

◮ Temporal logic proof systems also important in CS
◮ use pioneered by Amir Pnueli (1996 Turing Award)
◮ not considered in this course

Recommended: http://plato.stanford.edu/entries/prior/

Alan Mycroft Hoare Logic and Model Checking 199 / 265

Temporal logic formulae (statements)
◮ Many different languages of temporal statements

◮ linear time (LTL)
◮ branching time (CTL)
◮ finite intervals (SEREs)
◮ industrial languages (PSL, SVA)

◮ Prior used linear time, Kripke suggested branching time:
... we perhaps should not regard time as a linear series ... there are
several possibilities for what the next moment may be like - and for
each possible next moment, there are several possibilities for the
moment after that. Thus the situation takes the form, not of a linear
sequence, but of a ’tree’. [Saul Kripke, 1958 (aged 17, still at school)]

◮ CS issues different from philosophical issues
◮ Moshe Vardi: “Branching vs. Linear Time: Final Showdown”

2011 Harry H. Goode Memorial Award Recipient

Alan Mycroft Hoare Logic and Model Checking 200 / 265

Linear Temporal Logic (LTL)

◮ Grammar of well-formed formulae (wff) φ
φ ::= p (Atomic formula: p ∈ AP)

| ¬φ (Negation)
| φ1 ∨ φ2 (Disjunction)
| Xφ (successor)
| Fφ (sometimes)
| Gφ (always)
| [φ1 U φ2] (Until)

◮ Details differ from Prior’s tense logic – but similar ideas
◮ Semantics define when φ true in model M

◮ where M = (S,S0,R,L) – a Kripke structure
◮ notation: M |= φ means φ true in model M
◮ model checking algorithms compute this (when decidable)
◮ previously we only discussed the case φ = AG p

Alan Mycroft Hoare Logic and Model Checking 201 / 265

While use temporal operators at all?

Instead of the complexity of new temporal operators, why not
make time explicit and just write:

◮ ∃t .φ(t) instead of Fφ
◮ ∀t .φ(t) instead of Gφ
◮ φ[t + 1/t] instead of Xφ

along with parameterising all Atomic Formulae with time?

Answer: it’s harder to reason about quantifiers and arithmetic
on time than it is to reason about temporal operators (which
abstract from the above concrete notion of time).

Alan Mycroft Hoare Logic and Model Checking 202 / 265

M |= φ means “wff φ is true in model M”

◮ If M = (S,S0,R, L) then

π is an M-path starting from s iff Path R s π

◮ If M = (S,S0,R, L) then we define M |= φ to mean:

φ is true on all M-paths starting from a member of S0

◮ We will define [[φ]]M(π) to mean

φ is true on the M-path π

◮ Thus M |= φ will be formally defined by:

M |= φ ⇔ ∀π s. s ∈ S0 ∧ Path R s π ⇒ [[φ]]M(π)

◮ It remains to actually define [[φ]]M for all wffs φ

Alan Mycroft Hoare Logic and Model Checking 203 / 265

Definition of [[φ]]M(π)

◮ [[φ]]M(π) is the application of function [[φ]]M to path π
◮ thus [[φ]]M : (N→ S)→ B

◮ Let M = (S,S0,R, L)
[[φ]]M is defined by structural induction on φ

[[p]]M(π) = p ∈ L(π 0)
[[¬φ]]M(π) = ¬([[φ]]M(π))
[[φ1 ∨ φ2]]M(π) = [[φ1]]M(π) ∨ [[φ2]]M(π)
[[Xφ]]M(π) = [[φ]]M(π↓1)
[[Fφ]]M(π) = ∃i . [[φ]]M(π↓i)
[[Gφ]]M(π) = ∀i . [[φ]]M(π↓i)
[[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M(π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)

◮ We look at each of these semantic equations in turn

Alan Mycroft Hoare Logic and Model Checking 204 / 265

[[p]]M(π) = p(π 0)

◮ Assume M = (S,S0,R, L)

◮ We have: [[p]]M(π) = p ∈ L(π 0)
◮ p is an atomic property, i.e. p ∈ AP
◮ π : N→ S so π 0 ∈ S
◮ π 0 is the first state in path π
◮ p ∈ L(π 0) is true iff atomic property p holds of state π 0

◮ [[p]]M(π) means p holds of the first state in path π

◮ T,F ∈ AP with T ∈ L(s) and F /∈ L(s) for all s ∈ S
◮ [[T]]M(π) is always true

◮ [[F]]M(π) is always false

Alan Mycroft Hoare Logic and Model Checking 205 / 265

[[¬φ]]M(π) = ¬([[φ]]M(π))
[[φ1 ∨ φ2]]M(π) = [[φ1]]M(π) ∨ [[φ2]]M(π)

◮ [[¬φ]]M(π) = ¬([[φ]]M(π))

◮ [[¬φ]]M(π) true iff [[φ]]M(π) is not true

◮ [[φ1 ∨ φ2]]M(π) = [[φ1]]M(π) ∨ [[φ2]]M(π)

◮ [[φ1 ∨ φ2]]M(π) true iff [[φ1]]M(π) is true or [[φ2]]M(π) is true

Alan Mycroft Hoare Logic and Model Checking 206 / 265

[[Xφ]]M(π) = [[φ]]M(π↓1)

◮ [[Xφ]]M(π) = [[φ]]M(π↓1)
◮ π↓1 is π with the first state chopped off

π↓1(0) = π(1 + 0) = π(1)
π↓1(1) = π(1 + 1) = π(2)
π↓1(2) = π(1 + 2) = π(3)

...

◮ [[Xφ]]M(π) true iff [[φ]]M true starting at the second state of π

Alan Mycroft Hoare Logic and Model Checking 207 / 265

[[Fφ]]M(π) = ∃i . [[φ]]M(π↓i)

◮ [[Fφ]]M(π) = ∃i . [[φ]]M(π↓i)
◮ π↓i is π with the first i states chopped off

π↓i(0) = π(i + 0) = π(i)
π↓i(1) = π(i + 1)
π↓i(2) = π(i + 2)

...
◮ [[φ]]M(π↓i) true iff [[φ]]M true starting i states along π

◮ [[Fφ]]M(π) true iff [[φ]]M true starting somewhere along π

◮ “Fφ” is read as “sometimes φ”

Alan Mycroft Hoare Logic and Model Checking 208 / 265

[[Gφ]]M(π) = ∀i . [[φ]]M(π↓i)
◮ [[Gφ]]M(π) = ∀i . [[φ]]M(π↓i)

◮ π↓i is π with the first i states chopped off

◮ [[φ]]M(π↓i) true iff [[φ]]M true starting i states along π

◮ [[Gφ]]M(π) true iff [[φ]]M true starting anywhere along π

◮ “Gφ” is read as “always φ” or “globally φ”

◮ M |= AGp defined earlier: M |= AGp ⇔ M |= G(p)

◮ G is definable in terms of F and ¬: Gφ = ¬(F(¬φ))
[[¬(F(¬φ))]]M(π) = ¬([[F(¬φ)]]M(π))

= ¬(∃i . [[¬φ]]M(π↓i))
= ¬(∃i . ¬([[φ]]M(π↓i)))
= ∀i . [[φ]]M(π↓i)
= [[Gφ]]M(π)

Alan Mycroft Hoare Logic and Model Checking 209 / 265

[[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M(π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)
◮ [[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M(π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)

◮ [[φ2]]M(π↓i) true iff [[φ2]]M true starting i states along π

◮ [[φ1]]M(π↓j) true iff [[φ1]]M true starting j states along π

◮ [[[φ1 U φ2]]]M(π) is true iff

[[φ2]]M is true somewhere along π and up to then [[φ1]]M is true

◮ “[φ1 U φ2]” is read as “φ1 until φ2”

◮ F is definable in terms of [− U −]: Fφ = [T U φ]

[[[T U φ]]]M(π)
= ∃i . [[φ]]M(π↓i) ∧ ∀j . j<i ⇒ [[T]]M(π↓j)
= ∃i . [[φ]]M(π↓i) ∧ ∀j . j<i ⇒ true
= ∃i . [[φ]]M(π↓i) ∧ true
= ∃i . [[φ]]M(π↓i)
= [[Fφ]]M(π)

Alan Mycroft Hoare Logic and Model Checking 210 / 265

Review of Linear Temporal Logic (LTL)

◮ Grammar of well-formed formulae (wff) φ
φ ::= p (Atomic formula: p ∈ AP)

| ¬φ (Negation)
| φ1 ∨ φ2 (Disjunction)
| Xφ (successor)
| Fφ (sometimes)
| Gφ (always)
| [φ1 U φ2] (Until)

◮ M |= φ means φ holds on all M-paths

◮ M = (S,S0,R,L)

◮ [[φ]]M(π) means φ is true on the M-path π

◮ M |= φ ⇔ ∀π s. s ∈ S0 ∧ Path R s π ⇒ [[φ]]M(π)

Alan Mycroft Hoare Logic and Model Checking 211 / 265

LTL examples
◮ “DeviceEnabled holds infinitely often along every path”

G(F DeviceEnabled)

◮ “Eventually the state becomes permanently Done“
F(G Done)

◮ “Every Req is followed by an Ack”
G(Req⇒ F Ack)

Number of Req and Ack may differ - no counting

◮ “If Enabled infinitely often then Running infinitely often”
G(F Enabled)⇒ G(F Running)

◮ “An upward-going lift at the second floor keeps going up if
a passenger requests the fifth floor”
G(AtFloor2 ∧ DirectionUp ∧ RequestFloor5
⇒ [DirectionUp U AtFloor5])

(acknowledgement: http://pswlab.kaist.ac.kr/courses/cs402-2011/temporal-logic2.pdf)Alan Mycroft Hoare Logic and Model Checking 212 / 265

A property not expressible in LTL
◮ Let AP = {P} and consider models M and M ′ below

¬P P ¬P

s0 s1 s0

M M ′

M = ({s0, s1}, {s0}, {(s0, s0), (s0, s1), (s1, s1)}, L)
M ′ = ({s0}, {s0}, {(s0, s0)}, L)

where: L = λs. if s = s0 then {} else {P}
◮ Every M ′-path is also an M-path
◮ So if φ true on every M-path then φ true on every M ′-path
◮ Hence in LTL for any φ if M |= φ then M ′ |= φ
◮ Consider φP ⇔ “can always reach a state satisfying P”

◮ φP holds in M but not in M ′

◮ but in LTL can’t have M |= φP and not M ′ |= φP

◮ hence φP not expressible in LTL
(acknowledgement: Logic in Computer Science, Huth & Ryan (2nd Ed.) page 219, ISBN 0 521 54310 X)Alan Mycroft Hoare Logic and Model Checking 213 / 265

LTL expressibility limitations

“can always reach a state satisfying P”

◮ In LTL M |= φ says φ holds of all paths of M

◮ LTL formulae φ are evaluated on paths path formulae

◮ Want also to say that from any state there exists a path to
some state satisfying p

◮ ∀s. ∃π. Path R s π ∧ ∃i . p ∈ L(π(i))

◮ but this isn’t expressible in LTL (see slide 213)

By contrast:

◮ CTL properties are evaluated at a state . . . state formulae

◮ they can talk about both some or all paths

◮ starting from the state they are evaluated at

Alan Mycroft Hoare Logic and Model Checking 214 / 265

More Interesting Properties (CTL)

Alan Mycroft Hoare Logic and Model Checking 215 / 265

Computation Tree Logic (CTL)
◮ LTL formulae φ are evaluated on paths path formulae

◮ CTL formulae ψ are evaluated on states . . state formulae

◮ Syntax of CTL well-formed formulae:

ψ ::= p (Atomic formula p ∈ AP)
| ¬ψ (Negation)
| ψ1 ∧ ψ2 (Conjunction)
| ψ1 ∨ ψ2 (Disjunction)
| ψ1⇒ ψ2 (Implication)
| AXψ (All successors)
| EXψ (Some successors)
| A[ψ1 U ψ2] (Until – along all paths)
| E[ψ1 U ψ2] (Until – along some path)

◮ (Some operators can be defined in terms of others)

Alan Mycroft Hoare Logic and Model Checking 216 / 265

Semantics of CTL
◮ Assume M = (S,S0,R, L) and then define:

[[p]]M(s) = p ∈ L(s)
[[¬ψ]]M(s) = ¬([[ψ]]M(s))
[[ψ1 ∧ ψ2]]M(s) = [[ψ1]]M(s) ∧ [[ψ2]]M(s)
[[ψ1 ∨ ψ2]]M(s) = [[ψ1]]M(s) ∨ [[ψ2]]M(s)
[[ψ1⇒ ψ2]]M(s) = [[ψ1]]M(s) ⇒ [[ψ2]]M(s)
[[AXψ]]M(s) = ∀s′. R s s′ ⇒ [[ψ]]M(s′)

[[EXψ]]M(s) = ∃s′. R s s′ ∧ [[ψ]]M(s′)

[[A[ψ1 U ψ2]]]M(s) = ∀π. Path R s π
⇒ ∃i . [[ψ2]]M(π(i))

∧
∀j . j<i ⇒ [[ψ1]]M(π(j))

[[E[ψ1 U ψ2]]]M(s) = ∃π. Path R s π
∧ ∃i . [[ψ2]]M(π(i))

∧
∀j . j<i ⇒ [[ψ1]]M(π(j))

Alan Mycroft Hoare Logic and Model Checking 217 / 265

The defined operator AF

◮ Define AFψ = A[T U ψ]

◮ AFψ true at s iffψ true somewhere on every R-path from s

[[AFψ]]M(s) = [[A[T U ψ]]]M(s)

= ∀π. Path R s π
⇒
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ [[T]]M(π(j))

= ∀π. Path R s π
⇒
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ true

= ∀π. Path R s π ⇒ ∃i . [[ψ]]M(π(i))

Alan Mycroft Hoare Logic and Model Checking 218 / 265

The defined operator EF

◮ Define EFψ = E[T U ψ]

◮ EFψ true at s iffψ true somewhere on some R-path from s

[[EFψ]]M(s) = [[E[T U ψ]]]M(s)

= ∃π. Path R s π
∧
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ [[T]]M(π(j))

= ∃π. Path R s π
∧
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ true

= ∃π. Path R s π ∧ ∃i . [[ψ]]M(π(i))

◮ “can reach a state satisfying p” is EF p

Alan Mycroft Hoare Logic and Model Checking 219 / 265

The defined operator AG
◮ Define AGψ = ¬EF(¬ψ)
◮ AGψ true at s iffψ true everywhere on every R-path from s

[[AGψ]]M(s) = [[¬EF(¬ψ)]]M(s)
= ¬([[EF(¬ψ)]]M(s))
= ¬(∃π. Path R s π ∧ ∃i . [[¬ψ]]M(π(i)))
= ¬(∃π. Path R s π ∧ ∃i . ¬[[ψ]]M(π(i)))
= ∀π. ¬(Path R s π ∧ ∃i . ¬[[ψ]]M(π(i)))
= ∀π. ¬Path R s π ∨ ¬(∃i . ¬[[ψ]]M(π(i)))
= ∀π. ¬Path R s π ∨ ∀i . ¬¬[[ψ]]M(π(i))
= ∀π. ¬Path R s π ∨ ∀i . [[ψ]]M(π(i))
= ∀π. Path R s π ⇒ ∀i . [[ψ]]M(π(i))

◮ AGψ means ψ true at all reachable states

◮ [[AG(p)]]M(s) ≡ ∀s′. R∗ s s′ ⇒ p ∈ L(s′)

◮ “can always reach a state satisfying p” is AG(EF p)

Alan Mycroft Hoare Logic and Model Checking 220 / 265

The defined operator EG

◮ Define EGψ = ¬AF(¬ψ)

◮ EGψ true at s iffψ true everywhere on some R-path from s

[[EGψ]]M(s) = [[¬AF(¬ψ)]]M(s)
= ¬([[AF(¬ψ)]]M(s))
= ¬(∀π. Path R s π ⇒ ∃i . [[¬ψ]]M(π(i)))
= ¬(∀π. Path R s π ⇒ ∃i . ¬[[ψ]]M(π(i)))
= ∃π. ¬(Path R s π ⇒ ∃i . ¬[[ψ]]M(π(i)))
= ∃π. Path R s π ∧ ¬(∃i . ¬[[ψ]]M(π(i)))
= ∃π. Path R s π ∧ ∀i . ¬¬[[ψ]]M(π(i))
= ∃π. Path R s π ∧ ∀i . [[ψ]]M(π(i))

Alan Mycroft Hoare Logic and Model Checking 221 / 265

The defined operator A[ψ1 W ψ2]

◮ A[ψ1 W ψ2] is a ‘partial correctness’ version of A[ψ1 U ψ2]

◮ It is true at s if along all R-paths from s:
◮ ψ1 always holds on the path, or

◮ ψ2 holds sometime on the path, and until it does ψ1 holds

◮ Define
[[A[ψ1 W ψ2]]]M(s)
= [[¬E[(ψ1∧¬ψ2) U (¬ψ1∧¬ψ2)]]]M(s)
= ¬[[E[(ψ1∧¬ψ2) U (¬ψ1∧¬ψ2)]]]M(s)
= ¬(∃π. Path R s π

∧
∃i . [[¬ψ1∧¬ψ2]]M(π(i))
∧
∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

◮ Exercise: understand the next two slides!

Alan Mycroft Hoare Logic and Model Checking 222 / 265

A[ψ1 W ψ2] continued (1)

◮ Continuing:

¬(∃π. Path R s π
∧
∃i . [[¬ψ1∧¬ψ2]]M(π(i)) ∧ ∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. ¬(Path R s π
∧
∃i . [[¬ψ1∧¬ψ2]]M(π(i)) ∧ ∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. Path R s π
⇒
¬(∃i . [[¬ψ1∧¬ψ2]]M(π(i)) ∧ ∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. Path R s π
⇒
∀i . ¬[[¬ψ1∧¬ψ2]]M(π(i)) ∨ ¬(∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

Alan Mycroft Hoare Logic and Model Checking 223 / 265

A[ψ1 W ψ2] continued (2)

◮ Continuing:

= ∀π. Path R s π
⇒
∀i . ¬[[¬ψ1∧¬ψ2]]M(π(i)) ∨ ¬(∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. Path R s π
⇒
∀i . ¬(∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j))) ∨ ¬[[¬ψ1∧¬ψ2]]M(π(i))

= ∀π. Path R s π
⇒
∀i . (∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j))) ⇒ [[ψ1∨ψ2]]M(π(i))

◮ Exercise: explain why this is [[A[ψ1 W ψ2]]]M(s)?
◮ this exercise illustrates the subtlety of writing CTL!

Alan Mycroft Hoare Logic and Model Checking 224 / 265

Sanity check: A[ψ W F] = AG ψ
◮ From last slide:

[[A[ψ1 W ψ2]]]M(s)
= ∀π. Path R s π

⇒ ∀i . (∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))⇒ [[ψ1∨ψ2]]M(π(i))
◮ Set ψ1 to ψ and ψ2 to F:

[[A[ψ W F]]]M(s)
= ∀π. Path R s π

⇒ ∀i . (∀j . j<i ⇒ [[ψ∧¬F]]M(π(j))) ⇒ [[ψ∨F]]M(π(i))
◮ Simplify:

[[A[ψ W F]]]M(s)
= ∀π. Path R s π ⇒ ∀i . (∀j . j<i ⇒ [[ψ]]M(π(j)))⇒ [[ψ]]M(π(i))

◮ By induction on i :
[[A[ψ W F]]]M(s) = ∀π. Path R s π ⇒ ∀i . [[ψ]]M(π(i))

◮ Exercises
1. Describe the property: A[T W ψ] .
2. Describe the property: ¬E[¬ψ2 U ¬(ψ1∨ψ2)] .
3. Define E[ψ1 W ψ2] = E[ψ1 U ψ2] ∨ EGψ1.

Describe the property: E[ψ1 W ψ2]?
Alan Mycroft Hoare Logic and Model Checking 225 / 265

Recall model behaviour computation tree

◮ Atomic properties are true or false of individual states
◮ General properties are true or false of whole behaviour
◮ Behaviour of (S,R) starting from s ∈ S as a tree:

s

initial state states after
one step

states after
two steps

◮ A path is shown in red
◮ Properties may look at all paths, or just a single path

◮ CTL: Computation Tree Logic (all paths from a state)
◮ LTL: Linear Temporal Logic (a single path)

Alan Mycroft Hoare Logic and Model Checking 226 / 265

Summary of CTL operators (primitive + defined)
◮ CTL formulae:

p (Atomic formula - p ∈ AP)
¬ψ (Negation)
ψ1 ∧ ψ2 (Conjunction)
ψ1 ∨ ψ2 (Disjunction)
ψ1⇒ ψ2 (Implication)
AXψ (All successors)
EXψ (Some successors)
AFψ (Somewhere – along all paths)
EFψ (Somewhere – along some path)
AGψ (Everywhere – along all paths)
EGψ (Everywhere – along some path)
A[ψ1 U ψ2] (Until – along all paths)
E[ψ1 U ψ2] (Until – along some path)
A[ψ1 W ψ2] (Unless – along all paths)
E[ψ1 W ψ2] (Unless – along some path)

Alan Mycroft Hoare Logic and Model Checking 227 / 265

Example CTL formulae
◮ EF(Started ∧ ¬Ready)

It is possible to get to a state where Started holds
but Ready does not hold

◮ AG(Req⇒ AFAck)
If a request Req occurs, then it will eventually be
acknowledged by Ack

◮ AG(AFDeviceEnabled)
DeviceEnabled is always true somewhere along
every path starting anywhere: i.e. DeviceEnabled
holds infinitely often along every path

◮ AG(EFRestart)
From any state it is possible to get to a state for
which Restart holds

Can’t be expressed in LTL!
Alan Mycroft Hoare Logic and Model Checking 228 / 265

More CTL examples (1)

◮ AG(Req⇒ A[Req U Ack])
If a request Req occurs, then it continues to hold,
until it is eventually acknowledged

◮ AG(Req⇒ AX(A[¬Req U Ack]))
Whenever Req is true either it must become false
on the next cycle and remains false until Ack, or
Ack must become true on the next cycle

Exercise: is the AX necessary?

◮ AG(Req⇒ (¬Ack ⇒ AX(A[Req U Ack])))
Whenever Req is true and Ack is false then Ack
will eventually become true and until it does Req
will remain true

Exercise: is the AX necessary?

Alan Mycroft Hoare Logic and Model Checking 229 / 265

More CTL examples (2)

◮ AG(Enabled ⇒ AG(Start ⇒ A[¬Waiting U Ack]))
If Enabled is ever true then if Start is true in any
subsequent state then Ack will eventually become
true, and until it does Waiting will be false

◮ AG(¬Req1∧¬Req2⇒A[¬Req1∧¬Req2 U (Start∧¬Req2)])

Whenever Req1 and Req2 are false, they remain
false until Start becomes true with Req2 still false

◮ AG(Req⇒ AX(Ack ⇒ AF ¬Req))
If Req is true and Ack becomes true one cycle
later, then eventually Req will become false

Alan Mycroft Hoare Logic and Model Checking 230 / 265

Some abbreviations
◮ AXi ψ ≡ AX(AX(· · · (AX ψ) · · ·))︸ ︷︷ ︸

i instances of AX
ψ is true on all paths i units of time later

◮ ABFi..j ψ ≡ AXi (ψ ∨ AX(ψ ∨ · · · AX(ψ ∨ AX ψ) · · ·))︸ ︷︷ ︸
j − i instances of AX

ψ is true on all paths sometime between i units of
time later and j units of time later

◮ AG(Req⇒ AX(Ack1 ∧ ABF1..6(Ack2 ∧ A[Wait U Reply])))
One cycle after Req, Ack1 should become true,
and then Ack2 becomes true 1 to 6 cycles later
and then eventually Reply becomes true, but until
it does Wait holds from the time of Ack2

◮ More abbreviations in ‘Industry Standard’ language PSL

Alan Mycroft Hoare Logic and Model Checking 231 / 265

CTL model checking

◮ For LTL path formulae φ recall that M |= φ is defined by:

M |= φ ⇔ ∀π s. s ∈ S0 ∧ Path R s π ⇒ [[φ]]M(π)

◮ For CTL state formulae ψ the definition of M |= ψ is:

M |= ψ ⇔ ∀s. s ∈ S0 ⇒ [[ψ]]M(s)

◮ M common; LTL, CTL formulae and semantics [[]]M differ

◮ CTL model checking algorithm:
◮ compute {s | [[ψ]]M(s) = true} bottom up

◮ check S0 ⊆ {s | [[ψ]]M(s) = true}
◮ symbolic model checking represents these sets as BDDs

Alan Mycroft Hoare Logic and Model Checking 232 / 265

CTL model checking: p, AXψ, EXψ
◮ For CTL formula ψ let {[ψ]}M = {s | [[ψ]]M(s) = true}
◮ When unambiguous will write {[ψ]} instead of {[ψ]}M
◮ {[p]} = {s | p ∈ L(s)}

◮ scan through set of states S marking states labelled with p
◮ {[p]} is set of marked states

◮ To compute {[AXψ]}
◮ recursively compute {[ψ]}
◮ marks those states all of whose successors are in {[ψ]}
◮ {[AXψ]} is the set of marked states

◮ To compute {[EXψ]}
◮ recursively compute {[ψ]}
◮ marks those states with at least one successor in {[ψ]}
◮ {[EXψ]} is the set of marked states

Alan Mycroft Hoare Logic and Model Checking 233 / 265

CTL model checking: {[E[ψ1 U ψ2]]}, {[A[ψ1 U ψ2]]}

◮ To compute {[E[ψ1 U ψ2]]}
◮ recursively compute {[ψ1]} and {[ψ2]}
◮ mark all states in {[ψ2]}
◮ mark all states in {[ψ1]} with a successor state that is marked
◮ repeat previous line until no change
◮ {[E[ψ1 U ψ2]]} is set of marked states

◮ More formally: {[E[ψ1 U ψ2]]} =
⋃∞

n=0{[E[ψ1 U ψ2]]}n where:
{[E[ψ1 U ψ2]]}0 = {[ψ2]}
{[E[ψ1 U ψ2]]}n+1 = {[E[ψ1 U ψ2]]}n

∪
{s ∈ {[ψ1]} | ∃s′ ∈ {[E[ψ1 U ψ2]]}n. R s s′}

◮ {[A[ψ1 U ψ2]]} similar, but with a more complicated iteration
◮ details omitted (see Huth and Ryan)

Alan Mycroft Hoare Logic and Model Checking 234 / 265

Example: checking EF p

◮ EFp = E[T U p]
◮ holds if ψ holds along some path

◮ Note {[T]} = S

◮ Let Sn = {[E[T U p]]}n then:
S0 = {[E[T U p]]}0

= {[p]}
= {s | p ∈ L(s)}

Sn+1 = Sn ∪ {s ∈ {[T]} | ∃s′ ∈ {[E[T U p]]}n. R s s′}
= Sn ∪ {s | ∃s′ ∈ Sn. R s s′}

◮ mark all the states labelled with p
◮ mark all with at least one marked successor
◮ repeat until no change
◮ {[EF p]} is set of marked states

Alan Mycroft Hoare Logic and Model Checking 235 / 265

Example: RCV

◮ Recall the handshake circuit:

dackdreq
q0

q0bar
a0

or0
a1

◮ State represented by a triple of Booleans (dreq,q0,dack)

◮ A model of RCV is MRCV where:
M = (SRCV,S0RCV,RRCV,LRCV)

and
RRCV (dreq,q0,dack) (dreq′,q0′,dack ′) =

(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ dack)))

Alan Mycroft Hoare Logic and Model Checking 236 / 265

RCV state transition diagram

◮ Possible states for RCV:
{000, 001, 010, 011, 100, 101, 110, 111}
where b2b1b0 denotes state
dreq = b2 ∧ q0 = b1 ∧ dack = b0

◮ Graph of the transition relation:

000 100 110 111

101

011

001

010

Alan Mycroft Hoare Logic and Model Checking 237 / 265

Computing {[EF At111]} where At111 ∈ LRCV(s)⇔ s = 111

000 100 110 111

101

011

001

010

◮ Define:
S0 = {s | At111 ∈ LRCV(s)}

= {s | s = 111}
= {111}

Sn+1 = Sn ∪ {s | ∃s′ ∈ Sn. R(s, s′)}
= Sn ∪ {b2b1b0 |

∃b′
2b′

1b′
0 ∈ Sn. (b′

1 = b2) ∧ (b′
0 = b2 ∧ (b1 ∨ b0))}

Alan Mycroft Hoare Logic and Model Checking 238 / 265

Computing {[EF At111]} (continued)

000 100 110 111

101

011

001

010

0

1

123

3

3

3

◮ Compute:
S0 = {111}
S1 = {111} ∪ {101,110}

= {111,101,110}
S2 = {111,101,110} ∪ {100}

= {111,101,110,100}
S3 = {111,101,110,100} ∪ {000,001,010,011}

= {111,101,110,100,000,001,010,011}
Sn = S3 (n > 3)

◮ {[EF At111]} = B3 = SRCV

◮ MRCV |= EF At111 ⇔ S0RCV ⊆ S

Alan Mycroft Hoare Logic and Model Checking 239 / 265

Symbolic model checking

◮ Represent sets of states with BDDs

◮ Represent Transition relation with a BDD

◮ If BDDs of {[ψ]}, {[ψ1]}, {[ψ2]} are known, then:
◮ BDDs of {[¬ψ]}, {[ψ1 ∧ ψ2]}, {[ψ1 ∨ ψ2]}, {[ψ1 ⇒ ψ2]}

computed using standard BDD algorithms

◮ BDDs of {[AXψ]}, {[EXψ]}, {[A[ψ1 U ψ2]]}, {[E[ψ1 U ψ2]]]}
computed using straightforward algorithms (see textbooks)

◮ Model checking CTL generalises reachable-states iteration

Alan Mycroft Hoare Logic and Model Checking 240 / 265

History of Model checking

◮ CTL model checking due to Emerson, Clarke & Sifakis
◮ Symbolic model checking due to several people:

◮ Clarke & McMillan (idea usually credited to McMillan’s PhD)
◮ Coudert, Berthet & Madre
◮ Pixley

◮ SMV (McMillan) is a popular symbolic model checker:
http://www.cs.cmu.edu/~modelcheck/smv.html (original)
http://www.kenmcmil.com/smv.html (Cadence extension by McMillan)
http://nusmv.irst.itc.it/ (new implementation)

◮ Other temporal logics
◮ CTL*: combines CTL and LTL
◮ Engineer friendly industrial languages: PSL, SVA

Alan Mycroft Hoare Logic and Model Checking 241 / 265

Expressibility of CTL
◮ Consider the property

“on every path there is a point after which p is
always true on that path ”

◮ Consider
((⋆) non-deterministically chooses T or F)

0: P:=1;
s0 1: WHILE (⋆) DO SKIP;
s1 2: P:=0;
s2 3: P:=1;

4: WHILE T DO SKIP;
5:

p ~p p

s0 s1 s2

s0

s0

s0

s0

s1

s1

s1

s1

s2

s2

s2

s2 s2 s2

s2 s2 s2

s2 s2 s2

s2 s2 s2

s2

◮ Property true, but cannot be expressed in CTL
◮ would need something like AFψ
◮ where ψ is something like “property p true from now on”
◮ but in CTL ψ must start with a path quantifier A or E
◮ cannot talk about current path, only about all or some paths
◮ AF(AG p) is false (consider path s0s0s0 · · ·)

Alan Mycroft Hoare Logic and Model Checking 242 / 265

LTL can express things CTL can’t

◮ Recall:
[[Fφ]]M(π) = ∃i . [[φ]]M(π↓i)
[[Gφ]]M(π) = ∀i . [[φ]]M(π↓i)

◮ FGφ is true if there is a point after which φ is always true
[[FGφ]]M(π) = [[F(G(φ))]]M(π)

= ∃m1. [[G(φ)]]M(π↓m1)
= ∃m1. ∀m2. [[φ]]M((π↓m1)↓m2)
= ∃m1. ∀m2. [[φ]]M(π↓(m1+m2))

◮ LTL can express things that CTL can’t express

◮ Note: it’s tricky to prove CTL can’t express FGφ

Alan Mycroft Hoare Logic and Model Checking 243 / 265

CTL can express things that LTL can’t express

◮ AG(EF p) says:
“from every state it is possible to get to a state for
which p holds”

◮ Can’t say this in LTL (easy proof given earlier - slide 213)

◮ Consider disjunction:
“on every path there is a point after which p is
always true on that path
or
from every state it is possible to get to a state for
which p holds”

◮ Can’t say this in either CTL or LTL!

◮ CTL* combines CTL and LTL and can express this property

Alan Mycroft Hoare Logic and Model Checking 244 / 265

CTL*
◮ Both state formulae (ψ) and path formulae (φ)

◮ state formulae ψ are true of a state s like CTL
◮ path formulae φ are true of a path π like LTL

◮ Defined mutually recursively
ψ ::= p (Atomic formula)

| ¬ψ (Negation)
| ψ1 ∨ ψ2 (Disjunction)
| Aφ (All paths)
| Eφ (Some paths)

φ ::= ψ (Every state formula is a path formula)
| ¬φ (Negation)
| φ1 ∨ φ2 (Disjunction)
| Xφ (Successor)
| Fφ (Sometimes)
| Gφ (Always)
| [φ1 U φ2] (Until)

◮ CTL is CTL* with X, F, G, [−U−] preceded by A or E
◮ LTL consists of CTL* formulae of form Aφ,

where the only state formulae in φ are atomic
Alan Mycroft Hoare Logic and Model Checking 245 / 265

CTL* semantics

◮ Combines CTL state semantics with LTL path semantics:

[[p]]M(s) = p ∈ L(s)
[[¬ψ]]M(s) = ¬([[ψ]]M(s))
[[ψ1 ∨ ψ2]]M(s) = [[ψ1]]M(s) ∨ [[ψ2]]M(s)
[[Aφ]]M(s) = ∀π. Path R s π ⇒ φ(π)
[[Eφ]]M(s) = ∃π. Path R s π ∧ [[φ]]M(π)

[[ψ]]M(π) = [[ψ]]M(π(0))
[[¬φ]]M(π) = ¬([[φ]]M(π))
[[φ1 ∨ φ2]]M(π) = [[φ1]]M(π) ∨ [[φ2]]M(π)
[[Xφ]]M(π) = [[φ]]M(π↓1)
[[Fφ]]M(π) = ∃m. [[φ]]M(π↓m)
[[Gφ]]M(π) = ∀m. [[φ]]M(π↓m)
[[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M(π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)

◮ Note [[ψ]]M : S→B and [[φ]]M : (N→S)→B

Alan Mycroft Hoare Logic and Model Checking 246 / 265

LTL and CTL as CTL*
◮ As usual: M = (S,S0,R, L)
◮ If ψ is a CTL* state formula: M |= ψ ⇔ ∀s ∈ S0. [[ψ]]M(s)
◮ If φ is an LTL path formula then: M |=LTL φ ⇔ M |=CTL* Aφ
◮ If R is total (∀s. ∃s′. R s s′) then (exercise):
∀s s′. R s s′ ⇔ ∃π. Path R s π ∧ (π(1) = s′)

◮ The meanings of CTL formulae are the same in CTL*
[[A(Xψ)]]M(s)
= ∀π. Path R s π ⇒ [[Xψ]]M(π)
= ∀π. Path R s π ⇒ [[ψ]]M(π↓1) (ψ as path formula)
= ∀π. Path R s π ⇒ [[ψ]]M((π↓1)(0)) (ψ as state formula)
= ∀π. Path R s π ⇒ [[ψ]]M(π(1))

[[AXψ]]M(s)
= ∀s′. R s s′ ⇒ [[ψ]]M(s′)
= ∀s′. (∃π. Path R s π ∧ (π(1) = s′)) ⇒ [[ψ]]M(s′)
= ∀s′. ∀π. Path R s π ∧ (π(1) = s′) ⇒ [[ψ]]M(s′)
= ∀π. Path R s π ⇒ [[ψ]]M(π(1))

Exercise: do similar proofs for other CTL formulae
Alan Mycroft Hoare Logic and Model Checking 247 / 265

Fairness

◮ May want to assume system or environment is ‘fair’

◮ Example 1: fair arbiter
the arbiter doesn’t ignore one of its requests forever

◮ not every request need be granted
◮ want to exclude infinite number of requests and no grant

◮ Example 2: reliable channel
no message continuously transmitted but never received

◮ not every message need be received
◮ want to exclude an infinite number of sends and no receive

Alan Mycroft Hoare Logic and Model Checking 248 / 265

Handling fairness in CTL and LTL
◮ Consider:

p holds infinitely often along a path then so does q

◮ In LTL is expressible as G(F p) ⇒ G(F q)

◮ Can’t say this in CTL
◮ why not – what’s wrong with AG(AF p) ⇒ AG(AF q)?
◮ in CTL* expressible as A

(
G(F p) ⇒ G(F q)

)

◮ fair CTL model checking implemented in checking algorithm
◮ fair LTL just a fairness assumption like G(F p) ⇒ · · ·

◮ Fairness is a tricky and subtle subject
◮ many kinds of fairness:

‘weak fairness’, ‘strong fairness’ etc

◮ exist whole books on fairness

Alan Mycroft Hoare Logic and Model Checking 249 / 265

Richer Logics than LTL and CTL

Alan Mycroft Hoare Logic and Model Checking 250 / 265

Richer Logics than LTL and CTL

◮ Propositional modal µ-calculus
◮ Industrial Languages, e.g. PSL
◮ Modal Logics, where modes can be other than time in

temporal logic. Examples:
◮ Logics including possibility and necessity
◮ Logics of belief: “P believes that Q believes F ”
◮ Logics of authentication, e.g. BAN logic

More information can be found under “Modal Logic",
“Doxastic logic” and “Burrows-Abadi-Needham logic” on
Wikipedia.

Alan Mycroft Hoare Logic and Model Checking 251 / 265

Propositional modal µ-calculus

◮ You may learn this in Topics in Concurrency

◮ µ-calculus is an even more powerful property language
◮ has fixed-point operators
◮ both maximal and minimal fixed points
◮ model checking consists of calculating fixed points
◮ many logics (e.g. CTL*) can be translated into µ-calculus

◮ Strictly stronger than CTL*
◮ expressibility strictly increases as allowed nesting increases
◮ need fixed point operators nested 2 deep for CTL*

◮ The µ-calculus is very non-intuitive to use!
◮ intermediate code rather than a practical property language
◮ nice meta-theory and algorithms, but terrible usability!

Alan Mycroft Hoare Logic and Model Checking 252 / 265

PSL/Sugar

◮ Used for real-life hardware verification

◮ Combines together LTL and CTL

◮ SEREs: Sequential Extended Regular Expressions

◮ LTL – Foundation Language formulae

◮ CTL – Optional Branching Extension

◮ Relatively simple set of primitives + definitional extension

◮ Boolean, temporal, verification, modelling layers

◮ Semantics for static and dynamic verification
(needs strong/weak distinction)

◮ You may learn more about this in System-on-Chip Design

Alan Mycroft Hoare Logic and Model Checking 253 / 265

Bisimulation equivalence: general idea

◮ M, M ′ bisimilar if they have ‘corresponding executions’
◮ to each step of M there is a corresponding step of M ′

◮ to each step of M ′ there is a corresponding step of M

◮ Bisimilar models satisfy same CTL* properties

◮ Bisimilar: same truth/falsity of model properties

◮ Simulation gives property-truth preserving abstraction
(see later)

Alan Mycroft Hoare Logic and Model Checking 254 / 265

Bisimulation relations

◮ Let R : S→S→B and R′ : S′→S′→B be transition relations

◮ B is a bisimulation relation between R and R′ if:
◮ B : S→S′→B
◮ ∀s s′. B s s′ ⇒ ∀s1 ∈ S. R s s1 ⇒ ∃s′

1. R′ s′ s′
1 ∧ B s1 s′

1
(to each step of R there is a corresponding step of R′)

◮ ∀s s′. B s s′ ⇒ ∀s′
1 ∈ S. R′ s′ s′

1 ⇒ ∃s1. R′ s s1 ∧ B s1 s′
1

(to each step of R′ there is a corresponding step of R)

Alan Mycroft Hoare Logic and Model Checking 255 / 265

Bisimulation equivalence: definition and theorem

◮ Let M = (S,S0,R, L) and M ′ = (S′,S′
0,R

′, L′)

◮ M ≡ M ′ if:
◮ there is a bisimulation B between R and R′

◮ ∀s0 ∈ S0. ∃s′
0 ∈ S′

0. B s0 s′
0

◮ ∀s′
0 ∈ S′

0. ∃s0 ∈ S0. B s0 s′
0

◮ there is a bijection θ : AP→AP ′

◮ ∀s s′. B s s′ ⇒ L(s) = L′(s′)

◮ Theorem: if M ≡ M ′ then for any CTL* state formula ψ:
M |= ψ ⇔ M ′ |= ψ

◮ See Q14 in the Exercises

Alan Mycroft Hoare Logic and Model Checking 256 / 265

Abstraction and Abstraction Refinement

Alan Mycroft Hoare Logic and Model Checking 257 / 265

Abstraction
◮ Abstraction creates a simplification of a model

◮ separate states may get merged
◮ an abstract path can represent several concrete paths

◮ M � M means M is an abstraction of M
◮ to each step of M there is a corresponding step of M
◮ atomic properties of M correspond to atomic properties of M

◮ Special case is when M is a subset of M such that:
◮ M = (S0,S,R,L) and M = (S0,S,R,L)

S ⊆ S
S0 = S0

∀s s′ ∈ S. R s s′ ⇔ R s s′

∀s ∈ S. L s = L s
◮ S contain all reachable states of M
∀s ∈ S. ∀s′ ∈ S. R s s′ ⇒ s′ ∈ S

◮ All paths of M from initial states are M-paths
◮ hence for all CTL formulae ψ: M |= ψ ⇒ M |= ψ

Alan Mycroft Hoare Logic and Model Checking 258 / 265

Recall JM1
Thread 1 Thread 2
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;
2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

◮ Two program counters, state: (pc1, pc2, lock , x)

SJM1 = [0..3]× [0..3]× Z× Z
RJM1 (0, pc2, 0, x) (1, pc2, 1, x)
RJM1 (1, pc2, lock , x) (2, pc2, lock , 1)
RJM1 (2, pc2, 1, x) (3, pc2, 0, x)

RJM1 (pc1, 0, 0, x) (pc1, 1, 1, x)
RJM1 (pc1, 1, lock , x) (pc1, 2, lock , 2)
RJM1 (pc1, 2, 1, x) (pc1, 3, 0, x)

◮ Assume NotAt11 ∈ LJM1(pc1, pc2, lock , x) ⇔ ¬((pc1 = 1) ∧ (pc2 = 1))

◮ Model MJM1 = (SJM1, {(0, 0, 0, 0)},RJM1, LJM1)

◮ SJM1 not finite, but actually lock ∈ {0, 1}, x ∈ {0, 1, 2}
◮ Clear by inspection that MJM1 � MJM1 where:

MJM1 = (SJM1, {(0, 0, 0, 0)},RJM1, LJM1)
◮ SJM1 = [0..3]× [0..3]× [0..1]× [0..2]
◮ RJM1 is RJM1 restricted to arguments from SJM1

◮ NotAt11 ∈ LJM1(pc1, pc2, lock , x) ⇔ ¬((pc1 = 1) ∧ (pc2 = 1))
◮ LJM1 is LJM1 restricted to arguments from SJM1

Alan Mycroft Hoare Logic and Model Checking 259 / 265

Simulation relations

◮ Let R : S→S→B and R : S→S→B be transition relations

◮ H is a simulation relation between R and R if:

◮ H is a relation between S and S – i.e. H : S→S→B
◮ to each step of R there is a corresponding step of R – i.e.:
∀s s. H s s ⇒ ∀s′ ∈ S. R s s′ ⇒ ∃s′ ∈ S. R s s′ ∧ H s′ s′

◮ Also need to consider abstraction of atomic properties
◮ HAP : AP→AP→B
◮ details glossed over here

Alan Mycroft Hoare Logic and Model Checking 260 / 265

Simulation preorder: definition and theorem
◮ Let M = (S,S0,R, L) and M = (S,S0,R, L)

◮ M � M if:
◮ there is a simulation H between R and R
◮ ∀s0 ∈ S0. ∃s0 ∈ S0. H s0 s0

◮ ∀s s. H s s ⇒ L(s) = L(s)

◮ We define ACTL to be the subset of CTL without
E-properties

◮ e.g. AG AFp – from anywhere can always reach a p-state
◮ useful for abstraction:

◮ Theorem: if M � M then for any ACTL state formula ψ:
M |= ψ ⇒ M |= ψ

◮ If M |= ψ fails then cannot conclude M |= ψ false

Alan Mycroft Hoare Logic and Model Checking 261 / 265

Example (Grumberg)

M M

r

y

g

 yg

r

RED

YELLOW

GREEN

STOP

GO

H

H

H

H a simulation

H RED STOP ∧
H YELLOW GO ∧
H GREEN GO

HAP : {r , y , g}→{r , yg}→B

HAP r r ∧
HAP y yg ∧
HAP g yg

◮ M |= AG AF ¬r hence M |= AG AF ¬r
◮ but ¬(M |= AG AF r) doesn’t entail ¬(M |= AG AF r)

◮ [[AG AF r]]M(STOP) is false
(consider M-path π′ where π′ = STOP.GO.GO.GO. · · ·)

◮ [[AG AF r]]M(RED) is true
(abstract path π′ doesn’t correspond to a real path in M)

Alan Mycroft Hoare Logic and Model Checking 262 / 265

CEGAR
◮ Counter Example Guided Abstraction Refinement

◮ Lots of details to fill out (several different solutions)
◮ how to generate abstraction
◮ how to check counterexamples
◮ how to refine abstractions

◮ Microsoft SLAM driver verifier is a CEGAR system

Alan Mycroft Hoare Logic and Model Checking 263 / 265

Temporal Logic and Model Checking – Summary

◮ Various property languages: LTL, CTL, PSL (Prior, Pnueli)

◮ Models abstracted from hardware or software designs

◮ Model checking checks M |= ψ (Clarke et al.)

◮ Symbolic model checking uses BDDs (McMillan)

◮ Avoid state explosion via simulation and abstraction

◮ CEGAR refines abstractions by analysing counterexamples

◮ Triumph of application of computer science theory
◮ two Turing awards, McMillan gets 2010 CAV award
◮ widespread applications in industry

Alan Mycroft Hoare Logic and Model Checking 264 / 265

THE END

Alan Mycroft Hoare Logic and Model Checking 265 / 265

