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Generic Advice

e All lectured material is examinable this year.
Questions should contain any equations needed
But you may have to explain the terms
And know how to use them®©

* Problem sheets 3 & 4 (but ignore question 1 on problem
set 3, plus 2011 exam question 10 paper 8, as these are
no longer relevant) are at:

http://www.cl.cam.ac.uk/teaching/1314/PrincComm/problems/PoC3.pdf

http://www.cl.cam.ac.uk/teaching/1314/PrincComm/problems/PoC4.pdf

« A problem (challenging) is at the end of these slides...



Flow Control & Schulding Linked

* Admitting packets or flows of packets
— Feedback at flow setup, or per packet
— Controller needs to measure to make decisions
— Drop packet, or block call....
— Similar problem even inside switch fabric

 Complexity in scheduler all about
— State
— weights
— Differentiating flow weights & policing



Conservation law [1]

FCFS is work-conserving:
— not idle if packets waiting
Reduce delay of one flow,

increase the delay of one
or more others

We can not give all flows a
lower delay than they
would get under FCFS

N
Y p.4,=C
n=1

pn = }\'nlun
p, : mean link utlisation

g, : mean delay due to scheduler
C :constant [s]
A, :mean packet rate [p/s]

u, :mean per — packet service rate [s/p]



The max-min
fair share criteria

Flows are allocated

resource in order of m, =min(x,,M,) lsnsN

increasing demand nl

Flows get no more than y C‘Z”"f

they neec.l SN el

Flows which have not C : capacity of resource (maximum resource)

been allocated as they

demand get an equal
share of the available x, :resource demand by flow n,x, = x, - = x,

resource M , :resource available to flow n

Weighted max-min fair
share possible
=sExample:

If ma_lx-mln fair 9 =C =10, four flow with demands of 2, 2.6, 4, 5
provides protection

m, :actual resource allocation to flow 7

mactual resource allocations are 2, 2.6, 2.7, 2.7



Simple priority queuing

« K queues:
-1<k=<K

— queue k + 1 has greater priority than
queue k

— higher priority queues serviced first
v'Very simple to implement
v'Low processing overhead
« Relative priority:

— no deterministic performance bounds

x Fairness and protection:
—not Mmaxy-min fair- <starvation of low



Generalised
processor sharing (GPS)

Work-conserving

Provides max-min fair
share

Can provide weighted
max-min fair share

Not implementable:

— used as a reference for
comparing other
schedulers

— serves an infinitesimally
small amount of data
from flow i

Visits flows round-robin

¢p(n) l=sn=<N

S@i,t,t) 1=<=i<N

S(i,z,t) . @(1)

S(T.t)  ¢())

¢(n) : weight given to flow n

S(i,t,t):serviceto flow i in interval [zz,¢

flow i has a non — empty queue



GPS - relative and
absolute fairness

Use fairness bound to
evaluate GPS emulations
(GPS-like schedulers)

Relative fairness bound:

— fairness of scheduler with
respect to other flows it is
servicing

Absolute fairness bound:

— fairness of scheduler
compared to GPS for the
same flow

S(,z,t)  S(J,7,1)
g (i) g(/)
S(,z,t)  G(,7,0)
g (i) g (i)
S(i,z,t):actual service for flow i in [T, ¢]
G(i,7,t): GPSservice for flow i in[7,¢]

g(i) =min{g (1), --, g (i, K)}

c(iby = 2GR B)

D #0:k)

@(i, k) : weight given to flow i at router k

RFB =

AFB =

r(k):servicerate of router &
l<i<N flownumber

l<k <K router number



Weighted round-robin

(WRR)

Simplest attempt at GPS

Queues visited round-robin
in proportion to weights
assigned

Different mean packet
sizes:

— weight divided by mean
packet size for each queue

Mean packets size
unpredictable:

— may cause unfairness

« Service is fair over long
timescales:

must have more than one
visit to each flow/queue

short-lived flows?
small weights?
large number of flows?



Deficit round-robin
(DRR)

DRR does not need to
know mean packet size

Each queue has deficit

counter (dc): initially zero

Scheduler attempts to

serve one quantum of data

from a non-empty queue:

— packet at head served if
Size = quantum + dc

dc € quantum + dc - size

— else dc += quantum

Queues not served
during round build up
“credits”:

— only non-empty queues
Quantum normally set to
max expected packet
size:

— ensures one packet per

round, per non-empty
gqueue

RFB: 3T/r (T = max pkt
service time, r = link
rate)

Works best for:

— small packet size

— small number of flows



Weighted Fair Queuing
(WFQ) [1]

« Based on GPS: Round-number:

— GPS emulation to — execution of round by
produce finish- bit-by-bit round-robin
numbers for packets in server
queuce — finish-number calculated

— Simplification: GPS from round number

emulation serves

. ; If queue is empty:
packets bit-by-bit round- _ finish-number is:

i r_obm number of bits in packet
* Finish-number: + round-number

— the time packet would n-em :
have completed service If queue non-empty

NI — finish-number is:
under (bit-by b't).GPS highest current finish
~ packets tagged with number for queue +
finish-number

number of bits in packet
— smallest finish-number

across queues served
first



Weighted Fair Queuing
(WFQ) [2]

F(i,k,t) = max{F(i,k -1t),R(1)} + P(i,k,t) » Flow completes (empty

F(i,k,t): finish - number for packet £ queue):
on flow i arriving at time ¢ — one less flow in round,
SO

P(i,k,t): size of packet k on flow i
— R increases more quickly

— so, more flows complete
— R increases more quickly

arriving at time ¢
R(?) : round - number at time ¢
P(i,k,t)

F¢(i9kat) = maX{F¢(i9k_lat)aR(t)} + ¢(l) - etC.
#(i) : weight given to flow i B Iigt;?l‘:ﬁqd deletion
y (I}ate Og change OER(t)f - WFQ needs to evaluate R
€pends on numpber o each time packet arrives
active flows (and their _
or leaves:

weights)

 As R(t) changes, so packets
will be served at different
rates

— processing overhead



Weighted Fair Queuing
(WFQ) [3]

Buffer drop policy:
— packet arrives at full queue

— drop packets already in queued, in order of decreasing finish-
number

Can be used for:

— best-effort queuing

— providing guaranteed data rate and deterministic end-to-end
delay

WFQ used in “real world”
Alternatives also available:

— self-clocked fair-queuing (SCFQ)
— worst-case fair weighted fair queuing (WF2Q)



Class-Based Queuing

Hierarchical link sharing:
— link capacity is shared
— class-based allocation
— policy-based class

selection . A‘V
Class hierarchy: @ @
— assign capacity/priority to

each node

— node can “borrow” any
spare capacity from parent

— fine-grained flows possible 7N

Note: this is a queuing N
mechanism: requires use - 1% |
of a scheduler "RT  real-time

*NRT non-real-time

=30% =10% . =15%



1. Deterministic latency bounding

* Learned what | was teaching wrong!

e | used to say:

— Integrated Service too complex
* Admission&scheduling hard

— Priority Queue can’t do it
* PGPS computation for latency?
* | present Qjump scheme, which
— Uses intserv (PGPS) style admission ctl
— Uses priority queues for service levels



Data Center Latency Problem

e Tail of the distribution,
— due to long/bursty flows interfering

* Need to separate classes of flow
— Low latency are usually short flows (or RPCs)

— Bulk transfers aren’t so latency/jitter sensitive



Data Center Qjump Solution

— In Data Center, not general Internet!
e can exploit topology &
* traffic matrix &
e source behaviour knowledge

— Regular, and simpler topology key
— But also largely “cooperative” world...
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Latency of ping v. iperf

Setup | 1079 | 50"% | 909 | 9ohg;

otherwise idle network 36 85 118 126
independent hosts 37 110 120 130
shared host egress 168 228 259 268
shared host ingress 55 125 249 278
shared ingress & egress 171 221 224 229
shared switch queue | 1,790 | 1,920 [ 2,010 | 2,100

Table 1: Latency of ping vs. iperf with various de-
grees of host resource sharing, all numbers in ps over
5,000 samples.



Chock offset|: o

§8. 888

Hadoop perturbs time synch




Hadoop perturbs memcached

1.0
0.8

0.6

0.4
02

0.0




Hadoop perturbs Naiad

10

0.98
0.95

0.94

0.92
09




Qjump — two pieces

1. At network config time
— Compute a set of (8*) rates based on
— Traffic matric & hops => fan in (f)

2. Atrun time

— Flow assigns itself a priority/rate class
— subject it to (per hypervisor) rate limit

* 8 arbitrary — but often h/w supported®©



Data Center wide bound

n hosts in network,
packet experience at most max network
fan-in —1=n -2 = n pkts worth of delay.

Packet size P will take P/R seconds to transmit at
link-rate R,

Bound maximum interference delay at:
worst case end-to-end delay < nx P/R +¢



Where...

n is number of hosts,
P the maximum packet size (in bits),

R is the rate of the slowest link in bits per
second

€ is the cumulative processing delay introduced
by switch hops



Qjump — self admit/policer (per

hypervisor, at least)

Algorithm 1 QJump raie-limiter pseudocode

I: epochcycles + tacycles(netwaork epoch)
> function QJuMPRATELIMITER(buRD)
cyclesnow + rdisc /*mad imestamp counter*/
level + bafersocket priority
if cyclesmow > timeoss then
limeowd + Limeou + epochcoycles
bucket |level| + t okens|level|
il bugffer size = buckeyf level] then
return Dror
bucketf level] « bucket |level| — buffer.size
return SENDTOHWQueu]level]

— D el Hpwew




Why use Transforms?

* Transforms are not simply math curiosity

sketched at the corner of a woodstove by ol’
Frenchmen.

 Way to reframe a problem in a way that

makes it easier to understand, analyze and
solve.



General Scheme using Transforms

="Problem

-

== EASY

_[>
N

== HARD

=Equation

=of the problem

=Transfonimation

4

=Transformed

mequation

4[>

=Solution

=of the equation

=>

=Solution of the

»transformed equation

=Result

AN

®/nvarise

stransfofmation




Which Transform to Use?

Application Continuous Discrete

PP Domain Domain
Signal Fourier T Discrete F.T.
Processing ' (DFT/FFT)
Control Theory Laplace T. z-Transform




Typical Problem

* Given an input signal x(?), what is the output signal
y(t) after going through the system?

X(1)

~_ .

~

N—

| System/

Filter

— y(1)?

»+ To solve it in the time domain (¢) is
cumbersomel




Integrating Differential Equation?

* Let’ s have a simple first order low-pass filter with
resistor R and capacitor C:

o—— I
R

x(1) c y(t)

 The system is described by diff. eq.:
RCy' (1) + y(1) = x(2)

* To find a solution, we can integrate. Ugh!



Laplace Transform

e Formal definition:

LI/ (]=F(s)= [ f(t)e™"di

e Compare this to FT:

Flw)=[ f(t)é™ ™4y

* Small differences:

— Integral from 0 to % to for Laplace
* f(t) for t<0 is not taken into account

— -s instead of -iw



« The Laplace transform of a function f(t) is defined

as.
F(s) =L/ O]= [f@)edl

The inverse Laplace transfarm is defined as:

() =1L""[F(s)]= fF(S)e”dS

2]72’ o i
where j =+/-1 and the value of o is determined
by the singularities of F(s).
d |



Why Is Laplace Transform Useful ?

 Model a linear time-invariant analog system as
an algebraic system (transfer function).

* |In control theory, Laplace transform converts
linear differential equations into algebraic
equations.

* This is much easier to manipulate and analyze.



An Example

* The Laplace transform of o-# can be

obtained by:
% % _ e—(S+a)t 1
F(s) = f e “edt = f e Nt = =——
! ! S+a S+a
" inearity property
* These are useful properties:
Kf ()] = KELf ()] = kF(s)

14
14

@)+ f2A0)] =L@+ LS 2A(0)] = Fi(s) + Fa(s)



Name Time function Laplace Transform
f(t)

Unit Impulse o) 1

Unit Step u(t) 1/s

Unit ramp t 1/s2

nth-Order ramp  |t" n!l/sn+1

Exponential e-at 1/(s+a)

nth-Order {n g-at nl/(s+a)"*1

exponential

Sine sin(bt) b/(s?+b?)

Cosine cos(bt) s/(s?°+b?)

Damped sine easin(bt) b/((s+a)?+b?)

Damped cosine | e@ cos(bt) (sta)/((s+a)?+b?)

NivvarAainA cina f cinl( ht) Yhe/(cl2+RW2)2




TABLE 2.2 Laplace transform theorems

Item no. Theorem Name
. LIf(D)]) =F(s) = [oo f(t)edt Definition
2; Lk f(1)] = kF(s) Linearity theorem
3. LIAit)+ fo(1)] = Fi(s) + Fa(s) Linearity theorem
4. Lle ™ f(1)] = F(s+a) Frequency shift theorem
5 Lf(t=T)] = e T F(s) Time shift theorem
| : ali
6. 2[f(at)] 2 F( s ) Scaling theorem
a \a
7. o ‘i] _ sF(s) — £(0-) Differentiation theorem
 dt
8. (d*f] . ' . Differentiation theorem
2|23 = 2F(s) — s/(0-) — f(0-)
9. P d"f | _ F(s) - i’,‘ gk pk=1(0_) Differentiation theorem
| di" | k=1
10. f/):ﬁ)]_ f(l')dl'] _ F(s) Integration theorem
11. f(o0) = lim0 sF(s) Final value theorem'
12. f(0+) = lim sF(s) Initial value theorem?
§— 00

stable_02_02



Find the Laplace transform of f(t)=5u(t)+3e .

 Solution: [5u(t)] = 500u(t)] = 5
S

3

S + 2

Fisy— 34 3 _ 8510

([3e ¥ =3/0[e ] =

s Ss+2 _S(S+2)

Another Example:
dy

a’zy
+12—=—+32y =32ul(t
dt’ dt 4 ®)




Common Laplace Transfom

Name A1) F(s)
sed s0- 7

Impulse Y0 +s0 1

1

Step f(t)=1 .

RampK f(t)=t Siz

|

Exponential f@)=e" : Jlr -
Sine f(t) = sin(a)t) ‘ \/ " Z)w

Damped Sine f(¢) = ™ sin(ax)

(S+a) +



Laplace Transform Properties

 Similar to Fourier transform:

e Derivation

— Addition/Scaling

L{af, (1) = bf, ()] = aFi(s) = DE;(s)

— Convolution

[ /(1= 0f2)dz = F(5)Fy(5)

L[%f(t)] _ SF(s) - £(02)



Transfer Function H(s)

Definition « X(s)—| mH(s) — = ¥(s)
— H(s) = Y(s) / X(s)

Relates the output of a linear system (or
component) to its input.

Describes how a linear system responds to an
impulse.

All linear operations allowed
— Scaling, addition, multiplication.



Laplace

Time Domain

Domain

RC Circuit Revisited

.

“Step”
function
A
* RCd—y +)y=x
dt
J l
1 M 1
— X
S 1+ RCs

4
A
>t | ‘>t
1 >1 1
s(1+RCs) s 1+S
RC




Poles and Zeros

A(s)
B(s)
A(s)=a s" +...+a,5 +a,
B(s)=bs" +...+bs+b,

Poles are the values of s for which B(s) =0

Given F'(s) =

Zeros are the values of s for which A(s) =0
Poles and zeros are complex

Order of system = # poles =m



Poles and Zeros

1
For example, L[e™] =
S+a
Polei1ss = —a
No Zeros
W

Forsine: L[sin(ar)] = —

2
S +w

Polesare s = —iw,iw

No Zeros



Poles and Zeros

Name (0 F(s) Poles
Impulse 8 f(?) = {(1) i : 8 1 n/a
Step f@=1 é 0
Ramp F6) =1 M SL 0 (double)
Exponential f@t)=e" | : i - -a
Sine f(t) =sin(awt) ‘ NI % i{)wz -im,im

Damped Sine f(t) = e_at SlIl(CUZ‘) (S+Cl) +C()2 -a- l(l) -a+im



Poles and Zeros

*If pole has:

‘Real negative: exponential decay

‘Real positive: exponential growth

-If imaginary = O: oscillation of frequency w



Effect of Poles Location

Im(s) .
A Growing
E Damped Sine
' Sine X X
m:> Exponential Constant CoSnstant
c 2 Decay \ N ine
)
g3 . X >e> Re(s
o9
=N
: / Exponential
E Increase
E X T
3 Commmee Increased | Increased _______ 5

Damping Blow-up



Where do you don’ t want to be?

Increasmg_________.)
Frequency

{-=ccccca--

Damped

Sine

Exponential
Decay .

Im(s)

X

Constant

N\

CCE LY

X

Increased
Damping

X

Growino
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Plant Identification

=Once the model is approximately known, the parameters must be determined by
measurements.

=Classical methods are the response to a pulse at the input or to a calibrated noise at the

input, in case the cammand signal varies little. Signal correlation then yields the parameters.
=test signal |
+
=command unknown planf——>
+

="input W

"output

v




Controllers

"\When a plant is known, a controller can be designed.

=*|n practice, the plant’ s parameters vary ( e.g. number
of passengers in a train), and the plant is subject to
disturbances (wind, slope)

=The controller

‘needs to measure through sensors the state of the plant
and if possible the disturbances.

follows certain quality laws to stabilize the output within
useful time, not overshoot, minimize energy
consumption, etc.....



Human body as a re%ulator example

=Consider a person taking a shdwer as a control System

sdisturbances

« T |
=set point =feed-forward :
valor solicitado scontroller =comman Q&
valeur de m o - d N
' =feed-bac Y
consigne _.< >__. f)_+
Sollwert y g controller 1w . =plant
"y
< "measuremen
=other t
constraints: mprocess value
energy, cost, valor medido
cleanness valeur mesurée

Istwert



?
O”-?rh!gﬁear’%?:qn a set of possibly redund

controllers (here: turbine control)

=e directly in the sensg

=0r in the actuator
=(analog PIDs)

Ig".«:jig;l -

L

=+ as a separate device (analog PIDs) :S
*(some times combined with a recordelaiRIFEIEIC)

+se’r- point!

Vi

=e as an algorithm in a computer =——= " ' [

=(that can handle numerous "loop

I
"SEeNnsors mactors




Two-point controller: principle
=The two-point controller (or bang-bang controller, requlator,
has a binary output: on or of f (example: air conditioning)

=set-point

+

—o

rmeasured value

scontrol | "€nergy
mvariable
11 > \«—r—] sheater Eroom
=offeon
| sthermometer ¢

temperature

=commercial controller with integrated

*thermometer



*temperature |

Two-point controller:
/ Deadband

=1.00

*0.80

=0.60

P,
\" 2}

/— mupper switch p
=lower switch p

*Note the

=0.40

=0.20

=0.00

different time
constants for

!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!

/%9"9 and
cooling: non-

=Tf the process is not slow enough, hysteresis or swi’rchirlg'rpgdpdgy@'fgm inclu

=to limit switching frequency and avoid wearing off the contactor.

*(thermal processes are normally so inertial that no hysteresis is needed)



=value

| O/o A

Two-point controller: Input
variable as ramp

=1.20

=1.00

"0.80 =Setpoint

=0.60 =Upper bou
=Lower bou

“0.40 — =Qutput

=0.20

=0.00

=0.001.002.083.004.005.086.067.068.069.00

*time (s)



Hysteresis and Deadband of a
Hysteresis: Valve -peadband: no

difference between
the valve position on
the upstroke and its
ﬂposn’rlon on the down
Contgol valye hysteresis
nput signal (s%m

Friction)
I

u ~
O_l_ < amm o ?n

21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101

% signal

movement,
generally occurs
when the valve
changes direction.

Control valve deadband

=Source: http://www.processindustryforum.com/solutions/valve-terminology-basic-understanding-of-key-concepts



Step response

&

\ steady state error
DU

\\.
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\

\\\\e



P-controller: simplest continuous regulator

=proportional factor,

control gai
=set-point n\

=command

variable

"m

A 4

mcontrolle
d variable

N\

IP-
+ _controller
.u AJ_ .e l./Kp/
my =error
="Drocess
value

X
lp|ant —>O0—>
fmeasurem
ent

»the P-controller simply amplifies the error to obtain the command

variable

"m(t) = K, +e(t) = K, « (u(t) —y(t))

=works, but if plant has a proportional behavior, an error always remains



P-Controller: Step response

2
| /
:_\'1‘5_
< : =large
> o efror =smaller asymptotic error
g - w....: ox
£ 05 large k
RO) ~
z )( I
"0 "'&é"'émall
g 4 =5 7 =8 =9 =](
=-0. »set-point 'Nk‘mf 2"3 :

*The larger the set-point, the greater the error.
(The operator used to "reset" the control by increasing or decreasing the set-point)



P-Controller: Effect of Load change

=proportional factor _ syl =
\ disturbance =controlle

d variable
npP- j
= regulator

"u, = set- ) = K =plant

point 4+ =e=error
— lm =
| . command

" Z <«Variable

+ V 4

] / =y, = process value ) .meZiltjrem
1.5
"U, (Solicited)
3 =l
S ]
05 < _
O‘ "y, (load change)
() n] n) =3 Vil 15} I6 n/ =8 I9 =10

=05
=*Not only a set-point change, but a load change causes the error to increase or decre
*(A load change, modeled by disturbance u,, is equivalent to a set-point change)



P-Controller: Increasing the proportional factor

"ug(t), yo(t)

*time [s]

"increasing the proportional factor reduces the error, but the system tends to oscillate



Pl-Controller (Proportional Integral): introducing the integrator

=equation =symbol
t
y =fx(1;)d7: Y —> ull —> =y =older Symbol XT3 | [dt =y
10 S
=input
=inflow [m3/s]
R
—N

v

Y

[
|

=level (1) = f-(inflow(r)) dt

It_l

=Time response of an integrator

=Example of an integration process




Pl — Regulator : Equations

1 t
=Time domain m= Kp (e(t) + E}I(;e(‘[)dr)

~ 1~
=Laplace domain M =KP (1 +—)e
ST,

=T, = reset time, tiempo de integracidn, temps d’integration, Nachstellzeit



Pl-Controller: response to set-point change

Kp=2,0,T=10s

=1.8 —=Solicited

— =Qutput

svalue
[ |
—

=Command

=Integrator

o—t
=6

=_(0.20 =1 =2 =3 =4 =5 =7 =8 =9 =10

=time

*The integral factor reduced the asymptotical error to zero, but slows down the
response

=(if K,, is increased to make it faster, the system becomes unstable)



PD controller

=Basic idea of the PD regulator: take into account not only the value of the
error, but the rate at which the error changes.

=Example: when parking a car in front of a wall, the driver not only looks at the
distance to the wall, but also at the speed at which the car approaches the

wall.
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PD-Controller: Introducing the differentiator

=symbol=x —

"S

—>ly

=temporal response:

=input

S—

=output

v

v

H o0

»A perfect differentiator does not exist.
=Differentiators increase noise.
=Differentiators are approximated by

»feed-back integrators (filtered
differentiator):

*Instead of differentiating, one can
use an already available variable:

=e.g. the speed for a position control



PD - controller

=proportional factqr “comman
d
=set-point \ -
P worro *PD - controller variable
\ . N - =X
u ( )_ .K :f-\ m > .plant —»O—»0
u A -t T
=S
//
=derivative < "measurem
factor =process value ent
y

»Adding the D-part allows to react vigorously to changes in set-point or perturbations.



PD — Controller: Equations

=Time domain n’Z(f) — Kp (B(Z) + Td dzg))

=Laplace domain I’%(S) = Kp (1 + TdS)E(S)

*Td = derivative time, temps de dosage de dérivée, Vorhalte



PID-Controller (Proportional-Integral-Differential)
mint I =int t
f;rétigr;ra \ INn egra or

¥
=proportional factor \\ p
=comman
=erro \ E "S d
Ab- :-

ble— .plant —»O0—>»0

=set- /vQ_r—"‘-/KQ/
point

=process valug /

sderivative _|— | _ =PID controller
factor P

=S

"measurem

ent
=The proportional factor K, generates an output proportional to the error, it requires a
non-zero error to produce the command variable.

"Increasing the amplification K, decreases the error, but may lead to instability

=The integral time constant T, produces a non-zero control variable even when the
error is zero, but makes the system instable (or slower).

*The derivative time T, speeds up response by reacting to an error change with a
control variable proportional to the steepness of change.



PID controller: Equatlons

={ime domain

= aplace domain

e(s)

=K, = proportional factor, gain, Reglerverstarkung,

m(s)

-K

p

(

m(t)=K, e(t)+T f e(7)dr)+ T,

de(t)
dt

T,s

+

(1+];ifs)
AN,

\

=Real differentiators include this filterir

=T, = reset time, temps de dosage d’'intégration (Nachhaltezeit, Ty)

»Td = derivative time, temps de dosage de dérivee, Vorhaltezeit Tv
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.Plarge (Kp = 15)
less error, but unstable

TID response summary

=PI: no remaining error,

e but sluggish response

\ =(or instable, if K, increased)
.1 'A\‘ m

/
/
\- mall (K=D5) asymptotic er?or
L =differential factor 1 "proportional only
Increases responsivenes
="load change (load decreases)
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PID-Controller: empirical settings

. Rise time Overshoot Settling time Steady-State
Error

"increasing

*Kp Decrease Increase Small Change Decrease

=Ti Decrease Increase Increase Eliminate

*Td Small Change Decrease Decrease Small Change

=Empirical formula of Nichols (1942 !)

.S*ep response. (Ope'aefoeéimples on http://en.wikipedia.org/wiki/PID_controller

*14  adelay =time constant

o j1> e T o 20 deT,=05d =(N, = 10
08 \ P K = . 4=0. £ =

Vv
0.6 ~
0.4 /> ,
02 -gam
"0
0 Sl =2 =3 =4 a5 s 7 =8 =9 =10

*d~0.2, T=1.5s




Performance Specs
Steady-state error

« Steady state (tracking) error of a stable system

e, = lime(t) = Hm(r(t)- (0)

= r(t) is the reference input, y(t) is the system output.
e How accurately can a system achieve the desired state?

e Final value theorem: if all poles of sF(s) are in the open left-half
of the s-plane, then

lim £(¢) = limsF(s)

{—00 s—(

e Easy to evaluate system long term behavior without solving it

e =lime(t) = lmsE(s)

{—0 s—(



Performance Specs
Steady-state error

sSteady state error of a CPU-utilization control system

| =e=-20%

1 | 1 | | |
8 10 12 14 16 18
Time (sec)

20



Controller Design
PID control

Proportional-Integral-Derivative (PID) Control

e Proportional Control x(t)=Ke(?r) < C(s)=K

t KK
x(t)= KK, [e(t)ydr < C(s)= =

Integral control .
xt)=KK,e(t) = (C(s)=KK, s

Derivative control
Classical controllers with well-studied properties and tuning rules

n
m

~
1%2)

RS @ *C(s |2 Gyl |- *¥(s)

T') )




Fourier Transform

=Jean-Baptiste Fourier had
crazy idea (1807):

*Any periodic
function can be
rewritten as a
weighted sum of
sines and cosines of
different
frequencies.

=Called Fourier Series



Square-Wa

f(target)=

f]+ f2+ f3...+ fn+...




Other examples

square wave

1
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triangle wave
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FT expands this idea

- Take any signal (periodic and non-periodic) in time
domain and decompose it in sines + cosines to have a
representation in the fiequency domain.

Time Domain —

FT

—> Frequency Domain

Real: Cosine
Coefficients

FT

N +

S

Imaginary: Sine
Coefficients



FT: Formal Definition

—+oo
Fourier Transform : F(®) = J.t/“(x)e_’.("”C dx

—O00

“+o0
: : 1 Dy
Inverse Fourier Transform : f(x) = Py jF (0)e'™ dw
T

—00

*Convention: Upper-case to describe transformed
variables:

‘Transform: F{x(t) } = X(w) or X(f) (w=27f)
‘Inverse. Fi{Y(w)or Y() }=y()



FT gives complex numbers

* You get complex numbers
— Cosine coefficients are real

— Sine coefficients are imaginary

Real: Cosine
Coefficients

J
/L',\\/JJ\' S IFT—— +

Imaginary: Sine
Coefficients




Complex plane
M

* Complex number can :
be represented: q

— Combination of real +
imaginary value:

X +iy

— Amplitude + Phase
Aand @

=T+

v >
! R
T=T —1



Alternative representation of FT

 Complex numbers can be represented also as
amplitude + phase.

S

FT

Real
N +

Imaginary

A

f

f

O




Example Fourier Transform

"Fast moving vs slow moving signals

Amplitude
Spectrum
A

M FT \/\\»f

Amplitude
Spectrum

A




Example Fourier Transform

g Time Domain ¢

sbox(z)

» gauss(7)

Frequency Domain w

A

' sinc(@)

S\ wRear

. gauss(o)

2 uReal

A

box(@)

-o "Real




Example Fourier Transform

Time Domain Frequency Domain
Box car function 44— Sinc function
Sinc function <4——p Box car function
Constant function 44— Dirac delta function
Dirac delta function «g—#  Constant function
Dirac comb <4—P Dirac comb
Cosine function <4—¥» Two real, even delta functions
Sine function <4—» Two imaginary, odd delta functions
TIME DOMAIN FREQUENCY DOMAIN
T
hT(:) H(f)
A e oo
— u,\
— -t 2 0w H— —f o 0 o +H—
ht)=A |t <T/2 «—> H(f) = AT SIn(TTf)
=A2 [t =T/2 Tt
=0 |t|>T/2

—



Example Fourier Transform

Time Domain Frequency Domain
Box car function 44— Sinc function
Sinc function <4—p Box car function
Constant function 44— Dirac delta function
Dirac delta function «¢—#  Constant function
Dirac comb <4—» Dirac comb
Cosine function <4—» Two real, even delta functions
Sine function <4—» Two imaginary, odd delta functions
TIME DOTMAIN FREQUENC\% DOMAIN
hit) H(f)
A
— =~ ™ H— W2 0 W2 +—
h(t) = 2Afy sin( 27tfot ) H(f) = A Ifl < fa
27thot =A2 [fl=fo
=0 Ifl > fo

_



Example Fourier Transform

Time Domain Frequency Domain
Box car function «4—p Sinc function
Sinc function «4—Pp Box car function

Constant function 44— Dirac delta function
Dirac delta function <=  Constant function

Dirac comb <4—» Dirac comb
Cosine function <4 Two real, even delta functions
Sine function <4—» Two imaginary, odd delta functions
| CosineFunction |
TIME DOMAIN FREQUENCY DOMAIN
T T
hit) Hif)

A2

AN | .
KR T

h(t) = Acos(2fot) <= H(f)= A2 8(f- fo) + A/2 3(f + fo)

_




Example Fourier Transform

Time Domain Frequency Domain
Box car function «4—p Sinc function
Sinc function «4—p Box car function

Constant function «4—p Dirac delta function
Dirac delta function «g—p»  Constant function

Dirac comb 44— Dirac comb
Cosine function <4—P Two real, even delta functions
Sine function <4—» Two imaginary, odd delta functions
 sineFuncton |
TIME DOMAIN FREQUENCY DOMAIN
hT(t) A2 HL)

A% [
— -t / \/ \/ H— —f

A2 L

h(t) = Asin(2mtfot) @=—p H(f) = -i A2 8(f-fo) +i A2 &(f + fo)

*Note: FT is imaginary for
sine

'
s

H—




Example Fourier Transform

= Time Domain ¢ Frequency Domain
0)]
6. B(t)
fit) ! F(m)
N
T ,
! T ” 'Rea/
A
fit) F(m)
N Aolo
T An
- L > =Real
t Q)
« DC

component »



Problems

The M25 (London’s “orbital carpark”) has traffic problems — here
are three things you might do to alleviate them

1.

Design a controller that turns on-ramp traffic lights to red
when the mean speed of cars as measured by a sensor
network) goes below 60kph, and green when it goes above —
explain the behaviour of traffic that results (think admission
controll).

Design a controller for each car that sets the speed the same
as the car in front (as measured by radar).

Design a cruise control that keeps the speed of the car at a
set point, despite encountering hills (up and down). How
would this be modified to account for head or tail wind (if
the impact of the wind is proportional to the speed of the

car) [hardish]

Explain the “stop start” behaviour of traffic that you

sometimes (or often on the M25) encounter without the
<cchemec ahove beino denloved — Artiite tricky



