Topics in Concurrency

Lecture 2

Jonathan Hayman

18 January 2016

The Calculus of Communicating Systems

@ Introduced by Robin Milner in 1980
@ First process calculus developed with its operational semantics
@ Supports algebraic reasoning about equivalence

o Simplifies Dijkstra’'s Guarded Command Language by removing the
store (store locations can be encoded as processes)

@ Processes communicate by sending values (numbers) on channels.

Action and communication

As before, communication is synchronous and between two
processes.

Input: a?x
Output: ala
Silent action: 7. Internal to the process.

We will use X to range over all the kinds of action.

Processes will structure actions

Interface diagrams

Interface diagrams describe the channels used by processes for input
and output.

The use of a channel by a process is called a port.

Example: process P inputs on «, 8 and outputs on a;, .
?

B? !

al
@ Later examples: links between processes to represent the possibility
of communication

Syntax of CCS

@ Expressions: Arithmetic a and Boolean b

@ Processes:

p == nil nil process
| (r—=p) silent/internal action
| (ala—p) output
| (a?x — p) input
| (b—p) Boolean guard
| po+p1 non-deterministic choice
| poll p1 parallel composition
| p\L restriction (L a set of channel identifiers)
| plf] relabelling (f a function on channel identifiers)
| P(ai, -+ ,ak) process identifier

@ Process definitions:

'D(Xla"' 7Xk) défp

(free variables of p C {x1, - ,x,})

Restriction and relabelling: interface diagrams

e p\ L: Disallow external interaction on channels in L

7
B? ! Mﬂ?
al
@ p[f]: Rename external interface to channels by f
7
. Ny rename: {a — «, 3 — 3,7 +— B} 2

Operational semantics of CCS

o Guarded processes

(t—=p)>p

a—n .
afn
(ala = p) 22 p (a?x = p) — p[n/x]
b — true p 2, o’
(b—p) 2 pf
@ Sum
A A
Po — Po p1— p1
A A
Po -+ P1 = pp po -+ p1 = py
o Parallel composition
A
Po = Po Py
A T ’
po |l pr = po || pr po |l pr = P Il P1
Ao aln a?n.
b1 — Py Po — Po p1— p1

A
po |l p1 = po || P} po |l p1 = pg || P

@ Restriction
A
p=p
p\LSp\L
o Relabelling

where if A\=a?nor A=alnthen a & L

Ao
P p
f(A
plf] ()> P'[f]

where f is extended to labels as f(7) = 7 and f(a?n) = f(«a)?n and
f(aln) = f(a)ln

o ldentifiers

A
p[al/X]_7"' 7an/xn] — p/

A
P(317"' 73") — p/
@ Nil process no rules

A derivation from the operational semantics

(a!3 = nil) 22, il

(a!3 = nil) + P 25, nil

((a!3 = nil) + P) || (+ — nil) 225 nil | (r — nil)

A derivation from the operational semantics

('3 = nil) 225 il

(a!3 = nil) + P 22, nil

(a3 = nil) + P) || (= = nil) 2 nil | (r = nil) (a?x = nil) 225 nil

(((!3 = nil) + P) || (7 — nil)) || (a?x — nil) = (nil || (7 — nil)) || nil

A derivation from the operational semantics

(a!3 = nil) 225 nil

(13 = nil) + P 22, nil

((a13 = nil) + P) || (7 — nil) 22 nil || (+ — nil) (a?x — nil) 22, nil

(((a!3 = nil) + P) || (= — nil)) || (a?x — nil) = (nil || (7 — nil)) | nil

(((a!3 = nil + P) || 7 — nil) || a?x — nil) \ {a} = ((nil || 7 — nil) || nil) \ {a}

Further examples

(Write . for —)
Each step justified by a derivation:

@ External choice a!2.nil + S13.nil

nil nil

@ Internal choice T.!2.nil + 7.6!3.nil

T T

a!2.nil B13.nil

i |

nil nil

Mixed choice a12.nil 4+ 7.413.nil

al2 \

nil £13.nil
\LBB
nil
Exercise:
a!3.nil || a?x.8lx.nil
Exercise:
(a!3.nil || a?x.8x.nil) \ {a}
Exercise:
(a?x.nil || B[— B, — 5]
Exercise: P where

P aix s x=1— Q(x) Q(x) def Blx = vlx = Q(x)

Conditionals

@ Encoding of conditionals:
if b then py else py = (b — po) + (=b — p1)
@ Example: Maximum of two inputs
in?x — (in?y —
(x<y— maxly

Jr
y <x = max!x))

in? max!

Linking processes

Connect p's output port to g's input port:

in? out! in? out!

in? out!

Definition:
p" g = (plc/out] | glc/in]) \

where c is a fresh channel name

Buffers

@ Definition:

B in?x — (out!'x — B)

in? out!
e n-ary buffer
B"B"..."B
| ——

n times

o Exercise: Draw the transition system for B™ B

Remember: p™ g = (p[c/out] || ql[c/in]) \ ¢

Buffer with acknowledgements

@ Definition:

lef . .
D = in?x — out!x — ackout? — ackin! — D

in? out!

ackin? ackout!

@ Chaining now establishes two links:

in? out!

ackin! ackout?
@ How would this differ from the following process?

def .)
D' = in?x — ackin! — out!x — ackout? — D’

Euclid's algorithm in CCS

Interface:

in?

ged!
Implementation:
E(x,y) = x =y — gedlx — nil
+ x<y-— E(x,y —x)
+ y<x—=E(x—y,x)

Euclid < in?x — infy — E(x,y)

Euclid's algorithm in CCS (without parameterized
processes)

def .
Step = in?x —

in?y —
(x =y — gecd!x — nil)
|
(x <y — outlx — out!(y — x) — nil)
+

(y < x = out!(x — y) — outly — nil)

Euclid *< Step " Euclid

