Topics in Concurrency

Lecture 2

Jonathan Hayman

18 January 2016

The Calculus of Communicating Systems

- Introduced by Robin Milner in 1980
- First process calculus developed with its operational semantics
- Supports algebraic reasoning about equivalence
- Simplifies Dijkstra's Guarded Command Language by removing the store (store locations can be encoded as processes)
- Processes communicate by sending values (numbers) on channels.

Action and communication

- As before, communication is synchronous and between two processes.
- Input: α ?x
- Output: $\alpha!a$
- Silent action: τ . Internal to the process.
- ullet We will use λ to range over all the kinds of action.

Processes will structure actions

Interface diagrams

- Interface diagrams describe the channels used by processes for input and output.
- The use of a channel by a process is called a *port*.
- Example: process P inputs on α, β and outputs on α, γ .

 Later examples: links between processes to represent the possibility of communication

Syntax of CCS

- Expressions: Arithmetic a and Boolean b
- Processes:

$$\begin{array}{lll} p & ::= & \textbf{nil} & & \text{nil process} \\ & (\tau \rightarrow p) & & \text{silent/internal action} \\ & (\alpha! a \rightarrow p) & & \text{output} \\ & (\alpha? x \rightarrow p) & & \text{input} \\ & (b \rightarrow p) & & \text{Boolean guard} \\ & p_0 + p_1 & & \text{non-deterministic choice} \\ & p_0 \parallel p_1 & & \text{parallel composition} \\ & p \setminus L & & \text{restriction } (L \text{ a set of channel identifiers}) \\ & p[f] & & \text{relabelling } (f \text{ a function on channel identifiers}) \\ & P(a_1, \cdots, a_k) & & \text{process identifier} \end{array}$$

Process definitions:

$$P(x_1,\cdots,x_k)\stackrel{\mathrm{def}}{=} p$$
 (free variables of $p\subseteq\{x_1,\cdots,x_n\}$)

Restriction and relabelling: interface diagrams

• $p \setminus L$: Disallow external interaction on channels in L

• p[f]: Rename external interface to channels by f

Operational semantics of CCS

Guarded processes

$$(\tau \to p) \xrightarrow{\tau} p$$

$$a \to n$$

$$(\alpha! a \to p) \xrightarrow{\alpha! n} p \qquad (\alpha? x \to p) \xrightarrow{\alpha? n} p[n/x]$$

$$b \to \text{true} \qquad p \xrightarrow{\lambda} p'$$

$$(b \to p) \xrightarrow{\lambda} p'$$

Sum

$$\frac{p_0 \xrightarrow{\lambda} p_0'}{p_0 + p_1 \xrightarrow{\lambda} p_0'} \qquad \frac{p_1 \xrightarrow{\lambda} p_1'}{p_0 + p_1 \xrightarrow{\lambda} p_1'}$$

Parallel composition

$$\begin{array}{c|c} p_0 \xrightarrow{\lambda} p_0' & p_0 \xrightarrow{\alpha?n} p_0' & p_1 \xrightarrow{\alpha!n} p_1' \\ \hline p_0 \parallel p_1 \xrightarrow{\lambda} p_0' \parallel p_1 & p_0 \parallel p_1 \xrightarrow{\tau} p_0' \parallel p_1' \\ \hline p_0 \parallel p_1 \xrightarrow{\lambda} p_1' & p_0 \xrightarrow{\alpha!n} p_0' & p_1 \xrightarrow{\alpha?n} p_1' \\ \hline p_0 \parallel p_1 \xrightarrow{\lambda} p_0 \parallel p_1' & p_0 \parallel p_1 \xrightarrow{\tau} p_0' \parallel p_1' \end{array}$$

Restriction

$$\frac{p \xrightarrow{\lambda} p'}{p \setminus L \xrightarrow{\lambda} p' \setminus L} \quad \text{where if } \lambda \equiv \alpha ? n \text{ or } \lambda \equiv \alpha ! n \text{ then } \alpha \notin L$$

Relabelling

$$\frac{p \xrightarrow{\lambda} p'}{p[f] \xrightarrow{f(\lambda)} p'[f]}$$

where f is extended to labels as $f(\tau) = \tau$ and $f(\alpha ? n) = f(\alpha) ? n$ and $f(\alpha ! n) = f(\alpha) ! n$

Identifiers

$$\frac{p[a_1/x_1,\cdots,a_n/x_n]\xrightarrow{\lambda}p'}{P(a_1,\cdots,a_n)\xrightarrow{\lambda}p'}$$

Nil process no rules

A derivation from the operational semantics

$$\begin{array}{c} (\alpha ! 3 \rightarrow \mathsf{nil}) \xrightarrow{\alpha ! 3} \mathsf{nil} \\ \hline (\alpha ! 3 \rightarrow \mathsf{nil}) + P \xrightarrow{\alpha ! 3} \mathsf{nil} \\ \hline ((\alpha ! 3 \rightarrow \mathsf{nil}) + P) \parallel (\tau \rightarrow \mathsf{nil}) \xrightarrow{\alpha ! 3} \mathsf{nil} \parallel (\tau \rightarrow \mathsf{nil}) \end{array}$$

A derivation from the operational semantics

A derivation from the operational semantics

Further examples

(Write . for \rightarrow) Each step justified by a derivation:

External choice

Internal choice

Mixed choice

$$\alpha!2.\mathbf{nil} + \tau.\beta!3.\mathbf{nil}$$

$$\alpha!2$$

$$\beta!3.\mathbf{nil}$$

$$\beta!3.\mathbf{nil}$$

$$\beta!3$$

• Exercise:

$$\alpha$$
!3.**nil** $\parallel \alpha$? x . β ! x .**nil**

• Exercise:

$$(\alpha!3.\mathsf{nil} \parallel \alpha?x.\beta!x.\mathsf{nil}) \setminus \{\alpha\}$$

• Exercise:

$$(\alpha?x.\mathsf{nil} \parallel \beta!4)[\alpha \mapsto \beta, \beta \mapsto \beta]$$

Exercise: P where

$$P \stackrel{\text{def}}{=} \alpha?x \to x = 1 \to Q(x)$$
 $Q(x) \stackrel{\text{def}}{=} \beta!x \to \gamma!x \to Q(x)$

Conditionals

• Encoding of conditionals:

if
$$b$$
 then p_0 else $p_1 \equiv (b
ightarrow p_0) + (\lnot b
ightarrow p_1)$

Example: Maximum of two inputs

$$\begin{array}{c} in?x \rightarrow (in?y \rightarrow \\ (\quad x \leq y \rightarrow max!y \\ \quad + \\ \quad y \leq x \rightarrow max!x \quad)) \end{array}$$

$$in? \bullet$$

Linking processes

Connect p's output port to q's input port:

Definition:

$$p \cap q = (p[c/out] \parallel q[c/in]) \setminus c$$

where c is a fresh channel name

Buffers

Definition:

$$B \stackrel{\mathrm{def}}{=} in?x \to (out!x \to B)$$

• n-ary buffer

$$\underbrace{B \cap B \cap \cdots \cap B}_{n \text{ times}}$$

• Exercise: Draw the transition system for $B \cap B$

Remember: $p \cap q = (p[c/out] \parallel q[c/in]) \setminus c$

Buffer with acknowledgements

Definition:

$$D \stackrel{\text{def}}{=} in?x \rightarrow out!x \rightarrow ackout? \rightarrow ackin! \rightarrow D$$

$$in? \qquad out!$$

$$ackin? \qquad ackout!$$

Chaining now establishes two links:

• How would this differ from the following process?

$$D' \stackrel{\mathrm{def}}{=} \mathit{in}?x \rightarrow \mathit{ackin}! \rightarrow \mathit{out}!x \rightarrow \mathit{ackout}? \rightarrow D'$$

Euclid's algorithm in CCS

Interface:

Implementation:

$$E(x,y) \stackrel{\text{def}}{=} x = y \to gcd!x \to \mathbf{nil}$$

$$+ x < y \to E(x,y-x)$$

$$+ y < x \to E(x-y,x)$$

$$Euclid \stackrel{\text{def}}{=} in?x \to in?y \to E(x,y)$$

Euclid's algorithm in CCS (without parameterized processes)

Step
$$\stackrel{\text{def}}{=}$$
 in? $x \rightarrow$ in? $y \rightarrow$ $(x = y \rightarrow gcd!x \rightarrow nil)$ $+$ $(x < y \rightarrow out!x \rightarrow out!(y - x) \rightarrow nil)$ $+$ $(y < x \rightarrow out!(x - y) \rightarrow out!y \rightarrow nil)$

Euclid $\stackrel{\text{def}}{=}$ Step $\stackrel{\cap}{=}$ Euclid