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Fixed points and model checking

The finitary H-M logic doesn’t allow properties such as

the process never deadlocks

We can add particular extensions (such as always, never) to the logic
(CTL)

Alternatively, what about defining sets of states ‘recursively’? The
set of states X that can always do some action satisfies:

X = ⟨−⟩T ∧ [−]X

A fixed point equation: X = ϕ(X )
But such equations can have many solutions. . .
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Fixed point equations

In general, an equation of the form X = ϕ(X ) can have many
solutions for X .

Fixed points are important: they represent steady or consistent
states

Range of different fixed point theorems applicable in different
contexts e.g.

Theorem (1-dimensional Brouwer’s fixed point theorem)

Any continuous function f ∶ [0,1]→ [0,1] has at least one fixed point

(used e.g. in proof of existence of Nash equilibria)

We’ll be interested in fixed points of functions on the powerset
lattice ↝ Knaster-Tarski fixed point theorem and least and greatest
fixed points



Least and greatest fixed points on transition systems:
examples

a

b

In the above transition system, what are the least and greatest subsets of
states X ,Y and Z that satisfy:

X = X

Y = ⟨−⟩T ∧ [−]Y
Z = ¬Z



The powerset lattice

Given a set S, its powerset is

P(S) = {S ∣ S ⊆ S}

Taking the order on its elements to be inclusion, ⊆, this forms a
complete lattice

We are interested in fixed points of functions of the form

ϕ ∶ P(S)→ P(S)

ϕ is monotonic if S ⊆ S ′ implies ϕ(S) ⊆ ϕ(S ′)
a prefixed point of ϕ is a set X satisfying ϕ(X ) ⊆ X

a postfixed point of ϕ is a set X satisfying X ⊆ ϕ(X )
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Knaster-Tarski fixed point theorem for minimum fixed
points

Theorem

For monotonic ϕ ∶ P(S)→ P(S), define

m =⋂{X ⊆ S ∣ ϕ(X ) ⊆ X}.

Then m is a fixed point of ϕ and, furthermore, is the least prefixed point:

1 m = ϕ(m)
2 ϕ(X ) ⊆ X implies m ⊆ X

m is conventionally written
µX .ϕ(X )

Used for inductive definitions: syntax, operational semantics, rule-based
programs, model checking



Knaster-Tarski fixed point theorem for maximum fixed
points

Theorem

For monotonic ϕ ∶ P(S)→ P(S), define

M =⋃{X ⊆ S ∣ X ⊆ ϕ(X )}.

Then M is a fixed point of ϕ and, furthermore, is the greatest postfixed
point.

1 M = ϕ(M)
2 X ⊆ ϕ(X ) implies X ⊆ M

M is conventionally written

νX .ϕ(X )

Used for co-inductive definitions, bisimulation, model checking



(Strong) bisimilarity as a maximum fixed point [§5.2 p68]

Bisimilarity can be viewed as a fixed point ↝ model checking algorithms.

Given a relation R (on CCS processes or states of transition systems)
define:

p ϕ(R) q

iff

1 ∀α,p′. p
αÐ→ p′ Ô⇒

∃q′. q
αÐ→ q′ & p′ R q′

2 ∀α,q′. q
αÐ→ q′ Ô⇒

∃p′. p
αÐ→ p′ & p′ R q′

Lemma

R ⊆ ϕ(R) iff R is a (strong) bisimulation.

Hence, by Knaster-Tarski fixed point theorem for maximum fixed points:

Theorem
Bisimilarity is the greatest fixed point of ϕ.



Theorem
Bisimilarity is the greatest fixed point of ϕ.

Proof.

∼ = ⋃{R ∣ R is a bisimulation} (1)

= ⋃{R ∣ R ⊆ ϕ(R)} (2)

= νX .ϕ(X ) (3)

(1) is by definition of ∼
(2) is by Lemma
(3) is by Knaster-Tarski for maximum fixed points: note that ϕ is
monotonic

Question: How is this different from the least fixed point of ϕ?
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The modal µ-calculus [§4.2 p48]

A ∶∶ = T ∣ F ∣ A0 ∧A1 ∣ A0 ∨A1 ∣ ¬A ∣ ⟨λ⟩A ∣ ⟨−⟩A ∣ νX .A

To guarantee monotonicity (and therefore the existence of the fixed
point), require the variable X to occur only positively in A in νX .A. That
is, X occurs only under an even number of ¬s.�

�

�

�
s ⊧ νX .A iff s ∈ νX .A

i.e. s ∈ ⋃{S ⊆ P ∣ S ⊆ A[S/X ]}
the maximum fixed point of the monotonic
function S ↦ A[S/X ]

As before, we take

[λ]A ≡ ¬⟨λ⟩¬A [−]A ≡ ¬⟨−⟩¬A

Now also take
µX .A ≡ ¬νX .(¬A[¬X /X ])
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Example

Consider the process

P
def= a.(a.P + b.c .nil)

Which states satisfy

µX .⟨a⟩X
νX .⟨a⟩X
µX .[a]X
νX [a]X



Approximants

Let ϕ ∶ P(S)→ P(S) be monotonic.
ϕ is ⋂-continuous iff for all decreasing chains X0 ⊇ X1 ⊇ ⋯ ⊇ Xn ⊇ ⋯

⋂
n∈ω

ϕ(Xn) = ϕ(⋂
n∈ω

Xn)

If the set of states S is finite, continuity certainly holds

Theorem

If ϕ ∶ P(S)→ P(S) is ⋂-continuous:

νX .ϕ(X ) = ⋂
n∈ω

ϕn(S)



Approximants

Let ϕ ∶ P(S)→ P(S) be monotonic.
ϕ is ⋃-continuous iff for all increasing chains X0 ⊆ X1 ⊆ ⋯ ⊆ Xn ⊆ ⋯

⋃
n∈ω

ϕ(Xn) = ϕ(⋃
n∈ω

Xn)

If the set of states S is finite, continuity certainly holds

Theorem

If ϕ ∶ P(S)→ P(S) is ⋃-continuous:

µX .ϕ(X ) = ⋃
n∈ω

ϕn(∅)



Proving interpretations

Proposition

s ⊧ νX .⟨a⟩X in a finite-state transition system iff there exists an infinite
sequence of a-transitions from s.



Bisimilarity and modal µ

For finite-state processes, modal-µ can be encoded in infinitary H-M logic�



�
	if finite-state processes p and q are bisimilar then they

satisfy the same modal-µ assertions

Note that logical equivalence in modal-µ does not generally imply
bisimilarity (due to the lack of infinitary conjunction)
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