System F,, as a Pure Type System: Aw

PTS specification w = (Sy, Aw, Rw):

S, = {*,0}
A= {(x0)}
R 2 {(*,%,%),(0%%),(000)}

— SERS A5 o
Ly 10 T LaoYic NV Ie S
M

rr-'lil.l" “w,-f"l_lf;] AV l"r"m_aﬁl.f _"nr]] |_£_/'rﬁV El

- ,ﬂ,ﬂ “‘x
((axty 4V 0y e 5t ’”k

I"‘\. |
— x"

System F,, as a Pure Type System: Aw

PTS specification w = (Sy, Aw, Rw):

S, = {*,0}
A= {(x0)}
R 2 {(*,%,%),(0%%),(000)}

As in A2, sort * is a universe of types; but in Aw, the rule (prod) for
(0,0,0) means that ¢ = ¢ : [J holds for all the ‘simple types' over the
ground type * — the ts generated by the grammar t ::= % | t > ¢

(A0 G fre:q

(Pm%) B o ’FOV (D(D'
[T A (8) : 0O ‘ o)

System F,, as a Pure Type System: Aw

PTS specification w = (Sy, Aw, Rw):

S, = {*,0}
A= {(x0)}
R 2 {(*,%,%),(0%%),(000)}

As in A2, sort * is a universe of types; but in Aw, the rule (prod) for
(0,0,0) means that ¢ = ¢ : [J holds for all the ‘simple types' over the
ground type * — the ts generated by the grammar t ::= % | t > ¢

System F,, as a Pure Type System: Aw

PTS specification w = (Sy, Aw, Rw):

S, = {*,0}
A= {(x0)}
R 2 {(*,%,%),(0%%),(000)}

As in A2, sort * is a universe of types; but in Aw, the rule (prod) for
(0,0,0) means that ¢ = ¢ : [J holds for all the ‘simple types' over the
ground type * — the ts generated by the grammar t ::= % | t > ¢

Hence rule (prod) for (J, *, %) now gives many more legal pseudo-terms
of type * in Aw compared with A2 (PLC), such as

G oF (T :% - (Ha:x(x—Tw))) : *
[o (T : % — * (Tw, B *((oc—>T,B)—>T(x—>T[3))) *

|
L } \ 9 Vo |)

1 -~ ' I oy '-rw-‘_.- 8
\ ut J’_L rr_ N AW X \ e 0 T'IQ_F%I WA LJ AT\ fiJ. A] 0L A AL

—_— e —

Examples of Aw type constructions

» Product types (cf. the PLC representation of product types):

JAN ’ \ f
= ° ° . |
P=Aw, B (Ily:*x((a> - Bov)=7))
-'lll
OFP:x—%x— % N y
- A /
J yd
- e
_/.// Iy
-_— — .
f,-f"“
.-"".HI
.-"--
S __.-""-.
3 / - -
— [O)/ / -) g
— T . .
r_ '};"‘- I._ .'|I Ir__.-}ff | (- T _.1-:} |_ _ 5 :\)I// | >
iy N, (///‘ /
1 g ~ 1 [’ '] -
l Ay i T F, — = — L
|_._,.a—-_! LA - I__..--_.'T i ___:|—#-.|—".IL’ l,__ I'-._ \ I'q_‘__ fr!

Examples of Aw type constructions

» Product types (cf. the PLC representation of product types):
PEAw, Brx(Ily:*x((a> - Boy)—17))

OFP:%k—>%x— %

PR | ~ | N f SN e
T |~ L : &, —> |
-}\“ I"-. —] I._H_:' I'. I'-. I'-._,.- r':.q'__" h -I_.:' | .
JP ANV P)) T2
L " L L w
1 | f |
| A { Voo {3
. - —_— —y —
" . '.l ~) AL 5 = b o
\ Yaulr .L, |r'E_ !T_ 'T 'x_l JIll L R
., L
S
"

%
- \"\ I

"-:-\.:I

» Existential types (cf. the PLC representation of existential
types):
A2AT x> x (B :* ((Ma:*x (Ta— B)) — B))
O J:i(x—x%)— =%

Type-checking for F,, [/L0)

Fact (Girard): System F,, is strongly normalizing in the sense that
for any legal pseudo-term ¢, there is no infinite chain of
beta-reductions t — t; —> t, — - - -.

Type-checking for F,,

Fact (Girard): System F,, is strongly normalizing in the sense that
for any legal pseudo-term ¢, there is no infinite chain of
beta-reductions t — t; —> t, — - - -.

As as corollary we have that the type-checking and typeability

problems for F,, are decidable.

o~
Y

b ; Y kY

\.\ { y) 1

e | |
|/

APV
- oy

S

PraPos{HW\s AS —Epes
((seck. 6 of mﬂes)

Curry-Howard correspondence

Logic <> Type system
propositions ¢ <> types T
proofs p > expressions M
'p is a proof of ¢’ > ‘M is an expression of type T’
simplification of proofs <> reduction of expressions

Constructive interpretation of logic

Implication: a proof of ¢ — ¢ is a construction that
transforms proofs of @ into proofs of .

Negation: a proof of —¢ is a construction that from any
(hypothetical) proof of ¢ produces a contradiction (= proof of
falsity L)

Disjunction: a proof of @ V ¢ is an object that manifestly is
either a proof of @, or a proof of .

For all: a proof of Vx (¢(x)) is a construction that
transforms the objects a over which x ranges into proofs of
(a).

There exists: a proof of Ix (¢(x)) is given by a pair
consisting of an object a and a proof of g(a).

Constructive interpretation of logic

» Implication: a proof of ¢ — ¢ is a construction that
transforms proofs of @ into proofs of .

» Negation: a proof of =@ is a construction that from any
(hypothetical) proof of ¢ produces a contradiction (= proof of
falsity L)

> Disjunction: a proof of @ VV ¢ is an object that manifestly is
either a proof of @, or a proof of .

» For all: a proof of Vx (¢(x)) is a construction that
transforms the objects a over which x ranges into proofs of
(a).

» There exists: a proof of Ix (@(x)) is given by a pair
consisting of an object a and a proof of g(a).

The Law of Excluded Middle (LEM) |Vp (p V —p) | is a classical
tautology (has truth-value true), but is rejected by constructivists.

Example of a non-constructive proof

Theorem. There exist two irrational numbers a and b such that
b“ is rational.

Example of a non-constructive proof

Theorem. There exist two irrational numbers a and b such that
b“ is rational.

Proof. Either \/2‘/2 is rational, or it is not (LEM!).

Example of a non-constructive proof

Theorem. There exist two irrational numbers a and b such that
b“ is rational.

Proof. Either \/2‘/2 is rational, or it is not (LEM!).

If it is, we can take a = b = /2, since /2 is irrational by a
well-known theorem attributed to Euclid.

Example of a non-constructive proof

Theorem. There exist two irrational numbers a and b such that
b“ is rational.

Proof. Either \/2‘/2 is rational, or it is not (LEM!).

If it is, we can take a = b = /2, since /2 is irrational by a
well-known theorem attributed to Euclid.

If it is not, we can take a = 4/2 and b = \/2\/2, since then
b = (y/2V2) V2= 2VEVi= /22 =2,

QED

Example of a constructive proot

Theorem. There exist two irrational numbers a and b such that
b% is rational.

Proof. /2 is irrational by a well-known constructive proof
attributed to Euclid.

2log, 3 is irrational, by an easy constructive proof (exercise).

Example of a constructive proot

Theorem. There exist two irrational numbers a and b such that
b% is rational.

Proof. /2 is irrational by a well-known constructive proof
attributed to Euclid.

2log, 3 is irrational, by an easy constructive proof (exercise).

So we can take a = 2log, 3 and b = /2, for which we have that
b = (/2)2198:3 = (,/2%)108:3 = 21083 = 3 js rational.

QED

Curry-Howard correspondence

Logic

propositions ¢
proofs p
'p is a proof of ¢’

simplification of proofs

2IPC

r T T 7

7

Type system

types T
expressions M
‘M is an expression of type T’

reduction of expressions

PLC

Second-order intuitionistic
propositional calculus (2IPC)

2IPC propositions: |¢p :=p | ¢ — ¢ | Vp (¢) | where p ranges
over an infinite set of propositional variables.

2IPC sequents: | ® = ¢ | where ® is a finite multiset (= unordered
list) of 2IPC propositions and ¢ is a 2IPC proposition.

Second-order intuitionistic
propositional calculus (2IPC)

2IPC propositions: |¢p :=p | ¢ — ¢ | Vp (¢) | where p ranges

over an infinite set of propositional variables.

2IPC sequents: | ® = ¢ | where ® is a finite multiset (= unordered
list) of 2IPC propositions and ¢ is a 2IPC proposition.

® = ¢ is provable if it is in the set of sequents inductively
generated by:

(Id) ®+-¢ ifp € d
(—1) (I),gb|—gb' (I)|—(p—>gb’ OB ()

OF ¢ ¢ (=E) I+ ¢
D¢ _ - Vp(¢)
D arwpi PEND V)

Logical operations definable in 2IPC

> Truth T =Vp (p - p)
> Falsity 1. 2 Vp (p)

Logical operations definable in 2IPC

> Truth T =Vp (p - p)
> Falsity 1. 2 Vp (p)

> Conjunction ¢ N =Np ((¢p - —p) - p)
(where p & fo(¢p,v))

Logical operations definable in 2IPC

> Truth T =Vp (p - p)

> Falsity 1. 2 Vp (p)

» Conjunction p Ap =Vp ((¢p — P —p) - p)
(where p & fo(@, $))

» Disjunction Vi =Vp ((¢ — p) —» (¢ —» p) — p) (where
p & fo(,¢))

Logical operations definable in 2IPC

Truth T 2=Vp (p - p)

Falsity 1. = Vp (p)

Conjunction p A =Vp ((¢p = - p) — p)

(where p & fo(¢,¥))

Disjunction ¢ V p =¥p ((¢ - p) = (P — p) —» p) (where
p & fo(,¢))

Negation —¢p = ¢ — L

Bi-implication ¢ <> 2 (¢ —) A (¢ = @)

Logical operations definable in 2IPC

Truth T 2Vp (p - p)

Falsity 1. = Vp (p)

Conjunction g AN = Vp ((¢p — ¢ - p) — p)

(where p & fo(¢, 1))

Disjunction ¢ V ¢ =Vp ((¢ - p) — (¢ —» p) — p) (where
p & fo(e,9))

Negation —¢p = ¢ — L

Bi-implication ¢ <+ = (¢ —) A (¢ —)

Existential quantification 3 p (¢p) =Vq (Vp (¢ —q) — q)
(where g & fo(¢,p))

A 2]PC proot

Writing p A g as an abbreviation for Vr ((p - g —r) — r), the
sequent

{}EVp (Ve ((pNg)—-p))
is provable in 2IPC:

A 2]PC proot

Writing p A g as an abbreviation for V¥ ((p —» g —r) —r), the
sequent

{}EVp (Ve ((pNg)—-p))
is provable in 2IPC:

(Id)
(1) {pNapqttp (1d)

n) PALPrEacp ey APAGEEVE((pog o) —r)

(LE) PN poa-p irANgrFE(p=q-49)~4q
(1) \PAATEP
viy U pra) —p
iy I EValpra) = p)
Ve (Va((pAg)-p))

Curry-Howard correspondence

A T P

- —) ! f
O Y T LI
vy | 1 L ot

Logic > Type system

Curry-Howard correspondence

T

:..—:I — 'l- f,.-- '\: J L .I / _
) | I
A k il i

o et { Lt

Logic Type system

7

propositions ¢ <> types T

Curry-Howard correspondence

Type system

propositions ¢ types T

proofs p expressions M

r T T 7

'p is a proof of ¢’ ‘M is an expression of type T’

Mapping 2IPC proofs to PLC expressions

(Id) ®, ¢ F ¢

@, ¢+ ¢
¢—¢

O
Ol

(=E) —5F ¢’

Ol

D @ = Vp(¢)

@+ Vp ()

(VE) D+ ¢lp'/p]

(id)x:P,x:pFHx:¢
X:®,x:p-M: ¢’

(fn) X:®PHAx:¢p (M) : ¢p— ¢’

X:®-Mi:¢p— ¢
X: P M: ¢

(app) X:®+ M M, : ¢’
X:®P-M: ¢

(8en) o Ay (M) : Vp ()

(spec) X:®+-M:Vp(¢)

X:®+-Mo':pldp'/p]

The proof of the 2IPC sequent

{}=Vp(Vg((pAg)-p))

given before is transformed by the mapping of 2IPC proofs to PLC
expressions to

{}FAp,g(Az:pAq(zp(Ax:p,y:q(x))))
:Vp (Vg ((pNq)-p))

with typing derivation:

(id)

tpAg,x:p,y:q}Hx:
{z:pNqx:py:qtx:p (id)

U e pAgxpIF Ay a () a—p {z:pnapFz:Vr((pog-r) 1)

(fn) (spec)

(app)

{z:pAqtFAx:ipy:q(x):p—og-p {z:pANq}bzp:(p—>q-p)-p
(fn) {z:pAq}ttzp(Ax:py:q(x)):p
{}FAz:pAqzp(Ax:p,y:q(x))): (pAg)—p
{}FAq(Az:pAq(zp(Ax:p,y:q(x)))) :Vq((pAq) - p)
{YFApg(Az:pAq(zp(Ax:p,y:q(x)))) :Vp,q((pAq) - p)

(gen)
(gen)

Curry-Howard correspondence

Logic

propositions ¢
proofs p

'p is a proof of ¢’

Type system

types T
expressions M

‘M is an expression of type T’

simplification of proofs

K B

reduction of expressions

Proof simplification <+ Expression reduction

(-1) <I>,qb:|—1/) : N %:d),x:g;bl—Mztp

Cp 299 oF¢ Ti®FAv:p(M):poyp x:®OFN:g

Dy X:®F (Ax:¢p(M))N: ¢

Proof simplification <+ Expression reduction

: ¢,¢:|_ll, 5 . f:d),x:q.)l—MztlJ :
(_>E)q)|_¢_>¢ b+ ¢ X:OHAx:p(M):p— 0 Xx:®F-N:¢
(—~E) Dy X: P (Ax:p(M))N: ¢

‘ beta-reduce expression

E:d),x:())I—Mztp E:CI)I—.N:(})
Xx:®F M[N/x]: ¢

(subst)

The rule (subst) for PLC is admissible: if its hypotheses are valid PLC
typing judgements, then so is its conclusion.

Proof simplification <+ Expression reduction

: ¢,¢:|_ll, 5 . f:d),x:q.)l—MztlJ :
(_>E)q)|_¢_>¢ b+ ¢ X:OHAx:p(M):p— 0 Xx:®F-N:¢
(—~E) Dy X: P (Ax:p(M))N: ¢

‘ beta-reduce expression

S 6Fp BFp — TidrigFMig T OEN g
® -y Xx:®F M[N/x]: ¢

(cut) (subst)

The rule (subst) for PLC is admissible: if its hypotheses are valid PLC
typing judgements, then so is its conclusion.

Proof simplification <+ Expression reduction

I <I>,qb.|—1/) : N %:d),x:g;bl—Mztp :
((:E;d)l—q)—m[) Ol X:OHAx:p(M):p— 0 X:PHN:¢
Dy X:®F (Ax:¢p(M))N: ¢
simplify proof‘ ‘ beta-reduce expression

S 6Fp BFp — TidrigFMig T OEN g
® -y Xx:®F M[N/x]: ¢

(cut) (subst)

The rule (subst) for PLC is admissible: if its hypotheses are valid PLC
typing judgements, then so is its conclusion.

Hence, the rule (cut) is admissible for 2IPC.

Type-inference versus proof search

Type-inference: given I' and M, is there a type T such that
I'EM: 17

(For PLC/2IPC this is decidable.)

Type-inference versus proof search

Type-inference: given I' and M, is there a type T such that
I'EM: 17

(For PLC/2IPC this is decidable.)

Proof-search: given I' and ¢, is there a proof term M such that
I'-M: ¢?

(For PLC/2IPC this is undecidable.)

