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Type-inference versus proof search

Type-inference: given I' and M, is there a type T such that
I'EM: 17

(For PLC/2IPC this is decidable.)

Proof-search: given I' and ¢, is there a proof term M such that
I'EM: ¢?

(For PLC/2IPC this is undecidable.)
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Curry-Howard correspondence

Logic > Type system
propositions ¢ > types T
proofs p > expressions M
‘p is a proof of ¢’ > ‘M is an expression of type T’
siﬁmplification of proofs > reduction of expressions
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Pure Type Systems — typing rules

if (s1,s2) € A

axiom
( ) O S1: 8>

I'-A:s
I''x:AFx: A

(start) if x & dom(T')

I'-FM:A TFB:s .
(weaken) [ x:BFM:A if x & dom(T')
(conv) I' - Mrzlz_‘lM :I'B|— B:s if A=p B

I'HA:s7 I,x:AFB:s,

(pl‘Od) if (Slr S2, 53) ER

'FTIx: A(B):s;3
[Lx:AFM:B TFIIx:A(B):s
T'HFAx:A(M):1Ix: A (B)
IFM:TIx:A(B) THEN:A
[~ MN : B[N/x]

(A, B, M, N range over pseudoterms, s, s, 2,53 over sort symbols)

(abs)

(app)



Calculus of Constructions

is the Pure Type System AC, where C = (S¢, Ac, Rc) is the
PTS specification with

Sc é{Prop, Set} (Prop = a sort of propositions, Set = a sort of types)
Ac é{ (Prop, Set)} (Prop is one of the types)
Rc ={(Prop, Prop,Prop), (Set, Prop, Prop),
(Prop, Set, Set), (Set, Set, Set) }
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Calculus of Constructions

is the Pure Type System AC, where C = (S¢, Ac, Rc) is the
PTS specification with

Sc ={Prop, Set}

Ac 2{(Prop,Set) }

Rc 2{(Prop,Prop,Prop)?, (Set, Prop, Prop)?,
(Prop, Set, Set)?, (Set, Set, Set)*}

1. Prop has implications, ¢ —» ¢ = Ilx : ¢ () (where ¢, ¢ : Prop and
x & fo(q)).
2. Prop has universal quantifications over elements of a type, Ilx: A (¢p(x))

(where A :Set and x: A F ¢(x) : Prop).
N.B. A might be Prop (A2 C AC).

3. Set has types of function dependent on proofs of a proposition,
IIx : p (A(x)) (where p : Prop and x: p = A(x) : Set).

4. Set has dependent function types, IIx : A (B(x)) (where A : Set and
x: Al B(x):Set).
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Some general properties of AC

It extends both A2 (PLC) and Aw (Fy).

AC is strongly normalizing.

Type-checking and typeability are decidable.

AC is logically consistent (relative to the usual foundations of
classical mathematics), that is, there is no pseudo-term t
satisfying & =t : IIp : Prop (p).

Indeed there is no proof of LEM (IIp : Prop (—p V p)).



Logical operations definable in%l@ >\
C

> Truth T =Vp (p - p)

> Falsity 1. 2 Vp (p)

» Conjunction p Ap =Vp ((¢p — P —p) - p)
(where p & fo(¢, )

» Disjunction Vi =Vp ((¢ — p) —» (¢ —» p) — p) (where
p & fo(,¢))

> Negation —gp = ¢p — L

> Bi-implication ¢ <> = (p—=¢P)N (Y~ ¢)

P—ac\/iu\\i;‘p(qj ULE}’F/lP)
Vp(w):ﬂ?'?mp(@



Leibniz equality in AC

Gottfried Wilhelm Leibniz (1646-1716),

identity of indiscernibles:

duo quaedam communes proprietates eorum nequaquam possit
(two distinct things cannot have all their properties in common).
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Leibniz equality in AC

Gottfried Wilhelm Leibniz (1646-1716),

identity of indiscernibles:

duo quaedam communes proprietates eorum nequaquam possit
(two distinct things cannot have all their properties in common).

Given I' H A : Set in AC, we can define

Eqq = Ax,y: A(IIP: A - Prop (Px <+ Py))

satisfying I' - Eq4 : A — A — Prop and giving ¢ well-behaved (but
not extensional) equality predicate for ele s of type A.

p>Qq £: (P—‘b Q)A(o\ﬁp )
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Extensionality

Functional extensionality:

FunExta B 2 If,g: A- B(
(IIx : A (Eqp (fx) (§%))) ~Equ_p fg)

If I' = A,B:Set in AC, then I' = Ext 4 g : Prop is derivable, but
for some A,B there does not exist a pseudo-term t for which
I' = t: Extygp is derivable.

Propositional extensionality:

PropExt = Ip,q : Prop ((p <> ¢q) - EQprop P q)

O = PropExt : Prop is derivable in AC, but there does not exist a
pseudo-term t for which ¢ = t : PropExt is derivable.
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Propositional extensionality: ( HOM&O?HTy?t—E\MU\J

PropExt = IIp,q : Prop ((p < q) EQprop P q)

O = PropExt : Prop is derivable in AC, but there does not exist a
pseudo-term t for which ¢ = t : PropExt is derivable.



