F%Qymmqﬂdc
Referenwe "Types

(82, p25]

ML types and expressions for mutable

references
T =
| unit unit type
| Tref reference type
M == ...

() unit value
ref M reference creation
'M dereference
M :=M assignment

Midi-ML's extra typing rules

(unit) [() :unit

Midi-ML's extra typing rules

(unit)

[() :unit

I'EFM:t

(ref) I'=ref M: Tref

Midi-ML’s extra typing rules

(unit)

[() :unit

I'-M:t
I'=ref M: Tref

(ref)

I'=M: tref
I'EM:t

(get)

Midi-ML’s extra typing rules

(unit) [() :unit

I'-M:t
I'=ref M: Tref

(ref)

I'=M: tref
I'EM:t

(get)

I"I—Mlz’cref r|—M2:T
I' = Mq:=M> : unit

(set)

Example

The expression

letr =ref Ax (x) in
letu = (r:=Ax" (ref!1x’)) in

(1) ()

has type unit.

Example

Ve (o2 e

The expression\x

Lot =lref Ax (x))in
letu = (r:=Ax" (ref!1x’)) in

()0

has type unit.

Example

[V (o0 o)

The expression\x

let r =lref Ax (x))in

letu = (r:=Ax"(ref !1x’)) in
(1) ()

has type unit.

- prfo Pref

Example

(Ve (G5 cyef

The expression\x

Lot =lref Ax (x))in

letu = (1:=Ax" (ref!1x’)) in
(1) ()
has type unit. @\i(@% K Psrd}) “Q/Wﬂ]

Example

(Ve (G5 cyef

The expression\y

Lot =lref Ax (x))in

letu = (1:=Ax" (ref!1x’)) in
(1) ()
has type unit. @\ (@Ur K Psrdf) \@1{]

Example

T = Vot (2 e0)ef)

The expression
Lot r =[ref Ax (x))in

letu = (1:=Ax" (ref!1x’)) in

() ()
has type unit. @\w (@r% N Pﬂ#) @{L

o> (pnk - LAt) rQ/F

Formal type systems

» Constitute the precise, mathematical characterisation of
informal type systems (such as occur in the manuals of most

typed languages.)

» Basis for type soundness theorems: “any well-typed program
cannot produce run-time errors (of some specified kind).”

» Can decouple specification of typing aspects of a language
from algorithmic concerns: the formal type system can define
typing independently of particular implementations of

type-checking algorithms.

Midi-ML transition system

Small-step transition relations

(M,s) — (M’,s")
(M, s) — FAIL

Midi-ML transition system

Small-step transition relations

(M,s) — (M’,s")
(M, s) — FAIL

where
» M, M’ range over Midi-ML expressions

» s, s’ range over states = finite functions
s={x1— Vi,...,x, — V, } mapping variables x; to values V;:

Viu=x|Ax (M) | () | true | false |nil | V=V

Midi-ML transition system

Small-step transition relations

(M,s) — (M’,s")
(M, s) — FAIL

where
» M, M’ range over Midi-ML expressions

» s, s’ range over states = finite functions
s={x1— Vq,...,x, — V, } mapping variables x; to values V;:

Viu=x|Ax (M) | () | true | false |nil | V=V

> configurations (M, s) are required to satisfy that the free variables
of expression M are in the domain of definition of the state s

» symbol FAIL represents a run-time error

Midi-ML transition system

Small-step transition relations

(M,s) — (M’,s")
(M, s) — FAIL

where

» M, M’ range over Midi-ML expressions

» s, s’ range over states = finite functions
s={x1— Vq,...,x, — V, } mapping variables x; to values V;:

Viu=x|Ax (M) | () | true | false |nil | V=V

> configurations (M, s) are required to satisfy that the free variables
of expression M are in the domain of definition of the state s

» symbol FAIL represents a run-time error

are inductively defined by syntax-directed rules. . .

Midi-ML transitions involving references

(Ix,s) — (s(x),s) if x € dom(s)

where V ranges over values:

Vi=x|Ax(M) | () | true | false |nil | V=V

Midi-ML transitions involving references

(Ix,s) — (s(x),s) if x € dom(s)

(1V,s) — FAIL if V not a variable

where V ranges over values:

Vi=x|Ax(M) | () | true | false |nil | V=V

Midi-ML transitions involving references

(Ix,s) — (s(x),s) if x € dom(s)
(1V,s) — FAIL if V not a variable

(x:=V',s) — ((),s[x — V']

where V ranges over values:

Vi=x|Ax(M) | () | true | false |nil | V=V

Midi-ML transitions involving references

(Ix,s) — (s(x),s) if x € dom(s)
(1V,s) — FAIL if V not a variable
(x:=V',s) — ((),s[x — V']

(V:=V’',s) — FAIL if V not a variable

where V ranges over values:

Vi=x|Ax(M) | () | true | false |nil | V=V

Midi-ML transitions involving references

(Ix,s) — (s(x),s) if x € dom(s)
(1V,s) — FAIL if V not a variable
(x:=V',s) — ((),s[x — V']
(V:=V’',s) — FAIL if V not a variable

(ref V,s) — (x,s[x — V]) if x & dom(s)
where V ranges over values:

Vi=x|Ax(M) | () | true | false |nil | V=V

</V\)§>——a <N\7,SI>
CEW) - CEMT],81)

<N\)S>—a TA\L

<E[M), D FAIL

W £ ranges over evalmakm centonts -
E:-"—‘ - “S&BL:EM/\/\‘TBFE ‘ IZ ‘Z::/\/\I\/:::g‘,,_

letr =ref Ax (x) in
<letu = (r:=Ax" (ref!x’)) in (r)(), {}>

—* (letu=(r:=Ax" (ref ') in (r) (), {r — Ax (x)})

letr =ref Ax (x) in
<letu = (r:=Ax" (ref!x’)) in (r)(), {}>

—* (letu=(r:=Ax" (ref ') in (r) (), {r — Ax (x)})

—* A, {r— Ax (refx')})

letr =ref Ax (x) in
<letu = (r:=Ax" (ref!x’)) in (r)(), {}>

—* (letu=(r:=Ax" (ref ') in (r) (), {r — Ax (x)})
—=* (")), {r— Ax (refIx')})

— (Ax" (zef X)) (), {r — Ax' (ref Ix')})

letr =ref Ax (x) in
<letu = (r:=Ax" (ref!x’)) in (r)(), {}>

—* (letu=(r:=Ax" (ref ') in (r) (), {r — Ax (x)})
—* (")), {r— Ax' (ref Ix')})
— (A (ref ') (), {r — Ax' (ref Ix')})

— (ref!(), {r— Ax' (refx’)})

letr =ref Ax (x) in
<letu = (r:=Ax" (ref!x’)) in (r)(), {}>

—* (letu=(r:=Ax" (ref ') in (r) (), {r — Ax (x)})
= {(1)(), {r > AX (e 1x)})

& (Ax (ret 1) (), {r > A¥ (vef I¥')})

— (ref!(), {r — Ax' (refx')})

— FAIL

Example

T = Vot (2 e0)ef)

The expression
Lot r =[ref Ax (x))in

letu = (1:=Ax" (ref!1x’)) in

() ()
has type unit. @\w (@r% N Pﬂ#) @{L

o> (pnk - LAt) rQ/F

Value-restricted typing rule for 1let-expressions

1"I—M1:71 r,x:VA(Tl)FMZ:Tz

let T
(letv) I'Fletx=M;inM, : T ()

Value-restricted typing rule for 1let-expressions

1"I—M1:71 r,x:VA(Tl)FMZ:Tz ('l')
I'Fletx=M;inM, : T

(letv)

(t) provided x & dom(T') and

Value-restricted typing rule for 1let-expressions

1"I—M1:71 r,x:VA(Tl)FMZ:Tz ('l')
I'Fletx=M;inM, : T

(letv)

(t) provided x & dom(T') and

A = {} if My is not a value
) fto(t1) — fto(T) if My is a value

Recall that values are given by
Viu=x|Ax (M) | () | true | false |nil | V=V

Example

ot (Lev) e, s %xis M?Q SUNML
O SV Y ((ao) rf)

The expression

let(r)= ref Ax (x) in
letu = (r:=Ax" (ref!1x’)) in

()0

has type unit.

Example

vt (lekv) AVTS T A oK %&5 Mp% S U~
S ANI(CEIOLEY
The expression

let(r)= ref Ax (x) in
letu = (r:=Ax’ (ref 1x’)) in

())
has type unit. }\ o/ P (@fdl = B"bF) @F

/% (wnit - unih) et

Type soundness for
Midi-ML with the value restriction

For any closed Midi-ML expression M, if there is some type

scheme ¢ for which
FM:o

is provable in the value-restricted type system

(var >) + (bool) + (if) + (nil) 4+ (cons) + (case) + (fn) +
(app) + (unit) + (ref) + (get) + (set) + (letv)

then evaluation of M does not fail,

Type soundness for
Midi-ML with the value restriction

For any closed Midi-ML expression M, if there is some type

scheme ¢ for which
FM:o

is provable in the value-restricted type system

(var >) + (bool) + (if) + (nil) 4+ (cons) + (case) + (fn) +
(app) + (unit) + (ref) + (get) + (set) + (letv)

then evaluation of M does not fail,
i.e. there is no sequence of transitions of the form

(M, {}) — --- — FAIL

for the transition system — defined in Figure 4
(where { } denotes the empty state).

In Midi-ML's value-restricted type system, some expressions that
were typeable using (let) become untypeable using (letv).

In Midi-ML's value-restricted type system, some expressions that
were typeable using (let) become untypeable using (letv).

For example (exercise):

let f = (Ax(x)) Ay (y) in (f true) :: (fnil)

In Midi-ML's value-restricted type system, some expressions that
were typeable using (let) become untypeable using (letv).

For example (exercise):

let f = (Ax(x)) Ay (y) in (f true) :: (fnil)

But one can often! use #-expansion

replace M by Ax (M x) (where x & fo(M))

or B-reduction
replace (Ax (M)) N by M[N/x]

to get around the problem.

(1 These transformations do not always preserve meaning [contextual
equivalence].)

