

ML types and expressions for mutable
references

t ::= . . .

| unit unit type
| t ref reference type

M ::= . . .

| () unit value
| ref M reference creation
| !M dereference
| M := M assignment

Midi-ML’s extra typing rules

(unit)
G ` () : unit

(ref)
G ` M : t

G ` ref M : t ref

(get)
G ` M : t ref

G ` !M : t

(set)
G ` M

1

: t ref G ` M
2

: t

G ` M
1

:= M
2

: unit

Midi-ML’s extra typing rules

(unit)
G ` () : unit

(ref)
G ` M : t

G ` ref M : t ref

(get)
G ` M : t ref

G ` !M : t

(set)
G ` M

1

: t ref G ` M
2

: t

G ` M
1

:= M
2

: unit

Midi-ML’s extra typing rules

(unit)
G ` () : unit

(ref)
G ` M : t

G ` ref M : t ref

(get)
G ` M : t ref

G ` !M : t

(set)
G ` M

1

: t ref G ` M
2

: t

G ` M
1

:= M
2

: unit

Midi-ML’s extra typing rules

(unit)
G ` () : unit

(ref)
G ` M : t

G ` ref M : t ref

(get)
G ` M : t ref

G ` !M : t

(set)
G ` M

1

: t ref G ` M
2

: t

G ` M
1

:= M
2

: unit

Example

The expression

let r = ref lx (x) in
let u = (r := lx0 (ref !x0)) in
(!r)()

has type unit.

Example

The expression

let r = ref lx (x) in
let u = (r := lx0 (ref !x0)) in
(!r)()

has type unit.

Example

The expression

let r = ref lx (x) in
let u = (r := lx0 (ref !x0)) in
(!r)()

has type unit.

Example

The expression

let r = ref lx (x) in
let u = (r := lx0 (ref !x0)) in
(!r)()

has type unit.

Example

The expression

let r = ref lx (x) in
let u = (r := lx0 (ref !x0)) in
(!r)()

has type unit.

Example

The expression

let r = ref lx (x) in
let u = (r := lx0 (ref !x0)) in
(!r)()

has type unit.

Formal type systems

I Constitute the precise, mathematical characterisation of
informal type systems (such as occur in the manuals of most
typed languages.)

I Basis for type soundness theorems: “any well-typed program
cannot produce run-time errors (of some specified kind).”

I Can decouple specification of typing aspects of a language
from algorithmic concerns: the formal type system can define
typing independently of particular implementations of
type-checking algorithms.

Midi-ML transition system

Small-step transition relations

hM, si ! hM0
, s0i

hM, si ! FAIL

where

I M, M0 range over Midi-ML expressions
I s, s0 range over states = finite functions

s = {x
1

7! V
1

, . . . , xn 7! Vn} mapping variables xi to values Vi:

V ::= x | lx (M) | () | true | false | nil | V :: V

I configurations hM, si are required to satisfy that the free variables
of expression M are in the domain of definition of the state s

I symbol FAIL represents a run-time error

are inductively defined by syntax-directed rules. . .

Midi-ML transition system

Small-step transition relations

hM, si ! hM0
, s0i

hM, si ! FAIL

where
I M, M0 range over Midi-ML expressions
I s, s0 range over states = finite functions

s = {x
1

7! V
1

, . . . , xn 7! Vn} mapping variables xi to values Vi:

V ::= x | lx (M) | () | true | false | nil | V :: V

I configurations hM, si are required to satisfy that the free variables
of expression M are in the domain of definition of the state s

I symbol FAIL represents a run-time error

are inductively defined by syntax-directed rules. . .

Midi-ML transition system

Small-step transition relations

hM, si ! hM0
, s0i

hM, si ! FAIL

where
I M, M0 range over Midi-ML expressions
I s, s0 range over states = finite functions

s = {x
1

7! V
1

, . . . , xn 7! Vn} mapping variables xi to values Vi:

V ::= x | lx (M) | () | true | false | nil | V :: V

I configurations hM, si are required to satisfy that the free variables
of expression M are in the domain of definition of the state s

I symbol FAIL represents a run-time error

are inductively defined by syntax-directed rules. . .

Midi-ML transition system

Small-step transition relations

hM, si ! hM0
, s0i

hM, si ! FAIL

where
I M, M0 range over Midi-ML expressions
I s, s0 range over states = finite functions

s = {x
1

7! V
1

, . . . , xn 7! Vn} mapping variables xi to values Vi:

V ::= x | lx (M) | () | true | false | nil | V :: V

I configurations hM, si are required to satisfy that the free variables
of expression M are in the domain of definition of the state s

I symbol FAIL represents a run-time error

are inductively defined by syntax-directed rules. . .

Midi-ML transitions involving references

h!x, si ! hs(x), si if x 2 dom(s)

h!V , si ! FAIL if V not a variable

hx := V 0
, si ! h(), s[x 7! V 0]i

hV := V 0
, si ! FAIL if V not a variable

href V , si ! hx, s[x 7! V]i if x /2 dom(s)

where V ranges over values:

V ::= x | lx (M) | () | true | false | nil | V :: V

Midi-ML transitions involving references

h!x, si ! hs(x), si if x 2 dom(s)

h!V , si ! FAIL if V not a variable

hx := V 0
, si ! h(), s[x 7! V 0]i

hV := V 0
, si ! FAIL if V not a variable

href V , si ! hx, s[x 7! V]i if x /2 dom(s)

where V ranges over values:

V ::= x | lx (M) | () | true | false | nil | V :: V

Midi-ML transitions involving references

h!x, si ! hs(x), si if x 2 dom(s)

h!V , si ! FAIL if V not a variable

hx := V 0
, si ! h(), s[x 7! V 0]i

hV := V 0
, si ! FAIL if V not a variable

href V , si ! hx, s[x 7! V]i if x /2 dom(s)

where V ranges over values:

V ::= x | lx (M) | () | true | false | nil | V :: V

Midi-ML transitions involving references

h!x, si ! hs(x), si if x 2 dom(s)

h!V , si ! FAIL if V not a variable

hx := V 0
, si ! h(), s[x 7! V 0]i

hV := V 0
, si ! FAIL if V not a variable

href V , si ! hx, s[x 7! V]i if x /2 dom(s)

where V ranges over values:

V ::= x | lx (M) | () | true | false | nil | V :: V

Midi-ML transitions involving references

h!x, si ! hs(x), si if x 2 dom(s)

h!V , si ! FAIL if V not a variable

hx := V 0
, si ! h(), s[x 7! V 0]i

hV := V 0
, si ! FAIL if V not a variable

href V , si ! hx, s[x 7! V]i if x /2 dom(s)

where V ranges over values:

V ::= x | lx (M) | () | true | false | nil | V :: V

*let r = ref lx (x) in
let u = (r := lx0 (ref !x0)) in (!r)() , {}

+

!⇤ hlet u = (r := lx0 (ref !x0)) in (!r)() , {r 7! lx (x)}i

!⇤ h(!r)() , {r 7! lx0 (ref !x0)}i

! hlx0 (ref !x0) () , {r 7! lx0 (ref !x0)}i

! href !() , {r 7! lx0 (ref !x0)}i

! FAIL

*let r = ref lx (x) in
let u = (r := lx0 (ref !x0)) in (!r)() , {}

+

!⇤ hlet u = (r := lx0 (ref !x0)) in (!r)() , {r 7! lx (x)}i

!⇤ h(!r)() , {r 7! lx0 (ref !x0)}i

! hlx0 (ref !x0) () , {r 7! lx0 (ref !x0)}i

! href !() , {r 7! lx0 (ref !x0)}i

! FAIL

*let r = ref lx (x) in
let u = (r := lx0 (ref !x0)) in (!r)() , {}

+

!⇤ hlet u = (r := lx0 (ref !x0)) in (!r)() , {r 7! lx (x)}i

!⇤ h(!r)() , {r 7! lx0 (ref !x0)}i

! hlx0 (ref !x0) () , {r 7! lx0 (ref !x0)}i

! href !() , {r 7! lx0 (ref !x0)}i

! FAIL

*let r = ref lx (x) in
let u = (r := lx0 (ref !x0)) in (!r)() , {}

+

!⇤ hlet u = (r := lx0 (ref !x0)) in (!r)() , {r 7! lx (x)}i

!⇤ h(!r)() , {r 7! lx0 (ref !x0)}i

! hlx0 (ref !x0) () , {r 7! lx0 (ref !x0)}i

! href !() , {r 7! lx0 (ref !x0)}i

! FAIL

*let r = ref lx (x) in
let u = (r := lx0 (ref !x0)) in (!r)() , {}

+

!⇤ hlet u = (r := lx0 (ref !x0)) in (!r)() , {r 7! lx (x)}i

!⇤ h(!r)() , {r 7! lx0 (ref !x0)}i

! hlx0 (ref !x0) () , {r 7! lx0 (ref !x0)}i

! href !() , {r 7! lx0 (ref !x0)}i

! FAIL

Example

The expression

let r = ref lx (x) in
let u = (r := lx0 (ref !x0)) in
(!r)()

has type unit.

Value-restricted typing rule for let-expressions

(letv)
G ` M

1

: t
1

G, x : 8A (t
1

) ` M
2

: t
2

G ` let x = M
1

in M
2

: t
2

(†)

(†) provided x /2 dom(G) and

A =

(
{ } if M

1

is not a value
ftv(t

1

)� ftv(G) if M
1

is a value

Recall that values are given by
V ::= x | lx (M) | () | true | false | nil | V :: V

Value-restricted typing rule for let-expressions

(letv)
G ` M

1

: t
1

G, x : 8A (t
1

) ` M
2

: t
2

G ` let x = M
1

in M
2

: t
2

(†)

(†) provided x /2 dom(G) and

A =

(
{ } if M

1

is not a value
ftv(t

1

)� ftv(G) if M
1

is a value

Recall that values are given by
V ::= x | lx (M) | () | true | false | nil | V :: V

Value-restricted typing rule for let-expressions

(letv)
G ` M

1

: t
1

G, x : 8A (t
1

) ` M
2

: t
2

G ` let x = M
1

in M
2

: t
2

(†)

(†) provided x /2 dom(G) and

A =

(
{ } if M

1

is not a value
ftv(t

1

)� ftv(G) if M
1

is a value

Recall that values are given by
V ::= x | lx (M) | () | true | false | nil | V :: V

Example

The expression

let r = ref lx (x) in
let u = (r := lx0 (ref !x0)) in
(!r)()

has type unit.

Example

The expression

let r = ref lx (x) in
let u = (r := lx0 (ref !x0)) in
(!r)()

has type unit.

Type soundness for
Midi-ML with the value restriction

For any closed Midi-ML expression M, if there is some type
scheme s for which

` M : s

is provable in the value-restricted type system
(var �) + (bool) + (if) + (nil) + (cons) + (case) + (fn) +

(app) + (unit) + (ref) + (get) + (set) + (letv)

then evaluation of M does not fail,

i.e. there is no sequence of transitions of the form

hM,{ }i ! · · · ! FAIL

for the transition system ! defined in Figure 4
(where { } denotes the empty state).

Type soundness for
Midi-ML with the value restriction

For any closed Midi-ML expression M, if there is some type
scheme s for which

` M : s

is provable in the value-restricted type system
(var �) + (bool) + (if) + (nil) + (cons) + (case) + (fn) +

(app) + (unit) + (ref) + (get) + (set) + (letv)

then evaluation of M does not fail,
i.e. there is no sequence of transitions of the form

hM,{ }i ! · · · ! FAIL

for the transition system ! defined in Figure 4
(where { } denotes the empty state).

In Midi-ML’s value-restricted type system, some expressions that
were typeable using (let) become untypeable using (letv).

For example (exercise):

let f = (lx (x)) ly (y) in (f true) :: (f nil)

But one can often1 use h-expansion
replace M by lx (M x) (where x /2 fv(M))

or b-reduction
replace (lx (M)) N by M[N/x]

to get around the problem.

(1 These transformations do not always preserve meaning [contextual

equivalence].)

In Midi-ML’s value-restricted type system, some expressions that
were typeable using (let) become untypeable using (letv).

For example (exercise):

let f = (lx (x)) ly (y) in (f true) :: (f nil)

But one can often1 use h-expansion
replace M by lx (M x) (where x /2 fv(M))

or b-reduction
replace (lx (M)) N by M[N/x]

to get around the problem.

(1 These transformations do not always preserve meaning [contextual

equivalence].)

In Midi-ML’s value-restricted type system, some expressions that
were typeable using (let) become untypeable using (letv).

For example (exercise):

let f = (lx (x)) ly (y) in (f true) :: (f nil)

But one can often1 use h-expansion
replace M by lx (M x) (where x /2 fv(M))

or b-reduction
replace (lx (M)) N by M[N/x]

to get around the problem.

(1 These transformations do not always preserve meaning [contextual

equivalence].)

