Concurrent systems

Lecture 3: CCR, monitors, and
concurrency in practice

Dr Robert N. M. Watson

Reminder from last time

* Implementing mutual exclusion: hardware
support for atomicity and inter-processor
interrupts

* Semaphores for mutual exclusion, condition
synchronisation, and resource allocation

* Two-party and generalised producer-
consumer relationships

1/14/17

From last time: Semaphores summary

* Powerful abstraction for implementing
concurrency control:

— mutual exclusion & condition synchronization
* Better than read-and-set()... but correct use
requires considerable care
— e.g. forget to wait(), can corrupt data
— e.g. forget to signal(), can lead to infinite delay
— generally get more complex as add more semaphores

e Used internally in some OSes and libraries, but

say what to do, rather than describe programming goals

This time

Multi-Reader Single-Writer (MRSW) locks

— Starvation and fairness

Alternatives to semaphores/locks:

— Conditional critical regions (CCRs)

— Monitors

— Condition variables

— Signal-and-wait vs. signal-and-continue semantics
* Concurrency primitives in practice

* Concurrency primitives wrap-up

1/14/17

Multiple-Readers Single-Writer (MRSW)

* Another common synchronisation paradigm is MRSW

— Shared resource accessed by a set of threads
* e.g. cached set of DNS results

— Safe for many threads to read simultaneously, but a writer
(updating) must have exclusive access

— MRSW locks have read lock and write lock operations
— Mutual exclusion vs. data stability

* Simple implementation uses a single semaphore as a

mutual exclusion lock for write access

— Any writer must wait to acquire this

— First reader also acquires this; last reader releases it
— Protect reader counts using another semaphore

Simplest MRSW solution

int nr = 0;
rsem = new Semaphore(l);
wSem = new Semaphore(l);

// number of readers
// protects access to nr
// protects writes to data

// a writer thread
wait(wSem) ;

. perform update to data
signal(wSem) ;

Code for writer is simple...

.. but reader case more complex: must
track number of readers, and acquire or
release overall lock as appropriate

// a reader thread

wait(rSem);

nr = nr + 1;

if (nr == 1) // first in
wait(wSem);

signal(rsem) ;

. read data

wait(rSem);

nr = nr - 1;

if (nr == 0) // last out
signal (wSem) ;

signal(rsem);

1/14/17

Simplest MRSW solution

* Solution on previous slide is “correct”

— Only one writer will be able to access data
structure, but — providing there is no writer —any
number of readers can access it

* However writers can starve

— If readers continue to arrive, a writer might wait
forever (since readers will not release wSem)

— Would be fairer if a writer only had to wait for all
current readers to exit...

— Can implement this with an additional semaphore

A fairer MRSW solution

int nr = 0; // number of readers
rsem = new Semaphore(l); // protects access to nr
wSem = new Semaphore(l); // protects writes to data
turn = new Semaphore(l); // write is awaiting a turn
// a reader thread
‘wait(turn);
A”,,,::::”' signal (turn);
wait(rSem);
nr = nr + 1;
if (nr == 1) // first in
wait(wSem) ;
signal(rsem) ;
V/ a writer thread .. read data
wait(turn); wait(rsem);
wait(wSem); nr = nr - 1;
. perform update to data if (nr == 0) // last out
signal(turn); signal(wsem);
signal(wSem); signal(rsem);

1/14/17

Conditional Critical Regions

Implementing synchronisation with locks is difficult

* Only the developer knows what data is protected by

which locks

One early (1970s) effort to address this problem was CCRs

— Variables can be explicitly declared as ‘shared’
— Code can be tagged as using those variables, e.g.

shared int A, B, C;

region A, B {
await(/* arbitrary condition */);
// critical code using A and B

}

Compiler automatically declares and manages underlying

primitives for mutual exclusion or synchronization
— e.g. wait/signal, read/await/advance, ...
Easier for programmer (c/f previous implementations)

9

CCR example: Producer-Consumer

shared int buffer[N];
shared int in = 0; shared int out = 0;

// producer thread

// consumer thread

while(true) { while(true) {

}

item = produce();
region in, out, buffer {

await((in-out) < N); item = buffer[out%N];
buffer[in % N] = item; out = out + 1;
in = in + 1; }
} consume (item) ;
1

Explicit (scoped) declaration of critical sections
— automatically acquire mutual exclusion lock on region entry
Powerful await(): any evaluable predicate

region in, out, buffer {
await((in-out) > 0);

10

1/14/17

CCR pros and cons

* On the surface seems like a definite step up

— Programmer focuses on variables to be protected,
compiler generates appropriate semaphores (etc)

— Compiler can also check that shared variables are
never accessed outside a CCR

— (still rely on programmer annotating correctly)

* But await(<expr>) is problematic...
— What to do if the (arbitrary) <expr> is not true?
— very difficult to work out when it becomes true?

— Solution was to leave region & try to re-enter: this is
busy waiting, which is very inefficient...

11

Monitors

* Monitors are similar to CCRs (implicit mutual
exclusion), but modify them in two ways

— Waiting is limited to explicit condition variables

— All related routines are combined together, along with
initialization code, in a single construct

* |dea is that only one thread can ever be executing
‘within’ the monitor

— If a thread calls a monitor method, it will block (enqueue)
if another thread is holding the monitor

— Hence all methods within the monitor can proceed on the
basis that mutual exclusion has been ensured

 Java’s synchronized primitive implements monitors

12

1/14/17

Example Monitor syntax

All related data and
methods kept together

monitor <foo> {

// declarations of shared variables
Shared variables only
// set of procedures (or methods) accessible from within
procedure P1(...) { ... } monitor methods
procedure P2(...) { ... }
. Invoking any procedure
procedure PN(C...) { ... } causes an [implicit] mutual
exclusion lock to be taken
{

}

/* monitor initialization code */

} Shared variables can be
initialized here

13

Condition Variables

* Mutual exclusion not always sufficient

— Condition synchronisation -- e.g., wait for a condition to occur
* Monitors allow condition variables

— Explicitly declared and managed by programmer

— NB: No integrated counter — not a stateful semaphore!

— Support three operations:

wait(cv) {
suspend thread and add it to the queue
for cv; release monitor lock

}
signal(cv) {

if any threads queued on cv, wake one;
}

broadcast(cv) {
wake all threads queued on cv;

} 14

1/14/17

Monitor Producer-Consumer solution?

monitor ProducercConsumer {
int in, out, buf[N];
condition notfull = TRUE, notempty = FALSE;

procedure produce(item) { If buffer is full,

. . . wait for consumer
if (Gin-out) == N) wait(notfull);
buf[in % N] = item;
. . b If buffer was empty,
if ((in-out) == 0) signal(notempty); e e
in = in + 1;

¥ :

procedure int consume() { oL ey
if ((in-out) == 0) wait(notempty); wait for producer

item = buf[out % N];
if ((in-out) == N) signal(notfull);
out = out + 1;
return(item);

}

/* init */ { in = out = 0; }

}

If buffer was full,
signal the producer

Does this work?

Depends on implementation of wait() & signal()

* Imagine two threads, T1 and T2

— T1 enters the monitor and calls wait(C) — this suspends T1,
places it on the queue for C, and unlocks the monitor

— Next T2 enters the monitor, and invokes signal(C)
— Now T1 is unblocked (i.e. capable of running again)...
— ... but can only have one thread active inside a monitor!
* If we let T2 continue (signal-and-continue), T1 must
qgueue for re-entry to the monitor
— And no guarantee it will be next to enter
* Otherwise T2 must be suspended (signal-and-wait),
allowing T1 to continue...

16

1/14/17

Signal-and-Wait (“Hoare Monitors”)

Consider a queue E to enter monitor

— If monitor is occupied, threads are added to E
— May not be FIFO, but should be fair

If thread T1 waits on C, added to queue C
If T2 enters monitor & signals, waking T1
— T2 is added to a new queue S “in front of” E
— T1 continues and eventually exits (or re-waits)
Some thread on S chosen to resume

— Only admit a thread from E when S is empty

17

Signal-and-Wait pros and cons

We call signal() exactly when condition is true,
then directly transfer control to waking thread

— Hence condition will still be true!
But more difficult to implement...

And can be complex to reason about (a call to
signal may or may not result in a context switch)

— Hence we must ensure that any invariants are
maintained at time we invoke signal()

With these semantics, our example is broken:
— we signal() before incrementing in/out

18

1/14/17

Same code as slide 11

Monitor Producer-Consumer solution?

monitor ProducercConsumer {
int in, out, buf[N];
condition notfull = TRUE, notempty = FALSE;

If buffer is full,

procedure produce(item) { wait for consumer

if ((in-out) == N) wait(notfull);
buf[in % N] = item;

if ((in-out) == 0) signal(notempty); -
in = in + 1;

If buffer was empty,
signal the consumer

1

procedure int consume() { If buffer is empty,
if ((in-out) == 0) wait(notempty); wait for producer
item = buf[out % NJ;
if ((in-out) == N) signal(notfull); . I
out = out + 1; signal the producer
return(item);

}

/* init */ { in = out = 0; }

}

ignal-and-Continue

* Alternative semantics introduced by Mesa
programming language (Xerox PARC)

* An invocation of signal() moves a thread from
the condition queue C to the entry queue E
— Invoking threads continues until exits (or waits)

* Simpler to build... but now not guaranteed
that condition is true when resume!

— Other threads may have executed after the signal,
but before you continue

20

1/14/17

10

Signal-and-Continue example (1)

P, waits as P, tries to enter,
Inotfull enqueued on E
Pl
P, tries to enter, P, inserts item,
enqueued on E sets Inotfull

m C, removes item,

signals notfull

I Thread in monitor B Thread waits for monitor [77] Buffer has space (notfull)

I Thread waits for condition Buffer is full (Inotfull) 21

Signal-and-Continue example (2)

* Consider multiple producer-consumer threads
P1 enters. Buffer is full so blocks on queue for C
C1 enters.

P2 tries to enter; occupied, so queues on E

C1 continues, consumes, and signals C (“notfull”)
P1 unblocks; monitor occupied, so queues on E
C1 exits, allowing P2 to enter

P2 fills buffer, and exits monitor

P1 resumes and tries to add item — BUG!

* Hence must re-test condition:
— i.e. while((in-out) == N) wait(notfull);

PN hAWNE

22

1/14/17

11

if() replaced with while() for conditions

Monitor Producer-Consumer solution?

monitor ProducercConsumer {
int in, out, buf[N];
condition notfull = TRUE, notempty = FALSE;

While buffer is full,

procedure produce(item) { wait for consumer
((in—out) == N) wait(notfulls>=
buf[in % N1 = item; If buffer was empty,

if ((in-out) == 0) signal(notempty); signal the consumer
in = in + 1;

}

procedure int consume() { o2 (7 [g
while |((in-out) == 0) wait(notempt wait for producer
item = buf[out % N]; bt ull
if ((in-out) == N) signal(notfull); If buffer was full,
out = out + 1; signal the producer
“return(item);

} With signal-and-continue

/* init */ { in = out = 0; } EESnNER(EMI ==l %11

¥ signal does not race

Monitors: summary

Structured concurrency control

— groups together shared data and methods

— (today we’d call this object-oriented)
Considerably simpler than semaphores, but still
perilous in places

May be overly conservative sometimes:

— e.g. for MRSW cannot have >1 reader in monitor

— Typically must work around with entry and exit
methods (BeginRead(), EndRead(), BeginWrite(), etc)

Exercise: sketch a MRSW monitor
implementation

24

1/14/17

12

Concurrency in practice

* Seen a number of abstractions for
concurrency control
— Mutual exclusion and condition synchronization
* Next let’s look at some concrete examples:
— FreeBSD kernels
— POSIX pthreads (C/C++ API)
— Java
—CH

25

Example: pthreads

» Standard (POSIX) threading API for C, C++, etc
* mutexes, condition variables, and barriers

* Mutexes are essentially binary semaphores:

int pthread mutex init(pthread mutex t *mutex, ...);
int pthread mutex lock (pthread mutex t *mutex);

int pthread mutex trylock (pthread mutex t *mutex);
int pthread mutex unlock (pthread mutex t *mutex);

* Athread calling lock() blocks if the mutex is held

— trylock() is a non-blocking variant: returns immediately;
returns 0 if lock acquired, or non-zero if not.

26

1/14/17

13

Example: pthreads

e Condition variables are Mesa-style:

int pthread cond init (pthread cond t *cond, ...);
int pthread cond wait (pthread cond t *cond,
pthread mutex t *mutex);
int pthread cond signal (pthread cond t *cond);
int pthread cond broadcast (pthread cond t *cond);

* No proper monitors: must manually code e.g.

pthread mutex_ lock (&M) ;

while (!condition) // Notice while () not 1if()'!
pthread cond wait (&C, &M) ;

// do stuff

if (condition)
pthread cond broadcast (&C) ;

pthread mutex unlock (&M) ;

27

Example: pthreads

* Barriers: explicit synchronization mechanism
* Wait until all threads reach some point

* E.g., indiscrete event simulation, all parallel threads
must complete one epoch before any begin on the next

int pthread barrier init(pthread barrier t *b,
int pthread barrier wait(pthread barrier t *b);

.7 N) ;

pthread barrier init(&B, ..., NTHREADS);
for (i=0; i<NTHREADS; i++)

pthread create(..., worker, ...);
worker () {

while (!done) {
// do work for this round
pthread barrier wait (&B);

}

1/14/17

14

Example: FreeBSD kernel

* Kernel provides spin locks, mutexes, conditional
variables, reader-writer + read-mostly locks
— Semantics (roughly) modeled on POSIX threads

* Avariety of deferred work primitives

— “Fully preemptive” and highly threaded
(e.g., interrupt processing in threads)

* Interesting debugging tools — ————
such as DTrace, lock
contention measurement,
lock-order checking

* Concurrency case study for
our last lecture

29

Example: Java [original]

* Synchronization inspired by monitors

— Objects already encapsulate data & methods!

— Can synchronise on other objects — e.g., designated locks
* Mesa-style, but no explicit condition variables

public class MyClass {
//
public synchronized void myMethod () throws ...{
while (!condition)
wait();
// do stuff
if (condition)
notifyAll () ;

}

* Java 5 provides many additional options...

30

1/14/17

15

Example: C#

* Very similar to Java, but with explicit arguments

public class MyClass {
//
public void myMethod () {
lock (this) {
while (!condition)
Monitor.Wait (this) ;
// do stuff
if (condition)
Monitor.PulseAll (this) ;
}
}
}

* Also provides spinlocks, reader-writer locks,
semaphores, barriers, event synchronization, ...

Concurrency Primitives: Summary

* Concurrent systems require means to ensure:
— Safety (mutual exclusion in critical sections), and
— Progress (condition synchronization)
* Spinlocks (busy wait); semaphores; MRSWs, CCRs, and
monitors
— Hardware primitives for synchronisation
— Signal-and-Wait vs. Signal-and-Continue
* Many of these are still used in practice
— subtle minor differences can be dangerous
— require care to avoid bugs
— E.g., “lost wakeups”
More detail on implementation in our case study

1/14/17

16

Summary + next time

* Multi-Reader Single-Writer (MRSW) locks
* Alternatives to semaphores/locks:
— Conditional critical regions (CCRs)
— Monitors
— Condition variables
— Signal-and-wait vs. signal-and-continue semantics
* Concurrency primitives in practice
* Concurrency primitives wrap-up

* Next time:
— Problems with concurrency: deadlock, livelock, priorities

— Resource allocation graphs; deadlock {prevention, detection,
recovery}

— Priority and scheduling; priority inversion; priority inheritance

1/14/17

17

