
10/21/16

1

Concurrent	systems
Lecture	7:	Crash	recovery,	lock-free

programming,	and	transactional	memory

Dr Robert	N.	M.	Watson

1

Reminder	from	last	time

• History	graphs;	good	(and	bad)	schedules
• Isolation	vs.	strict	isolation;	enforcing	isolation
• Two-phase	locking;	rollback
• Timestamp	ordering	(TSO)
• Optimistic	concurrency	control	(OCC)
• Isolation	and	concurrency	summary

2

10/21/16

2

This	time

• Transactional	durability:	crash	recovery	and	
logging
–Write-ahead	logging
– Checkpoints
– Recovery

• Advanced	topics
– Lock-free	programming
– Transactional	memory

• A	few	notes	on	supervision	exercises

3

Crash	Recovery	&	Logging

• Transactions	require	ACID properties
– So	far	have	focused	on	I (and	implicitly	C).	

• How	can	we	ensure	Atomicity	&	Durability?	
– Need	to	make	sure	that	if	a	transaction	always	done	
entirely	or	not	at	all

– Need	to	make	sure	that	a	transaction	reported	as	
committed	remains	so,	even	after	a	crash

• Consider	for	now	a	fail-stopmodel:
– If	system	crashes,	all	in-memory	contents	are	lost
– Data	on	disk,	however,	remains	available	after	reboot

4

The	small	print:	we	must	keep	in	mind	the	limitations	of	fail-stop,	even	as	we	assume	it.	
Failing	hardware/software	do	weird	stuff.	Pay	attention	to	hardware	price	differentiation.

10/21/16

3

Using	persistent	storage

• Simplest	“solution”:	write	all	updated	objects	
to	disk	on	commit,	read	back	on	reboot
– Doesn’t	work,	since	crash	could	occur	during	write
– Can	fail	to	provide	Atomicity	and/or	Consistency

• Instead	split	update	into	two	stages
1. Write	proposed	updates	to	a	write-ahead	log
2. Write	actual	updates

• Crash	during	#1	=>	no	actual	updates	done
• Crash	during	#2	=>	use	log	to	redo,	or	undo

5

Write-ahead	logging
• Log:	an	ordered,	append-only	file	on	disk
• Contains	entries	like	<txid,	obj,	op,	old,	new>
– ID	of	transaction,	object	modified,	(optionally)	the	
operation	performed,	the	old	value	and the	new	value

– This	means	we	can	both	“roll	forward”	(redo	operations)	
and	“rollback”	(undo	operations)

• When	persisting	a	transaction	to	disk:
– First	log	a	special	entry	<txid,	START>
– Next	log	a	number	of	entries	to	describe	operations
– Finally	log	another	special	entry	<txid,	COMMIT>

• We	build	composite-operation	atomicity	from	
fundamental	atomic	unit:	single-sector	write.
– Much	like	building	high-level	primitives	over	LL/SC or	CAS!

6

10/21/16

4

Using	a	write-ahead	log
• When	executing	transactions,	perform	updates	to	
objects	in	memory	with	lazy	write	back
– I.e.	the	OS	can	delay	disk	writes	to	improve	efficiency

• Invariant:	write	log	records	before	corresponding	data
• But	when	wish	to	commit a	transaction,	must	first	
synchronously flush	a	commit	record	to	the	log	
– Assume	there	is	a	fsync() or	fsyncdata() operation	or	
similar	which	allows	us	to	force	data	out	to	disk

– Only	report	transaction	committed	when	fsync() returns
• Can	improve	performance	by	delaying	flush	until	we	
have	a	number	of	transaction	to	commit	- batching
– Hence	at	any	point	in	time	we	have	some	prefix	of	the	
write-ahead	log	on	disk,	and	the	rest	in	memory

7

The	Big	Picture

8

RAM

Object	Values

x = 3
y = 27

Disk

Object	Values

x = 1
y = 17

z = 42

Older	Log	Entries

Newer	Log	Entries

Log	Entries

T2, z, 40, 42
T2, START
T1, START

T0, COMMIT
T0, x, 1, 2

T0, START

T3, START
T2, ABORT
T2, y, 17, 27

T1, x, 2, 3

Log	Entries

RAM	acts	as	a	cache	of	disk
(e.g.	no	in-memory	copy	of	z)

On-disk	values	may	be	older	versions	of	
objects	– or	new	uncommitted	values	as	long	

as	on-disk	log	describes	rollback	(e.g.,	z)

Log	conceptually	infinite,	
and	spans	RAM	&	Disk

10/21/16

5

Checkpoints

• As	described,	log	will	get	very	long
– And	need	to	process	every	entry	in	log	to	recover

• Better	to	periodically	write	a	checkpoint
– Flush	all	current	in-memory	log	records	to	disk
– Write	a	special	checkpoint	record	to	log	which	
contains	a	list	of	active	transactions

– Flush	all	‘dirty’	objects	(i.e.	ensure	object	values	on	
disk	are	up	to	date)

– Flush	location	of	new	checkpoint	record	to	disk
• (Not	fatal	if	crash	during	final	write)

9

Checkpoints	and	recovery

• Key	benefit	of	a	checkpoint	is	it	lets	us	focus	
our	attention	on	possibly	affected	transactions

10

Time
Checkpoint	Time Failure	Time

T1

T2

T3

T4

T5

T1:	no	action	required

T2:	REDO

T3:	UNDO

T4:	REDO

T5:	UNDO

Active	at	checkpoint.	
Has	since	committed;	
and	record	in	log.

Active	at	checkpoint;	
in	progress	at	crash.	

Not	active	at	checkpoint.	
But	has	since	committed,	
and	commit	record	in	log.

Not	active	at	checkpoint,	
and	still	in	progress.

10/21/16

6

Recovery	algorithm
• Initialize	undo	list	U =	{	set	of	active	txactions	}
• Also	have	redo	list	R,	initially	empty
• Walk	log	forward	from	checkpoint	record:
– If	see	a	START	record,	add	transaction	to	U
– If	see	a	COMMIT	record,	move	transaction	from	U->R

• When	hit	end	of	log,	perform	undo:
– Walk	backward	and	undo	all	records	for	all	Tx in	U

• When	reach	checkpoint	record	again,	Redo:
– Walk	forward,	and	re-do	all	records	for	all	Tx in	R

• After	recovery,	we	have	effectively	checkpointed
– On-disk	store	is	consistent,	so	can	truncate the	log

11

The	order	in	which	we	apply	undo/redo	records	is	important	to	properly	
handling	cases	where	multiple	transactions	touch	the	same	data

Write-ahead	logging:	assumptions
• What	can	go	wrong	writing	commits	to	disk?
• Even	if	sector	writes	are	atomic:

– All	affected	objects	may	not	fit	in	a	single	sector
– Large	objects	may	span	multiple	sectors
– Trend	towards	copy-on-write,	rather	than	journaled,	FSes
– Many	of	the	problems	seen	with	in-memory	commit	(ordering	

and	atomicity)	apply	to	disks	as	well!
• Contemporary	disks	may	not	be	entirely	honest	about	

sector	size	and	atomicity
– E.g.,	unstable	write	caches	to	improve	efficiency
– E.g.,	larger	or	smaller	sector	sizes	than	advertises
– E.g.,	non-atomicity	when	writing	to	mirrored	disks

• These	assumes	fail-stop	– which	is	not	true	for	some	media

12

10/21/16

7

Transactions:	summary

• Standard	mutual	exclusion	techniques	not	great	
for	dealing	with	>1	object
– intricate	locking	(&	lock	order)	required,	or
– single	coarse-grained	lock,	limiting	concurrency

• Transactions	allow	us	a	better	way:
– potentially	many	operations	(reads	and	updates)	on	
many	objects,	but	should	execute	as	if	atomically

– underlying	system	deals	with	providing	isolation,	
allowing	safe	concurrency,	and	even	fault	tolerance!

• Transactions	used	in	databases	+	filesystems

13

Advanced	Topics

• Will	briefly	look	at	two	advanced	topics
– lock-free	data	structures,	and
– transactional	memory

• Then,	next	time,	on	to	a	case	study

14

10/21/16

8

Lock-free	programming
• What’s	wrong	with	locks?
– Difficult	to	get	right	(if	locks	are	fine-grained)
– Don’t	scale	well	(if	locks	too	coarse-grained)
– Don’t	compose	well	(deadlock!)
– Poor	cache	behavior	(e.g.	convoying)
– Priority	inversion
– And	can	be	expensive

• Lock-free	programming	involves	getting	rid	of	locks	...	
but	not	at	the	cost	of	safety!	

• Recall	TAS,	CAS,	LL/SC from	our	first	lecture:	what	if	we	
used	them	to	implement	something	other	than	locks?

15

Assumptions
• We	have	a	shared	memory	system
• Low-level	(assembly	instructions)	include:

16

val = read(addr); // atomic read from memory
(void) write(addr, val); // atomic write to memory
done = CAS(addr, old, new); // atomic compare-and-swap

• Compare-and-Swap	(CAS) is	atomic
• reads	value	of	addr (‘val’),	compares	with	‘old’,	and	
updates	memory	to	‘new’	iff old==val -- without	
interruption!		

• something	like	this	instruction	common	on	most	modern	
processors	(e.g.	cmpxchg on	x86	– or LL/SC on	RISC)

• Typically	used	to	build	spinlocks	(or	mutexes,	or	
semaphores,	or	whatever...)	

10/21/16

9

Lock-free	approach
• Directly	use	CAS to	update	shared	data
• As	an	example	consider	a	lock-free	linked	list	of	integer	
values
– list	is	singly	linked,	and	sorted
– Use	CAS to	update	pointers
– Handle	CAS failure	cases	(i.e.,	races)

• Represents	the	‘set’	abstract	data	type,	i.e.
– find(int)	->	bool
– insert(int)	->	bool
– delete(int)	->	bool

• Assumption:	hardware	supports	atomic	operations	on	
pointer-size	types

17

Searching	a	sorted	list

• find(20):

Non-blocking	data	structures	and	transactional	
memory

H 10 30 T

20?

find(20)	->	false

18

10/21/16

10

Inserting	an	item	with	CAS

• insert(20):

Non-blocking	data	structures	and	transactional	
memory

H 10 30 T

20

30	® 20ü

insert(20)	->	true

19

Inserting	an	item	with	CAS

• insert(20):

Non-blocking	data	structures	and	transactional	
memory

H 10 30 T

20

30	® 20

25

30	® 25
ü
û

• insert(25):

20

10/21/16

11

Concurrent	find+insert

• find(20)

H 10 30 T

-> false

20

20?

• insert(20) ->	true

Non-blocking	data	structures	and	transactional	memory 21

Concurrent	find+insert

• find(20)

H 10 30 T

-> false

20

20?

• insert(20) ->	true

Non-blocking	data	structures	and	transactional	memory

This	thread	saw	20	
was	not	in	the	set...

...but	this	thread	
succeeded	in	putting	

it	in!

• Is	this	a	correct	implementation	of	a	set?

• Should	the	programmer	be	surprised	if	this	happens?

• What	about	more	complicated	mixes	of	operations?
22

10/21/16

12

Linearisability
• As	with	transactions,	we	return	to	a	conceptual	model	
to	define	correctness
– a	lock-free	data	structure	is	‘correct’	if	all	changes	(and	
return	values)	are	consistent	with	some	serial	view:	we	call	
this	a	linearisable schedule

• Hence	in	the	previous	example,	we	were	ok:	
– can	just	deem	the	find()	to	have	occurred	first

• Gets	a	lot	more	complicated	for	more	complicated	data	
structures	&	operations!

• NB:	On	current	hardware,	synchronisation does	more	
than	just	provide	atomicity
– Also	provides	ordering:	“happens-before”
– Lock-free	structures	must	take	this	into	account	as	well

23

Transactional	Memory	(TM)

• Steal	idea	from	databases!
• Instead	of: lock(&mylock);

shared[i] *= shared[j] + 17;
unlock(&mylock);

4Use: atomic {
shared[i] *= shared[j] + 17;

}

4Has	“obvious”	semantics,	i.e.	all	operations	within	
block	occur	as	if	atomically

4Transactional since	under the	hood	it	looks	like:
do { txid = tx_begin(&thd);

shared[i] *= shared[j] + 17;
} while !(tx_commit(txid));

10/21/16

13

TM	advantages
• Simplicity:	
– Programmer	just	puts	atomic	{	}	around	anything	
he/she	wants	to	occur	in	isolation

• Composability:	
– Unlike	locks,	atomic	{	}	blocks	nest,	e.g.:

credit(a, x) = atomic {
setbal(a, readbal(a) + x);

}
debit(a, x) = atomic {

setbal(a, readbal(a) - x);
}
transfer(a, b, x) = atomic {

debit(a, x);
credit(b, x);

}

TM	advantages
• Cannot	deadlock:	
– No	locks,	so	don’t	have	to	worry	about	locking	order
– (Though	may	get	live	lock	if	not	careful)

• No	races	(mostly):	
– Cannot	forget	to	take	a	lock	(although	you	can	forget	to	
put	atomic	{	}	around	your	critical	section	;-))	

• Scalability:	
– High	performance	possible	via	OCC
– No	need	to	worry	about	complex	fine-grained	locking

• There	is	still	a	simplicity	vs.	performance	tradeoff
– Too	much	atomic	{}	and	implementation	can’t	find	
concurrency.	Too	little,	and	race	conditions.

10/21/16

14

TM	is	very	promising…
• Essentially	does	‘ACI’	but	no	D
– no	need	to	worry	about	crash	recovery
– can	work	entirely	in	memory
– some	hardware	support	emerging	(or	promised)

• But	not	a	panacea
– Contention	management	can	get	ugly
– Difficulties	with	irrevocable	actions	(e.g.	IO)
– Still	working	out	exact	semantics	(type	of	atomicity,	
handling	exceptions,	signaling,	...)

• Recent	x86	hardware	has	started	to	provide	direct	
support	for	transactions;	not	widely	used
– …	And	promptly	withdrawn	in	errata
– Now	back	on	the	street	again	– but	very	new

Supervision	questions	+	exercises

• Supervision	questions
– S1:	Threads	and	synchronisation

• Semaphores,	priorities,	and	work	distribution
– S2:	Transactions

• ACID	properties,	2PL,	TSO,	and	OCC
– Other	C&DS	topics	also	important,	of	course!

• Optional	Java	practical	exercises
– Java	concurrency	primitives	and	fundamentals
– Threads,	synchronisation,	guarded	blocks,	producer-
consumer,	and	data	races

28

10/21/16

15

Concurrent	systems:	summary
• Concurrency	is	essential	in	modern	systems
– overlapping	I/O	with	computation
– exploiting	multi-core
– building	distributed	systems

• But	throws	up	a	lot	of	challenges
– need	to	ensure	safety,	allow	synchronization,	and	
avoid	issues	of	liveness (deadlock,	livelock,	...)

• Major	risk	of	over-engineering
– generally	worth	building	sequential	system	first
– and	worth	using	existing	libraries,	tools	and	design	
patterns	rather	than	rolling	your	own!

29

Summary	+	next	time
• Transactional	durability:	crash	recovery	and	logging

– Write-ahead	logging;	checkpoints;	recovery
• Advanced	topics

– Lock-free	programming
– Transactional	memory

• Notes	on	supervision	exercises

• Next	time:
– Concurrent	system	case	study	the	FreeBSD	kernel
– Brief	history	of	kernel	concurrency
– Primitives	and	debugging	tools
– Applications	to	the	network	stack

30

