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Concurrent	systems
Case	study:	FreeBSD	kernel	concurrency

Dr Robert	N.	M.	Watson
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FreeBSD	kernel
• Open-source	OS	kernel

– Large:	millions	of	LoC
– Complex:	thousands	of	

subsystems,	drivers,	...
– Very	concurrent:	dozens	or	

hundreds	of	CPU	
cores/threads

– Widely	used:	NetApp,	EMC,	
Dell,	Apple,	Juniper,	Netflix,	
Sony,	Cisco,	Yahoo!,	…

• Why	a	case	study?
– Employs	C&DS	principles
– Concurrency	performance	and	

composability at	scale

2
In	the	library:	Marshall	Kirk	McKusick,	George	V.	Neville-Neil,	and	Robert	N.	M.	Watson.	The	Design	and	
Implementation	of	the	FreeBSD	Operating	System (2nd	Edition),	Pearson	Education,	2014.
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BSD	+	FreeBSD:	a	brief	history
• 1980s	Berkeley	Standard	Distribution	(BSD)
– ‘BSD’-style	open-source	license	(MIT,	ISC,	CMU,	…)
– UNIX	Fast	File	System	(UFS/FFS),	sockets	API,	DNS,	
used	TCP/IP	stack,	FTP,	sendmail,	BIND,	cron,	vi,	…

• Open-source	FreeBSD	operating	system
1993:	FreeBSD	1.0	without	support	for	multiprocessing
1998:	FreeBSD	3.0	with	“giant-lock”	multiprocessing

2003:	FreeBSD	5.0	with	fine-grained	locking
2005:	FreeBSD	6.0	with	mature	fine-grained	locking

2012:	FreeBSD	9.0	with	TCP	scalability	beyond	32	cores

3

FreeBSD:	before	multiprocessing	(1)

• Concurrency	model	inherited	from	UNIX
• Userspace
– Preemptive	multitasking	between processes
– Later,	preemptive	multithreading	within processes

• Kernel
– ‘Just’	a	C	program	running	‘bare	metal’
– Internally	multithreaded
– User	threads	‘in	kernel’	(e.g.,	in	system	calls)
– Kernel	services	(e.g.,	async.	work	for	VM,	etc.)
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FreeBSD:	before	multiprocessing	(2)

• Cooperative	multitasking	within	kernel
– Mutual	exclusion	as	long	as	you	don’t	sleep()
– Implied	global	lock	means	local	locks	rarely	required
– Except	for	interrupt	handlers,	non-preemptive	kernel
– Critical	sections	control	interrupt-handler	execution

• Wait	channels:	implied	condition	variable	for	every	address
sleep(&x, …); // Wait for event on &x
wakeup(&x); // Signal an event on &x

– Must	leave	global	state	consistent	when	calling	sleep()
– Must	reload	any	cached	local	state	after	sleep()	returns

• Use	to	build	higher-level	synchronization	primitives
– E.g.,	lockmgr()	reader-writer	lock	can	be	held	over	I/O	(sleep)

5

Pre-multiprocessor	scheduling

6

Lots	of	unexploited	
parallelism!
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Hardware	parallelism,	synchronization

• Late	1990s:	multi-CPU	begins	to	move	down	market
– In	2000s:	2-processor	a	big	deal
– In	2010s:	64-core	is	increasingly	common

• Coherent,	symmetric,	shared	memory	systems
– Instructions	for	atomic	memory	access

• Compare-and-swap,	test-and-set,	load	linked/store	conditional
• Signaling	via	Inter-Processor	Interrupts	(IPIs)
– CPUs	can	trigger	an	interrupt	handler	on	each	another

• Vendor	extensions	for	performance,	programmability
– MIPS	inter-thread	message	passing
– Intel	TM	support:	TSX (Whoops:	HSW136!)

7

Giant	locking	the	kernel
• FreeBSD	follows	footsteps	of	Cray,	Sun,	…
• First,	allow	user	programs	to	run	in	parallel
– One	instance	of	kernel	code/data	shared	by	all	CPUs
– Different	user	processes/threads	on	different	CPUs

• Giant	spinlock	around	kernel
– Acquire	on	syscall/trap	to	kernel;	drop	on	return
– In	effect:	kernel	runs	on	at	most	once	CPU	at	a	time;	
‘migrates’	between	CPUs	on	demand

• Interrupts
– If	interrupt	delivered	on	CPU	X	while	kernel	is	on	CPU	
Y,	forward	interrupt	to	Y	using	an	IPI

8
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Giant-locked	scheduling

9

Serial	kernel	execution;	parallelism	
opportunity	missed

Kernel	giant-lock	
contention

Kernel-user	
parallelism

User-user	
parallelism

Fine-grained	locking
• Giant locking	is	OK	for	user-program	parallelism
• Kernel-centered	workloads	trigger	Giant	contention

– Scheduler,	IPC-intensive	workloads
– TCP/buffer	cache	on	high-load	web	servers
– Process-model	contention	with	multithreading	(VM,	…)

• Motivates	migration	to	fine-grained	locking
– Greater	granularity	(may)	afford	greater	parallelism

• Mutexes/condition	variables	rather	than	semaphores
– Increasing	consensus	on	pthreads-like	synchronization
– Explicit	locks	are	easier	to	debug	than	semaphores
– Support	for	priority	inheritance +	priority	propagation
– E.g.,	Linux	is	also	now	migrating	away	from	semaphores

10
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Fine-grained	scheduling
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True	kernel	
parallelism

Kernel	synchronization	primitives
• Spin	locks
– Used	to	implement	the	scheduler,	interrupt	handlers

• Mutexes,	reader-writer,	read-mostly	locks
– Most	heavily	used	– different	optimization	tradeoffs
– Can	be	held	only	over	“bounded”	computations
– Adaptive:	on	contention,	sleep	is	expensive;	spin	first
– Sleeping	depends	on	scheduler,	and	hence	on	spinlocks…

• Shared-eXclusive (SX)	locks,	condition	variables
– Can	be	held	over	I/O	and	other	unbounded	waits

• Condition	variables	usable	with	any	lock	type
• Most	primitives	support	priority	propagation

12
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WITNESS	lock-order	checker
• Kernel	relies	on	partial	lock	order	to	prevent	deadlock
(Recall	dining	philosophers)
– In-field	lock-related	deadlocks	are	(very)	rare

• WITNESS	is	a	lock-order	debugging	tool
– Warns	when	lock	cycles	(could)	arise	by	tracking	edges
– Only	in	debugging	kernels	due	to	overhead	(15%+)

• Tracks	both	statically	declared,	dynamic	lock	orders
– Static	orders	most	commonly	intra-module
– Dynamic	orders	most	commonly	inter-module

• Deadlocks	for	condition	variables	remain	hard	to	debug
– What	thread	should	have	woken	up	a	CV	being	waited	on?
– Similar	to	semaphore	problem

13

WITNESS:	global	lock-order	graph*

14

*	Turns	out	that	the	global	lock-order	
graph	is	pretty	complicated.
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*	Commentary	on	WITNESS	full-system	lock-order
graph	complexity;	courtesy	Scott	Long,	Netflix

*

Excerpt	from	global	lock-order	graph*

16*	The	local	lock-order	graph	is	also complicated.

This	bit	mostly	has	to	do	
with	networking

Local	clusters:	e.g.,	related	
locks	from	the	firewall:	two	
leaf	nodes;	one	is	held	over	
calls	to	other	subsystems

Network	interface	locks:	
“transmit”	occurs	at	the	

bottom	of	call	stacks	via	many	
layers	holding	locks

Memory	allocator	locks	
follow	most	other	locks,	since	
most	kernel	components	
require	memory	allocation



10/23/16

9

WITNESS	debug	output

17

1st 0xffffff80025207f0 run0_node_lock (run0_node_lock) @ 
/usr/src/sys/net80211/ieee80211_ioctl.c:1341
2nd 0xffffff80025142a8 run0 (network driver) @ 
/usr/src/sys/modules/usb/run/../../../dev/usb/wlan/if_run.c:3368

KDB: stack backtrace:
db_trace_self_wrapper() at db_trace_self_wrapper+0x2a
kdb_backtrace() at kdb_backtrace+0x37
_witness_debugger() at _witness_debugger+0x2c
witness_checkorder() at witness_checkorder+0x853
_mtx_lock_flags() at _mtx_lock_flags+0x85
run_raw_xmit() at run_raw_xmit+0x58
ieee80211_send_mgmt() at ieee80211_send_mgmt+0x4d5
domlme() at domlme+0x95
setmlme_common() at setmlme_common+0x2f0
ieee80211_ioctl_setmlme() at ieee80211_ioctl_setmlme+0x7e
ieee80211_ioctl_set80211() at ieee80211_ioctl_set80211+0x46f
in_control() at in_control+0xad
ifioctl() at ifioctl+0xece
kern_ioctl() at kern_ioctl+0xcd
sys_ioctl() at sys_ioctl+0xf0
amd64_syscall() at amd64_syscall+0x380
Xfast_syscall() at Xfast_syscall+0xf7
--- syscall (54, FreeBSD ELF64, sys_ioctl), rip = 0x800de7aec, rsp = 
0x7fffffffd848, rbp = 0x2a ---

Lock	names	and	source	
code	locations	of	

acquisitions	adding	the	
offending	graph	edge

Stack	trace	to	acquisition	
that	triggered	cycle:	
802.11	called	USB;	

previously,	perhaps	USB	
called	802.11?

How	does	this	work	in	practice?
• Kernel	is	heavily	multi-threaded
• Each	user	thread	has	a	corresponding	kernel	thread
– Represents	user	thread	when	in	syscall,	page	fault,	etc.

• Kernels	services	often	execute	in	asynchronous	threads
– Interrupts,	timers,	I/O,	networking,	etc.

• Therefore	extensive	synchronization
– Locking	model	is	almost	always	data-oriented
– Think	‘monitors’	rather	than	‘critical	sections’
– Reference	counting	or	reader-writer	locks	used	for	stability
– Higher-level	patterns	(producer-consumer,	active	objects,	
etc.)	used	frequently

18
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Kernel	threads	in	action

19

robert@lemongrass-freebsd64:~> procstat –at
PID    TID COMM             TDNAME           CPU  PRI STATE   WCHAN    
0 100000 kernel           swapper            1   84 sleep   sched
0 100009 kernel           firmware taskq 0  108 sleep   -
0 100014 kernel           kqueue taskq 0  108 sleep   -
0 100016 kernel           thread taskq 0  108 sleep   -
0 100020 kernel           acpi_task_0        1  108 sleep   -
0 100021 kernel           acpi_task_1        1  108 sleep   -
0 100022 kernel           acpi_task_2        1  108 sleep   -
0 100023 kernel           ffs_trim taskq 1  108 sleep   -
0 100033 kernel           em0 taskq 1    8 sleep   -
1 100002 init - 0  152 sleep   wait      
2 100027 mpt_recovery0    - 0   84 sleep   idle      
3 100039 fdc0             - 1   84 sleep   -
4 100040 ctl_thrd - 0   84 sleep   ctl_work
5 100041 sctp_iterator - 0   84 sleep   waiting_  
6 100042 xpt_thrd - 0   84 sleep   ccb_scan
7 100043 pagedaemon - 1   84 sleep   psleep
8 100044 vmdaemon - 1   84 sleep   psleep
9 100045 pagezero - 1  255 sleep   pgzero
10 100001 audit            - 0   84 sleep   audit_wo
11 100003 idle             idle: cpu0         0  255 run     -
11 100004 idle             idle: cpu1         1  255 run     -
12 100005 intr swi4: clock        1   40 wait    -
12 100006 intr swi4: clock        0   40 wait    -
12 100007 intr swi3: vm 0   36 wait    -
12 100008 intr swi1: netisr 0     1   28 wait    -
12 100015 intr swi5: +            0   44 wait    -
12 100017 intr swi6: Giant task   0   48 wait    -
12 100018 intr swi6: task queue   0   48 wait    -
12 100019 intr swi2: cambio 1   32 wait    -
12 100024 intr irq14: ata0        0   12 wait    -
12 100025 intr irq15: ata1        1   12 wait    -
12 100026 intr irq17: mpt0        1   12 wait    -
12 100028 intr irq18: uhci0       0   12 wait    -
12 100034 intr irq16: pcm0        0    4 wait    -
12 100035 intr irq1: atkbd0       1   16 wait    -
12 100036 intr irq12: psm0        0   16 wait    -

12 100037 intr irq7: ppc0         0   16 wait    -
12 100038 intr swi0: uart uart 0   24 wait    -
13 100010 geom g_event 0   92 sleep   -
13 100011 geom g_up 1   92 sleep   -
13 100012 geom g_down 1   92 sleep   -
14 100013 yarrow           - 1   84 sleep   -
15 100029 usb usbus0             0   32 sleep   -
15 100030 usb usbus0             0   28 sleep   -
15 100031 usb usbus0             0   32 sleep   USBWAIT   
15 100032 usb usbus0             0   32 sleep   -
16 100046 bufdaemon - 0   84 sleep   psleep
17 100047 syncer - 1  116 sleep   syncer
18 100048 vnlru - 1   84 sleep   vlruwt
19 100049 softdepflush - 1   84 sleep sdflush
104 100055 adjkerntz - 1  152 sleep   pause
615 100056 dhclient - 0  139 sleep   select    
667 100075 dhclient - 1  120 sleep   select    
685 100068 devd - 1  120 sleep   wait
798 100065 syslogd - 0  120 sleep   select    
895 100076 sshd - 0  120 sleep   select    
934 100052 login            - 1  120 sleep   wait
935 100070 getty - 0  152 sleep   ttyin
936 100060 getty - 0  152 sleep   ttyin
937 100064 getty - 0  152 sleep   ttyin
938 100077 getty - 1  152 sleep   ttyin
939 100067 getty - 1  152 sleep   ttyin
940 100072 getty - 1  152 sleep   ttyin
941 100073 getty - 0  152 sleep   ttyin
9074 100138 csh - 0  120 sleep   ttyin
3023 100207 ssh-agent        - 1  120 sleep   select    
3556 100231 sh               - 0  123 sleep   piperd
3558 100216 sh               - 1  124 sleep   wait
3559 100145 sh               - 0  122 sleep   vmo_de
3560 100058 sh               - 0  123 sleep   piperd
3588 100176 sshd - 0  122 sleep   select    
3590 101853 sshd - 1  122 run     -
3591 100069 tcsh - 0  152 sleep   pause
3596 100172 procstat - 0  172 run     -

Kernel-internal		concurrency	is	represented	using	a	familiar
shared	memory	threading	model

PID    TID COMM             TDNAME           CPU  PRI STATE   WCHAN    
11 100003 idle             idle: cpu0         0  255 run     -
12 100024 intr             irq14: ata0        0   12 wait    -
12 100025 intr             irq15: ata1        1   12 wait    -
12 100008 intr             swi1: netisr 0     1   28 wait    -

3588 100176 sshd             - 0  122 sleep   select

Vast	hoards	of	threads
represent	concurrent	activities

Device-driver	interrupts	
execute	in	kernel	ithreads

Idle	CPUs	are	occupied	by	
an	idle	thread	…	why?

Asynchronous	packet	
processing	occurs	in	a	
netisr ‘soft’	ithread

Familiar	userspace
thread:	sshd,	blocked	in	
network	I/O	(‘in	kernel’)

Case	study:	the	network	stack	(1)
• What	is	a	network	stack?
– Kernel-resident	library	of	networking	routines
– Sockets,	TCP/IP,	UDP/IP,	Ethernet,	…

• Implements	user	abstractions,	network-interface	
abstraction,	protocol	state	machines,	sockets,	etc.
– System	calls:	socket(),	connect(),	send(),	recv(),	listen(),	…

• Highly	complex	and	concurrent	subsystem
– Composed	from	many	(pluggable)	elements
– Socket	layer,	network	device	drivers,	protocols,	…

• Typical	paths	‘up’	and	‘down’:	packets	come	in,	go	out

20
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Network-stack	work	flows

21

Applications	send,	
receive,	await	data	

on	sockets

Data/packets	
processed;		

dispatched	via	
producer-
consumer	

relationships

Packets	go	in	and	
out	of	network	

interfaces

The	work:	adding/removing	headers,	calculating	checksums,	
fragmentation/defragmentation,	segment	reassembly,	reordering,	flow	control,	etc.

Case	study:	the	network	stack	(2)
• First,	make	it	safe without	the	Giant	lock
– Lots	of	data	structures	require	locks
– Condition	signaling	already	exists	but	will	be	added	to
– Establish	key	work	flows,	lock	orders

• Then,	make	it	fast
– Especially	locking	primitives	themselves
– Increase	locking	granularity	where	there	is	contention

• As	hardware	becomes	more	parallel,	identify	and	
exploit	further	concurrency	opportunities
– Add	more	threads,	distribute	more	work

22



10/23/16

12

What	to	lock	and	how?
• Fine-grained	locking	overhead vs.	contention

– Some	contention	is	inherent:	reflects	necessary	communication
– Some	contention	is	false	sharing:	side	effect	of	structure	choices

• Principle:	lock	data,	not	code	(i.e.,	not	critical	sections)
– Key	structures:	network	interfaces,	sockets,	work	queues
– Independent	structure	instances	often	have	their	own	locks

• Horizontal	vs.	vertical	parallelism
– H:	Different	locks	for	different	connections	(e.g.,	TCP1	vs.	TCP2)
– H:	Different	locks	within	a	layer	(e.g.,	receive	vs.	send	buffers)
– V:	Different	locks	at	different	layers	(e.g.,	socket	vs.	TCP	state)

• Things	not	to	lock:	packets	in	flight	- mbufs (‘work’)

23

Example:	Universal	Memory	Allocator	
(UMA)

• Key	kernel	service
• Slab	allocator

– (Bonwick 1994)
• Per-CPU	caches

– Individually	locked
– Amortise (or	avoid)	global	

lock	contention
• Some	allocation	patterns	

use	only	per-CPU	caches
• Others	require	dipping	

into	the	global	pool

24

🔒🔒

🔒



10/23/16

13

Work	distribution
• Packets	(mbufs)	are	units	of	work
• Parallel	work	requires	distribution	to	threads
– Must	keep	packets	ordered	– or	TCP	gets	cranky!

• Implication:	strong	per-flow	serialization
– I.e.,	no	generalized	producer-consumer/round	robin
– Various	strategies	to	keep	work	ordered;	e.g.:

• Process	in	a	single	thread
• Multiple	threads	in	a	‘pipeline’	linked	by	a	queue

– Misordering allowed	between	flows,	just	not	within	them
• Establish	flow-CPU	affinity	can	both	order	processing	
and	utilize	caches	well

25

Scalability

26

?

What	might	we	expect	if	we	
didn’t	hit	contention?

Key	idea:
speedup

As	we	add	more	
parallelism,	we	would	like	
the	system	to	get	faster.

Key	idea:
performance	collapse

Sometimes	parallelism	
hurts	performance	more	
than	it	helps	due	to	work-
distribution	overheads,	

contention.
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Longer-term	strategies

• Hardware	change	motivates	continuing	work
– Optimize	inevitable	contention
– Lockless	primitives
– rmlocks,	read-copy-update	(RCU)
– Per-CPU	data	structures
– Distribute	work	to	more	threads	..	to	utilise
growing	core	count

• Optimise for	locality,	not	just	contention:	
cache,	NUMA,	and	I/O	affinity

27

Conclusions
• FreeBSD	employs	many	of	C&DS	techniques
– Mutual	exclusion,	condition	synchronization
– Producer-consumer,	lockless	primitives
– Also	Write-Ahead	Logging	(WAL)	in	filesystems

• Real-world	systems	are	really	complicated
– Hopefully,	you	will	mostly	consume,	rather	than	
produce,	concurrency	primitives	like	these

– Composition	is	not	straightforward
– Parallelism	performance	wins	are	a	lot	of	work
– Hardware	continues	to	evolve

• See	you	in	Distributed	Systems!
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