
Example Sheet for Operating Systems I (Part IA)

1. (a) Modern computers store data values in a variety of “memories”, each
with differing size and access speeds. Briefly describe each of the
following:

i. cache memory

ii. main memory

iii. registers

(b) Give an example situation in which operating systems effectively
consider disk storage to be a fourth type of “memory”.

2. (a) Describe (with the aid of a diagram where appropriate) the
representation in main memory of:

i. An unsigned integer

ii. A signed integer

iii. A text string

iv. An instruction

(b) Does an operating system need to know whether the contents of a
particular register represent a signed or unsigned integer?

(c) Describe what occurs during a context switch.

3. Describe with the aid of a diagram how a simple computer executes a program
in terms of the fetch-execute cycle, including the ways in which arithmetic
instructions, memory accesses and control flow instructions are handled.

4. System calls are part of most modern operating systems.

(a) What is the purpose of a system call?

(b) What mechanism is typically used to implement system calls?

5. (a) Operating systems need to be able to prevent applications from crashing
or locking up the system, or from interfering with other applications.
Which three kinds of hardware support do we require to accomplish
this?

(b) How do applications request that the operating system perform tasks on
their behalf?

(c) What could we do if we did not have the requisite hardware support?

6. Explain how a program accesses I/O devices when:

(a) it is running in supervisor-mode

(b) it is running in user-mode

1



7. From the point of view of the device driver, data may be read from an
I/O device using polling, inerrupt-driven programmed I/O, or direct memory
access (DMA). Briefly explain each of these terms, and in each case outline
using pseudo-code (or a flow chart) the flow of control in the device driver
when reading data from the device.

8. From the point of view of the application programmer, data may be read
from a device in a blocking, non-blocking or asynchronous fashion. Using
a keyboard as an example device, describe the expected behaviour in each
case.

9. Process scheduling can be preemptive or non-preemptive. Compare and
contrast these approaches, commenting on issues of simplicity, fairness,
performance and required hardware support.

10. (a) Describe how the CPU is allocated to processes if static priority
scheduling is used. Be sure to consider the various possibilities available
in the case of a tie.

(b) “All scheduling algorithms are essentially priority scheduling
algorithms.”

Discuss this statement with reference to the first-come first-served
(FCFS), shortest job first (SJF), shortest remaining time first (SRTF)
and round-robin (RR) scheduling algorithms.

(c) What is the major problem with static priority scheduling and how may
it be addressed?

(d) Why do many CPU scheduling algorithms try to favour I/O intensive
jobs?

11. An operating system uses a single queue round-robin scheduling algorithm
for all processes. You are told that a quantum of three time units is used.

(a) What can you infer about the scheduling algorithm?

(b) Why is this sort of algorithm suitable for a multi-user operating system?

(c) The following processes are to be scheduled by the operating system.

Process Creation Time Required Computing Time
P1 0 9
P2 1 4
P3 7 2

None of the processes ever blocks. New processes are added to the tail of
the queue and do not disrupt the currently running process. Assuming
context switches are instantaneous, determine the response time for each
process.

(d) Give one advantage and one disadvantage of using a small quantum.

2



12. (a) Describe with the aid of a diagram the life-cycle of a process. You should
describe each of the states that it can be in, and the reasons it moves
between these states.

(b) What information does the operating system keep in the process control
block?

(c) What information do the shortest job first (SJF) and shortest remaining
time first (SRTF) algorithms require about each job or process? How
can this information be obtained?

(d) Give one advantage and one disadvantage of non-preemptive scheduling.

(e) What steps does the operating system take when an interrupt occurs?
Consider both the programmed I/O and DMA cases, and the interaction
with the CPU scheduler.

(f) What problems could occur if a system experienced a very high interrupt
load? What if the device[s] in question were DMA-capable?

13. (a) What is the address binding problem?

(b) The address binding problem can be solved at compile time, load time
or run time. For each case, explain what form the solution takes, and
give one advantage and one disadvantage.

14. For each of the following, indicate if the statement is true or false, and explain
why:

(a) Preemptive schedulers require hardware support.

(b) A context switch can be implemented by a flip-flop stored in the
translation lookaside buffer (TLB).

(c) Non-blocking I/O is possible even when using a block device.

(d) Shortest job first (SJF) is an optimal scheduling algorithm.

(e) Round-robin scheduling can suffer from the so-called ‘convoy effect’.

(f) A paged virtual memory is smaller than a segmented one.

(g) Direct memory access (DMA) makes devices go faster.

(h) System calls are an optional extra in modern operating systems.

(i) In Unix, hard-links cannot span mount points.

(j) The Unix shell supports redirection to the buffer cache.

15. Most operating systems provide each process with its own address space by
providing a level of indirection between virtual and physical addresses.

(a) Give three benefits of this approach.

(b) Are there any drawbacks? Justify your answer.

(c) A processor may support a paged or a segmented virtual address space.

3



i. Sketch the format of a virtual address in each of these cases, and
explain using a diagram how this address is translated to a physical
one.

ii. In which case is physical memory allocation easier? Justify your
answer.

iii. Give two benefits of the segmented approach.

16. File systems comprise a directory service and a storage service.

(a) What are the two main functions of the directory service?

(b) What is a directory hierarchy? Explain your answer with the aid of a
diagram.

(c) What information is held in file meta-data?

(d) What is a hard link? Does file system support for hard links place any
restrictions on the location of file meta-data?

(e) What is a soft (or symbolic) link? Does file system support for soft links
place any restrictions on the location of file meta-data?

17. (a) In the context of memory management, under which circumstances do
external and internal fragmentation occur? How can each be handled?

(b) What is the purpose of a page table? What sort of information might it
contain? How does it interact with a TLB?

(c) Describe with the aid of a diagram a two-level page table. Explain the
motivation behind the structure and how it operates.

18. Suppose we have a system with three users a, b and c and ten files f0,f1,...f9.

Further suppose we have four operations for which we wish to control access:
read, append,replace and modify.

(a) Do we require all of these or can some be described by combinations of
others?

(b) Create a nontrivial example set of access tuples of the the form (user,
file, permission) and show how it might be represented as i) an access
matrix, ii) access control lists, iii) capability sets

19. Describe the basic access control scheme used in the Unix filing system. How
does UNIX support more advanced access control policies?

20. (a) Describe with the aid of a diagram the on-disk layout of a Unix V7
filesystem. Include in your description the role of the superblock, and
the way in which free inodes and data blocks are managed.

(b) Describe with the aid of a diagram a Unix V7 inode.

(c) Estimate the largest file size supported by a Unix V7 filesystem.

(d) Suggest one reliability enhancement and two performance enhancements
which could be made to the Unix V7 filesystem.

4



21. (a) Compare and contrast blocking, non-blocking and asynchronous I/O.

(b) Give four techniques which can improve I/O performance.

22. (a) Describe, with the aid of diagrams where appropriate, how Unix
implements and manages:

i. a hierarchical name space for files

ii. allocation of storage on disk

iii. file-system and file meta-data

iv. pipes

(b) A Unix system administrator decides to make a ‘versioned’ file-system
in which there are a number of directories called /root-dd-mm-yyyy,
each of which holds a copy of the file-system on day dd, month mm

and year yyyy. The idea is that at any particular time only the most
recent snapshot will be used as the ‘real’ filesystem root, but that all
previous snapshots will be available by explicitly accessing the directory
in question. In this way the system administrator hopes to allow
resilience to mistaken edits or unintentional deletions by users, or to
hardware problems such as a disk head crash.

To implement this, the system administrator arranges for a program
to run every morning at 01:00 which recursively ‘copies’ the current
snapshot to the new one. However to save disk space, hardlinks are used
in place of actual copies. Once the ‘copy’ is complete, the new snapshot
is used as the new root.

To what extent will this scheme provide the functionality the system
administrator hopes for? What advantages and disadvantages does it
have?

23. Describe how CPU scheduling algorithms favour I/O intensive jobs in the
Unix operating systems.

24. Describe with the aid of a diagram a Unix inode. You should explain the
motivation behind indirect blocks, and how they are used when accessing a
file.

25. Describe the operation of the Unix shell with reference to the process
management system calls it makes use of. You might like to use pseudo-
code or a diagram to aid with your description.

5


