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Learn to Rank

e Given a collection, specify an ordering of the items

e Approaches
o Point-wise
o Pair-wise
o List-wise
e Applications
o Information retrieval
o Automated Essay Scoring
o Parsing



Actively learn pair-wise ranking

e Query: x,>x,?
e Three possible answers:
o Strongly ordered
m X1>x2
m X1<x2

o  Weakly ordered
m  Xx1=x2



Task, formally...

e Learning objective: ranking function
T(x) = wlx,

e Such that a maximum number of constraints are satisfied:
whx; > wlx;, if (1,j)€S
whx; = whx;, if (i,5) eW

e This is computationally intractable



As a large margin problem:

Margin = 2/ ||w]|? .




As an optimisation problem:
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Kernalisation

e Problem: data vectors are most likely not linearly separable
e Map data points to higher dimensional space where they are linearly
separable and learn

T(x) = w' $(x)

e Mapping could be very expensive, because the dimension of the space points
are mapped to is very high

e Express the optimisation problem in terms of dot products of instance vectors,
and use kernel function instead:

K(z,z) = ¢(z)" ¢(2)



Kernelisation
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Kernelisation
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Kernelisation
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Query strategy

e \We want to choose a pair of items whose ordering would improve the ranking
function
e Pair of elements whose ordering is “ambiguous”



Local Uncertainty

e Ambiguous pair = the value that the ranking function returns is similar
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e Their ranking being ambiguous might be desirable
o They are similar instances and user would say that they are weakly ordered
o This won’t improve our hypothesis of ranking function
o This information could be an important constraint later on when we know about some other
pairs near these two points
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Global Uncertainty o
IOk
e Point whose ranking is ambiguous among others -'
wT (x; — X;) — miny, wl (x; — xp,) '
D(xi,xj) = 7 —
maxy, W' (X; — Xx) — min,, w! (x; — Xg)
GU(x;) = — Z Dix;;x;) log Diag;; x;)

XJEX,J#'&
e Empirically points in a “dense” region get chosen

e If we only use this uncertainty measure, we might risk choosing outliers/noise
which we don’t want our ranking function to fit around



Algorithm

e RankSVM

o Gradient-based optimisation
o Input data: strong ordering
o No kernel
e Relative Attributes
o Newton’s method
o Input data: Strong + weak ordering
o No kernel
e Proposed
o RBF kernel



Comparison

e Different algorithm + Active learning
0 RankSVM + Active
O Relative Attributes + Active
e Proposed method - global uncertainty

0 Proposed + Local Uncertainty

e Query about random pairs
O Proposed + Random
0 RankSVM + Random
0 Relative Attributes + Random

e Proposed method



Evaluation metric

e Normalised discounted cumulative gain

(2*®) —1)
ND =N
Gl Z log, (1 + 1)



Financial Risk Ranking

e Task: Rank companies w.r.t. their financial risks

Feature:15k features from annual revenue reports of corporations projected to
100 dimensions

e Ground truth: stock return volatility measurements



Financial Risk Ranking
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Election Votes Ranking

e Task: rank the 3,107 US counties w.r.t. their contributions in presidential
election

e Feature: 6 dimension

o Population > 18 yrs
Population with higher education
Number of owner-occupied housing units
Income
Latitude
Longitude

e Ground truth: log of the proportion of votes cast

o O O O O



Election Votes Ranking
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Musical Retrieval

e Task: to retrieve songs released in a particular year based on the features of
audio content

e Feature: 90 dimension

e \Weakly ordered if a music is produced +3 year w.r.t. Music produced in the
input year

e Strongly ordered below otherwise



Musical Retrieval
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Discussion

In general clear

Improved performance attributed to both kernelisation and active learning
Not clear what is “weakly ordered pair” in Application 1/2

Comparison on execution speed

In all cases it’s clearly not linearly separable (training pairs > feature)



