
I. Course Intro and Sorting Networks
Thomas Sauerwald

Easter 2018

Advanced Algorithms

Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher’s Sorting Network

Counting Networks

I. Course Intro and Sorting Networks Outline of this Course 2

(Tentative) List of Topics

IA Algorithms IB Complexity Theory II Advanced Algorithms

I. Sorting Networks (Sorting, Counting)

II. Matrix Multiplication (and Parallel Algorithms)

III. Linear Programming

IV. Approximation Algorithms: Covering Problems
V. Approximation Algorithms via Exact Algorithms
VI. Approximation Algorithms: Travelling Salesman Problem
VII. Approximation Algorithms: Randomisation and Rounding

closely follow CLRS3 and use the same numberring

however, slides will be self-contained (mostly)

I. Course Intro and Sorting Networks Outline of this Course 3

(Tentative) List of Topics

IA Algorithms IB Complexity Theory II Advanced Algorithms

I. Sorting Networks (Sorting, Counting)

II. Matrix Multiplication (and Parallel Algorithms)

III. Linear Programming

IV. Approximation Algorithms: Covering Problems
V. Approximation Algorithms via Exact Algorithms
VI. Approximation Algorithms: Travelling Salesman Problem
VII. Approximation Algorithms: Randomisation and Rounding

closely follow CLRS3 and use the same numberring

however, slides will be self-contained (mostly)

I. Course Intro and Sorting Networks Outline of this Course 3

(Tentative) List of Topics

IA Algorithms IB Complexity Theory II Advanced Algorithms

I. Sorting Networks (Sorting, Counting)

II. Matrix Multiplication (and Parallel Algorithms)

III. Linear Programming

IV. Approximation Algorithms: Covering Problems
V. Approximation Algorithms via Exact Algorithms
VI. Approximation Algorithms: Travelling Salesman Problem
VII. Approximation Algorithms: Randomisation and Rounding

closely follow CLRS3 and use the same numberring

however, slides will be self-contained (mostly)

I. Course Intro and Sorting Networks Outline of this Course 3

(Tentative) List of Topics

IA Algorithms IB Complexity Theory II Advanced Algorithms

I. Sorting Networks (Sorting, Counting)

II. Matrix Multiplication (and Parallel Algorithms)

III. Linear Programming

IV. Approximation Algorithms: Covering Problems
V. Approximation Algorithms via Exact Algorithms
VI. Approximation Algorithms: Travelling Salesman Problem
VII. Approximation Algorithms: Randomisation and Rounding

closely follow CLRS3 and use the same numberring

however, slides will be self-contained (mostly)

I. Course Intro and Sorting Networks Outline of this Course 3

Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher’s Sorting Network

Counting Networks

I. Course Intro and Sorting Networks Some Highlights 4

Linear Programming and Simplex

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75
28

12

9.6

maximize 3x1 + x2 + 2x3
subject to

x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

I. Course Intro and Sorting Networks Some Highlights 5

Linear Programming and Simplex

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75
28

12

9.6

maximize 3x1 + x2 + 2x3
subject to

x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

I. Course Intro and Sorting Networks Some Highlights 5

Linear Programming and Simplex

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75
28

12

9.6

maximize 3x1 + x2 + 2x3
subject to

x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

I. Course Intro and Sorting Networks Some Highlights 5

Linear Programming and Simplex

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75
28

12

9.6

maximize 3x1 + x2 + 2x3
subject to

x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

I. Course Intro and Sorting Networks Some Highlights 5

Linear Programming and Simplex

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75
28

12

9.6

maximize 3x1 + x2 + 2x3
subject to

x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

I. Course Intro and Sorting Networks Some Highlights 5

The Original Article (1954)

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN
PROBLEM*

G. DANTZIG, R. FULKERSON, AND S. JOHNSON
The Rand Corporation, Santa Monica, California

(Received August 9, 1954)

It is shown that a certain tour of 49 cities, one in each of the 48 states and
Washington, D. C., has the shortest road distance.

THE TRAVELING-SALESMAN PROBLEM might be described as
follows: Find the shortest route (tour) for a salesman starting from a

given city, visiting each of a specified group of cities, and then returning to
the original point of departure. More generally, given an n by n sym-
metric matrix D= (d1i), where doi represents the 'distance' from I to J,
arrange the points in a cyclic order in such a way that the sum of the d1j
between consecutive points is minimal. Since there are only a finite
number of possibilities (at most (n - 1)!) to consider, the problem is
to devise a method of picking out the optimal arrangement which is
reasonably efficient for fairly large values of n. Although algorithms have
been devised for problems of similar nature, e.g., the optimal assignment
problem,3"78 little is known about the traveling-salesman problem. We
do not claim that this note alters the situation very much; what we shall do
is outline a way of approaching the problem that sometimes, at least, en-
ables one to find an optimal path and prove it so. In particular, it will be
shown that a certain arrangement of 49 cities, one in each of the 48 states
and Washington, D. C., is best, the djj used representing road distances as
taken from an atlas.

* HISTORICAL NOTE: The origin of this problem is somewhat obscure. It
appears to have been discussed informally among mathematicians at mathematics
meetings for many years. Surprisingly little in the way of results has appeared in
the mathematical literature.10 It may be that the minimal-distance tour problem
was stimulated by the so-called Hamiltonian game' which is concerned with finding
the number of different tours possible over a specified network. The latter problem
is cited by some as the origin of group theory and has some connections with the
famous Four-Color Conjecture.9 Merrill Flood (Columbia University) should be
credited with stimulating interest in the traveling-salesman problem in many quar-
ters. As early as 1937, he tried to obtain near optimal solutions in reference to
routing of school buses. Both Flood and A. W. Tucker (Princeton University) re-
call that they heard about the problem first in a seminar talk by Hassler Whitney
at Princeton in 1934 (although Whitney, recently queried, does not seem to recall
the problem). The relations between the traveling-salesman problem and the
transportation problem of linear programming appear to have been first explored by
M. Flood, J. Robinson, T. C. Koopmans, M. Beckmann, and later by I. Heller and
H. Kuhn.4 5'6

393

I. Course Intro and Sorting Networks Some Highlights 6

Travelling Salesman Problem: The 42 (49) Cities
394 DANTZIG, FULKERSON, AND JOHNSON

In order to try the method on a large problem, the following set of 49
cities, one in each state and the District of Columbia was selected:

1. Manchester, N. HI. 18. Carson City, Nev. 34. Birmingham, Ala.
2. Montpelier, Vt. 19. Los Angeles, Calif. 35. Atlanta, Ga.
3. Detroit, Mich. 20. Phoenix, Ariz. 36. Jacksonville, Fla.
4. Cleveland, Ohio 21. Santa Fe, N. M. 37. Columbia, S. C.
5. Charleston, W. Va. 22. Denver, Colo. 38. Raleigh, N. C.
6. Louisville, Ky. 23. Cheyenne, Wyo. 39. Richmond, Va.
7. Indianapolis, Ind. 24. Omaha, Neb. 40. Washington, D. C.
8. Chicago, Ill. 25. Des Moines, Iowa 41. Boston, Mass.
9. Milwaukee, Wis. 26. Kansas City, Mo. 42. Portland, Me.

10. Minneapolis, Minn. 27. Topeka, Kans. A. BaltimoreA Md.

12. Bismark, N. D. 28. Oklahoma City, Okla. B. Wilmington, Del.
13. Helenar, MNt. 29. Dallas, Tex. C. Philadelphia, Penn.
14. Seattle, Wash. 30. Little Rock, Ark. D. Newark, N. J.
15. Portland, Ore. 31. Memphis, Tenn. E. New York, N. Y.
16. Boise, Idaho 32. Jackson, Miss. F. Hartford, Conn.
17. Salt Lake City, Utah 33. New Orleans, La. G. Providence, R. I.

The reason for picking this particular set was that most of the road
distances between them were easy to get from an atlas. The triangular
table of distances between these cities (Table I) is part of the original one
prepared by Bernice Brown of The Rand Corporation. It gives dj=
K7 (di; - 11) (IJ = 1, 2, * , 42), where dii is the road distance in miles
between I and J. The d1i have been rounded to the nearest integer.
Certainly such a linear transformation does not alter the ordering of the
tour lengths, although, of course, rounding could cause a tour that was
not optimal in terms of the original mileage to become optimal in terms of
the adjusted units used in this paper.

We will show that the tour (see Fig. 16) through the cities 1, 2, * *, 42
in this order is minimal for this subset of 42 cities. Moreover, since in
driving from city 40 (Washington, D. C.) to city 41 (Boston, Massachusetts)
by the shortest road distance one goes through A, B, * * *, G, successively,
it follows that the tour through 49 cities 1, 2, .*, 40, A, B, *., G, 41,
42 in that order is also optimal.

PRELIMINARY NOTIONS

Whenever the road from I to J (in that order) is traveled, the value
XIJ I is entered into the IJ element of a matrix; otherwise xiJ 0 is
entered. A (directed) tour through n cities can now be thought of as a
permutation matrix of order n which represents an n-cycle (we assume

* This particular transformation was chosen to make the d1j of the original table
less than 256 which would permit compact storage of the distance table in binary
representation; however, no use was made of this.

I. Course Intro and Sorting Networks Some Highlights 7

Road Distances

\0)
cO

 0O

00
n

00
e

cn
C

- I-
tr\

o
C

N
C

cl

cn cn -t
00

rN

C
4

f
0

00\,O

0
tn

0 \
'

C
C

,
C

-)
n

n\ ,O

c
0

t
Q

>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0

O
.

0
q O

 00
ol

o
e

S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i
c

C
t'I t n

+
+ t-oo

0
N

0

0
>

n
cn

0
t-

z
>

? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C
,

C
,>

e
?-\,

roo +r"
0

e
0

?
0

?
\o

0
c

o
O

-

t" 00]00 C
~

H

F
,,

E
m

N

>
+

>
>

t
+

+
?

+?t
+

O

4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t

t
Q

'
m

+m
O

>

tw
#)b

.-w
9

C
-4 C

,
C

4
Q

o
\1-

\0
0

00 ac
s

(0
iC

it

3
i0

t
00

I- ,

t1
?

t (~~~~~~~n
Itm

-<
. r -\o

,O
 C

o ~O
 rO

o
e 4

? 6>t
I

00
M

M

f-

4 r
> 00

C
6 O

 H
e %4

00)
Q

o

an
~

b
6

on
6

H

X

?
O

H

ct

+
tn

a> a>
4

0

S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ cn
r

X
bt

X
e\o \0

to
00

0
0 C

, O
 0

O
n m

?i

? 00
0tC

I
0

0 0 00
.

00 ??o
00

L"O

tO

ci t es) c i
t'Thf?ci

.00'
000

cn
st 0,

4i

~ ~4-~0)
00

ci
C

)
C

S) t~ 'tci\O

'-ci t0-~ ~,
j.0

t 0-
H

00

0C

i

cd
-,o

o-o
r-

coZ\~
00

oo
O

(7

0
ft+m

?
s

SA
?

c
H

cn

ocall 0
0

0
W

C

S-
o

tn
o

cic~~-000000
00m

000-'-'M
~

c
00c

Z
t '.'

t0
t"-'t00

ci)
0

i
0

H

a
-

tc
t Z-000

ci
00

V
-.

t O

0)'
C

,
0

0
0

0"0o
C

it
N

',
''

kf
~~

)'t'ci0000
-~~~~~~~ci'C

00
0000

d
I0~0

cic
-p\

-
0

ci
0

0 O
~~~~(~~f--~~ 

'-cic~~ 0',tci0',00 
O

~~~~c-) 
~~ t-0',tfl\,~~~~ ci00

0
C

X
~~~~~~~~~~~~~~~~~~~~- 

*0 
C

' 
- 

)+ mo 
v00 

1c H
F 

tl 
C

A
 C

 n 
C

 
,oo 

t- 
o 

_I 

-o 
o 

ci 
~cif-~0 

O
 

0 
0 

', 
-, 

, 
00 

- 
t 

r 
0 

o 
0 

C
 

C
 

c 
F4 

i 
" 

0 
\O

'-ci00 
ci 

0N
00\0 

00 
f--0000 

-00X
-= 

~-A
 

tit- 
c 

C
A

 
"C

, 
00 

0N
0c'c 

ci 
0 

c 
c 

i 
c00 roN

 
C

o\ 
r' 

" 
04 

r 
r0 

00 
-\ 

"O
 

cm
 

C
\ 

m
 

0 
rb4 

t- 
-t 

r\. 
o 

m
O

O
 

C
P\ 0 

0 
t3n C

n 
\ d 

U
N

 CP\00 
r-0 

0 
0 

c 
0 

i 
0 

't 
' 

0 
N

 
, 

' 
b0 

""O
 

-- 
m

0 
00 

ci 
m

m
00 0 

't 
'tci)00 

080 O
N

 
i00 

fm
 cN

 
' 

0 
'0 

' 

0) 
ci 

ci 
'-'~0 

'-ci'~0 'tf--00 
000000 

O
N

O
 

c 
\.O

 
ci 

t- 
',tr 

~\C
 0 

w
m

 

ci 
'tci)'-ci00 

00 
f--i 

c 
o 

it N ci 
m

 
4 c 

cO
 

n 
q- tn 

W
 

0e 
ci'- 

O
~ci 

0-?O
 ci 

~i't"0 
'ciO

N
O

 
ci 

c 
I-,0 O

N
- 

'-cic'o 
-,o 

O
C

) C
O

 C
 

)'c\ 
. tO

 X
 

o0 0) 
Q

r0 
F- 

0 
C

')'t 
t-4 

4 
0 

0 
f- 

C
= 

f\ 
C

%
 

f 
00 

-* 

c')t 
C

4 
" 

) 
'cX

Io --\O
 

t 
-f 

O
N

 
0 

ci 
c 

c 
cn 

t 
- 

'tO
-00 

+ 
 

00 
.) 

- 
I 

C
, ) 0) 

F- 
H

 
-00 

0)0 
O

N
 

O
N

O
C

= 
0 

- 

\O
 

-C
O

 
ciO

N
 rC

 
' 

C
A

 
o 

't00 
)o 

n 
O

N
 O

 
rt 

O
 

C
' )\00 

ci ' 
rcic 

o 
00- o"- 

- 

-0 
00 

000 
'- 

c 
ci 

\i' 
C

) 
"0f--00 

0 
0 

M
 

0 
0 

- 
O

N
 

C
IA

 
O

 0C
i-' 

0 
0 

0- 
r0 

00 
C

0 ci 
C

 
00 

0-O
N

 I- 
c 

i 
' 

- 
0 

-c 
c 

0 

ci 
i 

- 
00 

0-0 
c 

0 
'H

'tc 
C

n 
C

Y
'o 

-I 
'. 

-0 
00 

O
t 

) 
0000 

- 
C

A
 

11- 
-00 

C
i ci 

000 
? 

W
 

0 
C

c 
" 

' 
- 

- 
- 

- 
O

 
- -00N

 
0 

M
'- 

\o 
0 

c 
M

q0-~ 
0N

 
cc-\,O

N
'.0 

"C
 ci 

O
O

N
 ci 

\,O
 00 \000 

ci 
't~~~ci00ciC

')C
00c~~ic0 

'-~ 
\O

C
ic 

C
A

ic 
cn -,i,-4t 

tj 

t 
- 

O
 

M
O

O
 ', 

O
 

O
 

V
 

- 
0\, 

C
) 

',) 
'.O

O
N

N
C

) 
00 

" 
C

) 
, -- 

-C
 

C
'\00 

0 
ci 

'I 
O

 
O

'4 
. 

C
l C

n 0 
000 

O
 

t 
0 

0M
 

- 
O

 
-??? 

r 

f-o- 
0 

C
, 

-'t 
O

0 
0 

C
0 

' t 
--C

-) 
o 

0 
00 

0\, 
- O

 
'ci00 

O
C

A
 

t 
00 

0 
M

 
t 

ci 
C

')'-ci 
f--- 

C
''- 

' t '3 t o ci 
o)0000 

'-cit 
' t't 

0'-t 
c')'-+W

'c 
) 

t 
ci 

0 
V

6 
V

 
c 

ci 
ci ~~~ 

~ 't'0 
0-C

 
f- -'c 

ci 
(' 

''c 
)0 

0'-- 
'-i- 

-vi 
-l0'" 

'C
A

~ici 
c 

0c 
0 X

ci 
0- 

ci 
0 't0"0 

0-'-800c C
"C

i 
0 

, 
0 

C
')'t 

', 
00 

C
,) 

cn 
i'c 

tl 
''' 

-i 
i'c 

f 
cici 

C
A

ci 
I- 

\- 
.-0 

-N
#- 

C
A

 
-, 

c 
N

.t 
'' 

C
'. 

iN
-tc'c) 

' 
o~~~~~~~~~~~~~~~~~~~~~~~C

 
H

7O
 

r- 
-1 

r 
tn 

3 
\3 ,O

 
45 

m
 

C
4 

C
A

 
-n+< 

t6> 
c n 

'-f 
0 

O
 C
i4 

\ 
- 'I- 

i 
O

 
\cO

 
O

 
00 

0)0 
cn 

')ci 
'-'- 

i-I 
O

- 
O

N
-C

 
f--"-, 

'-) 
m

 

i ' 
0 

%
,O

 
0O

 
' 

tt-\ 
00\ )O

 
c\ 

0 
04 

0) 
O

N
C

 
f 

O
N

 
-\ C

> 
Y

 
C

f- O
 

ci'3 
' 

+ + 
+ 

)00 0 
O

a 
-0 

00 
ooci 

C
",00 

'-ci'-o 
C

-- 
ci 

't'-ci 
f--f-- 

f-i 
' 

i- 
00 

i 
cO

N
cO

N
 

0 
0- 

0C
 

- 

C
'O

cim
 -c 

-n 
--N

o 
000 

o 0 
0w

'0000 
1. 

t-0 
C

" ,'- 
r- 

00 
'T0 

C
O

N
 00 

O
 

sf-C
-A

 
f- 

' 
iti 

c 

N
m

 
m

 
M

) 
'i s) 

ooO
 

O
O

 
y 

Q
tN

 130dt 
000 C

~, 
O

 
i 

Z 
o 

o 
M

c 
\O

 
8-Q

-) 
C

\ 

S~~~~~~~diF~~~~~~~" 
r*tO

 
"_ G

e 
.- 

V
d iU4(" 

N
6~h 

N
eez 

F#0 
) 

-m
m

etm
 

m
bo 

m
m

 

I. Course Intro and Sorting Networks Some Highlights 8



The (Unique) Optimal Tour (699 Units ≈ 12,345 miles)

C
) 

U
l)~~~~~ 

I 
X

4 

0 

C
C

 

A
 

0~~~~~~~~~~0 

* 
| 

~~~A


./H

'-

fC
s

E 4*

400
~

~
~

0

_~~~~~~~~~
V

40M

<

I. Course Intro and Sorting Networks Some Highlights 9

Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher’s Sorting Network

Counting Networks

I. Course Intro and Sorting Networks Introduction to Sorting Networks 10

Overview: Sorting Networks

we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

execute one operation at a time

can handle arbitrarily large inputs

sequence of comparisons is not set in advance

(Serial) Sorting Algorithms

only perform comparisons

can only handle inputs of a fixed size

sequence of comparisons is set in advance

Comparisons can be performed in parallel

Sorting Networks

Allows to sort n numbers
in sublinear time!

Simple concept, but surprisingly deep and complex theory!

I. Course Intro and Sorting Networks Introduction to Sorting Networks 11

Overview: Sorting Networks

we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

execute one operation at a time

can handle arbitrarily large inputs

sequence of comparisons is not set in advance

(Serial) Sorting Algorithms

only perform comparisons

can only handle inputs of a fixed size

sequence of comparisons is set in advance

Comparisons can be performed in parallel

Sorting Networks

Allows to sort n numbers
in sublinear time!

Simple concept, but surprisingly deep and complex theory!

I. Course Intro and Sorting Networks Introduction to Sorting Networks 11

Overview: Sorting Networks

we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

execute one operation at a time

can handle arbitrarily large inputs

sequence of comparisons is not set in advance

(Serial) Sorting Algorithms

only perform comparisons

can only handle inputs of a fixed size

sequence of comparisons is set in advance

Comparisons can be performed in parallel

Sorting Networks

Allows to sort n numbers
in sublinear time!

Simple concept, but surprisingly deep and complex theory!

I. Course Intro and Sorting Networks Introduction to Sorting Networks 11

Overview: Sorting Networks

we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

execute one operation at a time

can handle arbitrarily large inputs

sequence of comparisons is not set in advance

(Serial) Sorting Algorithms

only perform comparisons

can only handle inputs of a fixed size

sequence of comparisons is set in advance

Comparisons can be performed in parallel

Sorting Networks

Allows to sort n numbers
in sublinear time!

Simple concept, but surprisingly deep and complex theory!

I. Course Intro and Sorting Networks Introduction to Sorting Networks 11

Comparison Networks

A comparison network consists solely of wires and comparators:

comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ = min(x , y) and y ′ = max(x , y)
wire connect output of one comparator to the input of another
special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Course Intro and Sorting Networks Introduction to Sorting Networks 12

Comparison Networks

A comparison network consists solely of wires and comparators:
comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ = min(x , y) and y ′ = max(x , y)

wire connect output of one comparator to the input of another
special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Course Intro and Sorting Networks Introduction to Sorting Networks 12

Comparison Networks

A comparison network consists solely of wires and comparators:
comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ = min(x , y) and y ′ = max(x , y)

wire connect output of one comparator to the input of another
special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Course Intro and Sorting Networks Introduction to Sorting Networks 12

Comparison Networks

A comparison network consists solely of wires and comparators:
comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ = min(x , y) and y ′ = max(x , y)
wire connect output of one comparator to the input of another

special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Course Intro and Sorting Networks Introduction to Sorting Networks 12

Comparison Networks

A comparison network consists solely of wires and comparators:
comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ = min(x , y) and y ′ = max(x , y)
wire connect output of one comparator to the input of another
special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Course Intro and Sorting Networks Introduction to Sorting Networks 12

Comparison Networks

A comparison network consists solely of wires and comparators:
comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ = min(x , y) and y ′ = max(x , y)
wire connect output of one comparator to the input of another
special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Course Intro and Sorting Networks Introduction to Sorting Networks 12

Comparison Networks

A comparison network consists solely of wires and comparators:
comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ = min(x , y) and y ′ = max(x , y)
wire connect output of one comparator to the input of another
special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Course Intro and Sorting Networks Introduction to Sorting Networks 12

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F
F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F
F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

DD

D

DD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F
F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

DD

D

D

D

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F
F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

DD

DD

D

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F
F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

DD

DD

D

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F
F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)

This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)

This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth

0 1 1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0

1 1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1

1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1

2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2

2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2

3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network (Exercise)This network would not be a sorting network (Why??)

depth 0 1 1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Course Intro and Sorting Networks Introduction to Sorting Networks 13

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

If a comparison network transforms the input a = 〈a1, a2, . . . , an〉 into
the output b = 〈b1, b2, . . . , bn〉, then for any monotonically increasing
function f , the network transforms f (a) = 〈f (a1), f (a2), . . . , f (an)〉 into
f (b) = 〈f (b1), f (b2), . . . , f (bn)〉.

Lemma 27.1

I. Course Intro and Sorting Networks Introduction to Sorting Networks 14

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

If a comparison network transforms the input a = 〈a1, a2, . . . , an〉 into
the output b = 〈b1, b2, . . . , bn〉, then for any monotonically increasing
function f , the network transforms f (a) = 〈f (a1), f (a2), . . . , f (an)〉 into
f (b) = 〈f (b1), f (b2), . . . , f (bn)〉.

Lemma 27.1

I. Course Intro and Sorting Networks Introduction to Sorting Networks 14

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

If a comparison network transforms the input a = 〈a1, a2, . . . , an〉 into
the output b = 〈b1, b2, . . . , bn〉, then for any monotonically increasing
function f , the network transforms f (a) = 〈f (a1), f (a2), . . . , f (an)〉 into
f (b) = 〈f (b1), f (b2), . . . , f (bn)〉.

Lemma 27.1

a b
Network

f(a) f(b)
Network

f f

710 Chapter 27 Sorting Networks

f (x)

f (y)

min(f (x), f (y)) = f (min(x, y))

max(f (x), f (y)) = f (max(x, y))

Figure 27.4 The operation of the comparator in the proof of Lemma 27.1. The function f is
monotonically increasing.

To prove the claim, consider a comparator whose input values are x and y. The
upper output of the comparator is min(x, y) and the lower output is max(x, y).
Suppose we now apply f (x) and f (y) to the inputs of the comparator, as is shown
in Figure 27.4. The operation of the comparator yields the value min(f (x), f (y))
on the upper output and the value max(f (x), f (y)) on the lower output. Since f
is monotonically increasing, x ≤ y implies f (x) ≤ f (y). Consequently, we have
the identities

min(f (x), f (y)) = f (min(x, y)) ,

max(f (x), f (y)) = f (max(x, y)) .

Thus, the comparator produces the values f (min(x, y)) and f (max(x, y)) when
f (x) and f (y) are its inputs, which completes the proof of the claim.
We can use induction on the depth of each wire in a general comparison network

to prove a stronger result than the statement of the lemma: if a wire assumes the
value ai when the input sequence a is applied to the network, then it assumes the
value f (ai) when the input sequence f (a) is applied. Because the output wires are
included in this statement, proving it will prove the lemma.
For the basis, consider a wire at depth 0, that is, an input wire ai . The result

follows trivially: when f (a) is applied to the network, the input wire carries f (ai).
For the inductive step, consider a wire at depth d, where d ≥ 1. The wire is the
output of a comparator at depth d, and the input wires to this comparator are at a
depth strictly less than d. By the inductive hypothesis, therefore, if the input wires
to the comparator carry values ai and a j when the input sequence a is applied,
then they carry f (ai) and f (a j) when the input sequence f (a) is applied. By
our earlier claim, the output wires of this comparator then carry f (min(ai , a j))
and f (max(ai , a j)). Since they carry min(ai , a j) and max(ai , a j) when the input
sequence is a, the lemma is proved.

As an example of the application of Lemma 27.1, Figure 27.5(b) shows the sort-
ing network from Figure 27.2 (repeated in Figure 27.5(a)) with the monotonically
increasing function f (x) = #x/2$ applied to the inputs. The value on every wire
is f applied to the value on the same wire in Figure 27.2.
When a comparison network is a sorting network, Lemma 27.1 allows us to

prove the following remarkable result.

I. Course Intro and Sorting Networks Introduction to Sorting Networks 14

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

If a comparison network transforms the input a = 〈a1, a2, . . . , an〉 into
the output b = 〈b1, b2, . . . , bn〉, then for any monotonically increasing
function f , the network transforms f (a) = 〈f (a1), f (a2), . . . , f (an)〉 into
f (b) = 〈f (b1), f (b2), . . . , f (bn)〉.

Lemma 27.1

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

I. Course Intro and Sorting Networks Introduction to Sorting Networks 14

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.
Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output
Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Course Intro and Sorting Networks Introduction to Sorting Networks 15

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.
Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output
Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Course Intro and Sorting Networks Introduction to Sorting Networks 15

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:
For the sake of contradiction, suppose the network does not correctly sort.

Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output
Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Course Intro and Sorting Networks Introduction to Sorting Networks 15

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:
For the sake of contradiction, suppose the network does not correctly sort.
Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output

Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Course Intro and Sorting Networks Introduction to Sorting Networks 15

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:
For the sake of contradiction, suppose the network does not correctly sort.
Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output
Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Course Intro and Sorting Networks Introduction to Sorting Networks 15

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:
For the sake of contradiction, suppose the network does not correctly sort.
Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output
Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Course Intro and Sorting Networks Introduction to Sorting Networks 15

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:
For the sake of contradiction, suppose the network does not correctly sort.
Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output
Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Course Intro and Sorting Networks Introduction to Sorting Networks 15

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:
For the sake of contradiction, suppose the network does not correctly sort.
Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output
Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma
⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Course Intro and Sorting Networks Introduction to Sorting Networks 15

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:
For the sake of contradiction, suppose the network does not correctly sort.
Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output
Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma
⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Course Intro and Sorting Networks Introduction to Sorting Networks 15

Some Basic (Recursive) Sorting Networks

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network ???

Bubble Sort

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???Insertion Sort

These are Sorting Networks, but with depth Θ(n).

I. Course Intro and Sorting Networks Introduction to Sorting Networks 16

Some Basic (Recursive) Sorting Networks

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???

Bubble Sort

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???Insertion Sort

These are Sorting Networks, but with depth Θ(n).

I. Course Intro and Sorting Networks Introduction to Sorting Networks 16

Some Basic (Recursive) Sorting Networks

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???

Bubble Sort

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network ???

Insertion Sort

These are Sorting Networks, but with depth Θ(n).

I. Course Intro and Sorting Networks Introduction to Sorting Networks 16

Some Basic (Recursive) Sorting Networks

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???

Bubble Sort

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???

Insertion Sort

These are Sorting Networks, but with depth Θ(n).

I. Course Intro and Sorting Networks Introduction to Sorting Networks 16

Some Basic (Recursive) Sorting Networks

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???

Bubble Sort

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???

Insertion Sort

These are Sorting Networks, but with depth Θ(n).

I. Course Intro and Sorting Networks Introduction to Sorting Networks 16

Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher’s Sorting Network

Counting Networks

I. Course Intro and Sorting Networks Batcher’s Sorting Network 17

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉
〈6, 9, 4, 2, 3, 5〉
〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉
〈6, 9, 4, 2, 3, 5〉
〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉
〈6, 9, 4, 2, 3, 5〉
〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 ?

〈6, 9, 4, 2, 3, 5〉
〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X

〈6, 9, 4, 2, 3, 5〉
〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 ?

〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X

〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X
〈9, 8, 3, 2, 4, 6〉 ?

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X
〈9, 8, 3, 2, 4, 6〉 X

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X
〈9, 8, 3, 2, 4, 6〉 X
〈4, 5, 7, 1, 2, 6〉 ?

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X
〈9, 8, 3, 2, 4, 6〉 X
((((((〈4, 5, 7, 1, 2, 6〉

binary sequences:

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X
〈9, 8, 3, 2, 4, 6〉 X
((((((〈4, 5, 7, 1, 2, 6〉
binary sequences: ?

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X
〈9, 8, 3, 2, 4, 6〉 X
((((((〈4, 5, 7, 1, 2, 6〉
binary sequences: 0i1j0k , or, 1i0j1k , for i, j, k ≥ 0.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 18

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 19

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 19

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 19

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 19

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 19

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 19

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 19

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 19

Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form 0i1j0k , for some i, j, k ≥ 0.

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 20

Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form 0i1j0k , for some i, j, k ≥ 0.
714 Chapter 27 Sorting Networks

0

1

0

0

1
0

1 1

1

0 0

0

1

1
0

bitonic,
clean

bitonic

bitonic

divide compare combine

top top

bottom bottom

(a)

0

1

0

1bitonic

top top

bottom bottom

(b)

0

1 0

1 0

0
1

0

0
1

1

0
bitonic

top top

bottom bottom

(c)

0
10
0

0

0
1

0

0

0
1

0

0
1

0
bitonic

top top

bottom bottom

(d)

0
1 0
0

0

0
1

0

0

0
1

0

bitonic,
clean

bitonic

bitonic,
clean

bitonic

bitonic,
clean

bitonic

1

0

Figure 27.8 The possible comparisons in HALF-CLEANER[n]. The input sequence is assumed
to be a bitonic sequence of 0’s and 1’s, and without loss of generality, we assume that it is of the
form 00 . . . 011 . . . 100 . . . 0. Subsequences of 0’s are white, and subsequences of 1’s are gray. We
can think of the n inputs as being divided into two halves such that for i = 1, 2, . . . , n/2, inputs i
and i + n/2 are compared. (a)–(b) Cases in which the division occurs in the middle subsequence
of 1’s. (c)–(d) Cases in which the division occurs in a subsequence of 0’s. For all cases, every
element in the top half of the output is at least as small as every element in the bottom half, both
halves are bitonic, and at least one half is clean.

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 20

Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form 0i1j0k , for some i, j, k ≥ 0.
714 Chapter 27 Sorting Networks

0

1

0

0

1
0

1 1

1

0 0

0

1

1
0

bitonic,
clean

bitonic

bitonic

divide compare combine

top top

bottom bottom

(a)

0

1

0

1bitonic

top top

bottom bottom

(b)

0

1 0

1 0

0
1

0

0
1

1

0
bitonic

top top

bottom bottom

(c)

0
10
0

0

0
1

0

0

0
1

0

0
1

0
bitonic

top top

bottom bottom

(d)

0
1 0
0

0

0
1

0

0

0
1

0

bitonic,
clean

bitonic

bitonic,
clean

bitonic

bitonic,
clean

bitonic

1

0

Figure 27.8 The possible comparisons in HALF-CLEANER[n]. The input sequence is assumed
to be a bitonic sequence of 0’s and 1’s, and without loss of generality, we assume that it is of the
form 00 . . . 011 . . . 100 . . . 0. Subsequences of 0’s are white, and subsequences of 1’s are gray. We
can think of the n inputs as being divided into two halves such that for i = 1, 2, . . . , n/2, inputs i
and i + n/2 are compared. (a)–(b) Cases in which the division occurs in the middle subsequence
of 1’s. (c)–(d) Cases in which the division occurs in a subsequence of 0’s. For all cases, every
element in the top half of the output is at least as small as every element in the bottom half, both
halves are bitonic, and at least one half is clean.

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 20

Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form 0i1j0k , for some i, j, k ≥ 0.

714 Chapter 27 Sorting Networks

0

1

0

0

1
0

1 1

1

0 0

0

1

1
0

bitonic,
clean

bitonic

bitonic

divide compare combine

top top

bottom bottom

(a)

0

1

0

1bitonic

top top

bottom bottom

(b)

0

1 0

1 0

0
1

0

0
1

1

0
bitonic

top top

bottom bottom

(c)

0
10
0

0

0
1

0

0

0
1

0

0
1

0
bitonic

top top

bottom bottom

(d)

0
1 0
0

0

0
1

0

0

0
1

0

bitonic,
clean

bitonic

bitonic,
clean

bitonic

bitonic,
clean

bitonic

1

0

Figure 27.8 The possible comparisons in HALF-CLEANER[n]. The input sequence is assumed
to be a bitonic sequence of 0’s and 1’s, and without loss of generality, we assume that it is of the
form 00 . . . 011 . . . 100 . . . 0. Subsequences of 0’s are white, and subsequences of 1’s are gray. We
can think of the n inputs as being divided into two halves such that for i = 1, 2, . . . , n/2, inputs i
and i + n/2 are compared. (a)–(b) Cases in which the division occurs in the middle subsequence
of 1’s. (c)–(d) Cases in which the division occurs in a subsequence of 0’s. For all cases, every
element in the top half of the output is at least as small as every element in the bottom half, both
halves are bitonic, and at least one half is clean.

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 20

Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form 0i1j0k , for some i, j, k ≥ 0.

714 Chapter 27 Sorting Networks

0

1

0

0

1
0

1 1

1

0 0

0

1

1
0

bitonic,
clean

bitonic

bitonic

divide compare combine

top top

bottom bottom

(a)

0

1

0

1bitonic

top top

bottom bottom

(b)

0

1 0

1 0

0
1

0

0
1

1

0
bitonic

top top

bottom bottom

(c)

0
10
0

0

0
1

0

0

0
1

0

0
1

0
bitonic

top top

bottom bottom

(d)

0
1 0
0

0

0
1

0

0

0
1

0

bitonic,
clean

bitonic

bitonic,
clean

bitonic

bitonic,
clean

bitonic

1

0

Figure 27.8 The possible comparisons in HALF-CLEANER[n]. The input sequence is assumed
to be a bitonic sequence of 0’s and 1’s, and without loss of generality, we assume that it is of the
form 00 . . . 011 . . . 100 . . . 0. Subsequences of 0’s are white, and subsequences of 1’s are gray. We
can think of the n inputs as being divided into two halves such that for i = 1, 2, . . . , n/2, inputs i
and i + n/2 are compared. (a)–(b) Cases in which the division occurs in the middle subsequence
of 1’s. (c)–(d) Cases in which the division occurs in a subsequence of 0’s. For all cases, every
element in the top half of the output is at least as small as every element in the bottom half, both
halves are bitonic, and at least one half is clean.

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 20

The Bitonic Sorter
27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

Recursive Formula for depth D(n):

D(n) =

{
0 if n = 1,
D(n/2) + 1 if n = 2k .

Henceforth we will always
assume that n is a power of 2.

BITONIC-SORTER[n] has depth log n and sorts any zero-one bitonic sequence.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 21

The Bitonic Sorter
27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

Recursive Formula for depth D(n):

D(n) =

{
0 if n = 1,
D(n/2) + 1 if n = 2k .

Henceforth we will always
assume that n is a power of 2.

BITONIC-SORTER[n] has depth log n and sorts any zero-one bitonic sequence.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 21

The Bitonic Sorter
27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

Recursive Formula for depth D(n):

D(n) =

{
0 if n = 1,
D(n/2) + 1 if n = 2k .

Henceforth we will always
assume that n is a power of 2.

BITONIC-SORTER[n] has depth log n and sorts any zero-one bitonic sequence.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 21

The Bitonic Sorter
27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

Recursive Formula for depth D(n):

D(n) =

{
0 if n = 1,
D(n/2) + 1 if n = 2k .

Henceforth we will always
assume that n is a power of 2.

BITONIC-SORTER[n] has depth log n and sorts any zero-one bitonic sequence.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 21

Merging Networks

can merge two sorted input sequences into one sorted output
sequence

will be based on a modification of BITONIC-SORTER[n]

Merging Networks

Basic Idea:

consider two given sequences X = 00000111, Y = 00001111

concatenating X with Y R (the reversal of Y)⇒ 0000011111110000

This sequence is bitonic!

Hence in order to merge the sequences X and Y , it suf-
fices to perform a bitonic sort on X concatenated with Y R .

I. Course Intro and Sorting Networks Batcher’s Sorting Network 22

Merging Networks

can merge two sorted input sequences into one sorted output
sequence

will be based on a modification of BITONIC-SORTER[n]

Merging Networks

Basic Idea:

consider two given sequences X = 00000111, Y = 00001111

concatenating X with Y R (the reversal of Y)⇒ 0000011111110000

This sequence is bitonic!

Hence in order to merge the sequences X and Y , it suf-
fices to perform a bitonic sort on X concatenated with Y R .

I. Course Intro and Sorting Networks Batcher’s Sorting Network 22

Merging Networks

can merge two sorted input sequences into one sorted output
sequence

will be based on a modification of BITONIC-SORTER[n]

Merging Networks

Basic Idea:

consider two given sequences X = 00000111, Y = 00001111

concatenating X with Y R (the reversal of Y)⇒ 0000011111110000

This sequence is bitonic!

Hence in order to merge the sequences X and Y , it suf-
fices to perform a bitonic sort on X concatenated with Y R .

I. Course Intro and Sorting Networks Batcher’s Sorting Network 22

Merging Networks

can merge two sorted input sequences into one sorted output
sequence

will be based on a modification of BITONIC-SORTER[n]

Merging Networks

Basic Idea:

consider two given sequences X = 00000111, Y = 00001111

concatenating X with Y R (the reversal of Y)⇒ 0000011111110000

This sequence is bitonic!

Hence in order to merge the sequences X and Y , it suf-
fices to perform a bitonic sort on X concatenated with Y R .

I. Course Intro and Sorting Networks Batcher’s Sorting Network 22

Merging Networks

can merge two sorted input sequences into one sorted output
sequence

will be based on a modification of BITONIC-SORTER[n]

Merging Networks

Basic Idea:

consider two given sequences X = 00000111, Y = 00001111

concatenating X with Y R (the reversal of Y)⇒ 0000011111110000

This sequence is bitonic!

Hence in order to merge the sequences X and Y , it suf-
fices to perform a bitonic sort on X concatenated with Y R .

I. Course Intro and Sorting Networks Batcher’s Sorting Network 22

Merging Networks

can merge two sorted input sequences into one sorted output
sequence

will be based on a modification of BITONIC-SORTER[n]

Merging Networks

Basic Idea:

consider two given sequences X = 00000111, Y = 00001111

concatenating X with Y R (the reversal of Y)⇒ 0000011111110000

This sequence is bitonic!

Hence in order to merge the sequences X and Y , it suf-
fices to perform a bitonic sort on X concatenated with Y R .

I. Course Intro and Sorting Networks Batcher’s Sorting Network 22

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉
We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉
Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

⇒ First part of MERGER[n] compares inputs i and n − i + 1 for
i = 1, 2, . . . , n/2
Remaining part is identical to BITONIC-SORTER[n]27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 23

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉
We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉
Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

⇒ First part of MERGER[n] compares inputs i and n − i + 1 for
i = 1, 2, . . . , n/2

Remaining part is identical to BITONIC-SORTER[n]27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 23

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉
We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉
Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

⇒ First part of MERGER[n] compares inputs i and n − i + 1 for
i = 1, 2, . . . , n/2

Remaining part is identical to BITONIC-SORTER[n]

27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 23

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉
We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉
Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

⇒ First part of MERGER[n] compares inputs i and n − i + 1 for
i = 1, 2, . . . , n/2

Remaining part is identical to BITONIC-SORTER[n]

27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 23

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉
We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉
Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

⇒ First part of MERGER[n] compares inputs i and n − i + 1 for
i = 1, 2, . . . , n/2
Remaining part is identical to BITONIC-SORTER[n]27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 23

Construction of a Merging Network (2/2)

718 Chapter 27 Sorting Networks

0
0
1
0
1
1
1
1

0
0
1
0
1
1
1
1

0
0
1
1
0
1
1
1

0
0
0
1
1
1
1
1

(b)(a)

sorted

sorted

sorted

BITONIC-
SORTER[n/2]

BITONIC-
SORTER[n/2]

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[n] can be viewed as BITONIC-SORTER[n]with the first half-cleaner altered to
compare inputs i and n− i+1 for i = 1, 2, . . . , n/2. Here, n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[n/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

quences of 0’s and 1’s can merge any two monotonically increasing sequences of
arbitrary numbers.

27.4-2
How many different zero-one input sequences must be applied to the input of a
comparison network to verify that it is a merging network?

27.4-3
Show that any network that can merge 1 item with n − 1 sorted items to produce a
sorted sequence of length n must have depth at least lg n.

27.4-4 !
Consider a merging network with inputs a1, a2, . . . , an , for n an exact power of 2,
in which the two monotonic sequences to be merged are 〈a1, a3, . . . , an−1〉 and
〈a2, a4, . . . , an〉. Prove that the number of comparators in this kind of merging
network is "(n lg n). Why is this an interesting lower bound? (Hint: Partition the
comparators into three sets.)

27.4-5 !
Prove that any merging network, regardless of the order of inputs, requires
"(n lg n) comparators.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 24

Construction of a Sorting Network

1. BITONIC-SORTER[n]
sorts any bitonic sequence
depth log n

2. MERGER[n]

merges two sorted input sequences
depth log n

Main Components

SORTER[n] is defined recursively:
If n = 2k , use two copies of SORTER[n/2] to
sort two subsequences of length n/2 each.
Then merge them using MERGER[n].
If n = 1, network consists of a single wire.

Batcher’s Sorting Network

can be seen as a parallel version of merge sort

27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

718 Chapter 27 Sorting Networks

0
0
1
0
1
1
1
1

0
0
1
0
1
1
1
1

0
0
1
1
0
1
1
1

0
0
0
1
1
1
1
1

(b)(a)

sorted

sorted

sorted

BITONIC-
SORTER[n/2]

BITONIC-
SORTER[n/2]

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[n] can be viewed as BITONIC-SORTER[n]with the first half-cleaner altered to
compare inputs i and n− i+1 for i = 1, 2, . . . , n/2. Here, n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[n/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

quences of 0’s and 1’s can merge any two monotonically increasing sequences of
arbitrary numbers.

27.4-2
How many different zero-one input sequences must be applied to the input of a
comparison network to verify that it is a merging network?

27.4-3
Show that any network that can merge 1 item with n − 1 sorted items to produce a
sorted sequence of length n must have depth at least lg n.

27.4-4 !
Consider a merging network with inputs a1, a2, . . . , an , for n an exact power of 2,
in which the two monotonic sequences to be merged are 〈a1, a3, . . . , an−1〉 and
〈a2, a4, . . . , an〉. Prove that the number of comparators in this kind of merging
network is "(n lg n). Why is this an interesting lower bound? (Hint: Partition the
comparators into three sets.)

27.4-5 !
Prove that any merging network, regardless of the order of inputs, requires
"(n lg n) comparators.

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

1.

2.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 25

Construction of a Sorting Network

1. BITONIC-SORTER[n]
sorts any bitonic sequence
depth log n

2. MERGER[n]
merges two sorted input sequences
depth log n

Main Components

SORTER[n] is defined recursively:
If n = 2k , use two copies of SORTER[n/2] to
sort two subsequences of length n/2 each.
Then merge them using MERGER[n].
If n = 1, network consists of a single wire.

Batcher’s Sorting Network

can be seen as a parallel version of merge sort

27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

718 Chapter 27 Sorting Networks

0
0
1
0
1
1
1
1

0
0
1
0
1
1
1
1

0
0
1
1
0
1
1
1

0
0
0
1
1
1
1
1

(b)(a)

sorted

sorted

sorted

BITONIC-
SORTER[n/2]

BITONIC-
SORTER[n/2]

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[n] can be viewed as BITONIC-SORTER[n]with the first half-cleaner altered to
compare inputs i and n− i+1 for i = 1, 2, . . . , n/2. Here, n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[n/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

quences of 0’s and 1’s can merge any two monotonically increasing sequences of
arbitrary numbers.

27.4-2
How many different zero-one input sequences must be applied to the input of a
comparison network to verify that it is a merging network?

27.4-3
Show that any network that can merge 1 item with n − 1 sorted items to produce a
sorted sequence of length n must have depth at least lg n.

27.4-4 !
Consider a merging network with inputs a1, a2, . . . , an , for n an exact power of 2,
in which the two monotonic sequences to be merged are 〈a1, a3, . . . , an−1〉 and
〈a2, a4, . . . , an〉. Prove that the number of comparators in this kind of merging
network is "(n lg n). Why is this an interesting lower bound? (Hint: Partition the
comparators into three sets.)

27.4-5 !
Prove that any merging network, regardless of the order of inputs, requires
"(n lg n) comparators.

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

1.

2.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 25

Construction of a Sorting Network

1. BITONIC-SORTER[n]
sorts any bitonic sequence
depth log n

2. MERGER[n]
merges two sorted input sequences
depth log n

Main Components

SORTER[n] is defined recursively:
If n = 2k , use two copies of SORTER[n/2] to
sort two subsequences of length n/2 each.
Then merge them using MERGER[n].
If n = 1, network consists of a single wire.

Batcher’s Sorting Network

can be seen as a parallel version of merge sort

27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

718 Chapter 27 Sorting Networks

0
0
1
0
1
1
1
1

0
0
1
0
1
1
1
1

0
0
1
1
0
1
1
1

0
0
0
1
1
1
1
1

(b)(a)

sorted

sorted

sorted

BITONIC-
SORTER[n/2]

BITONIC-
SORTER[n/2]

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[n] can be viewed as BITONIC-SORTER[n]with the first half-cleaner altered to
compare inputs i and n− i+1 for i = 1, 2, . . . , n/2. Here, n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[n/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

quences of 0’s and 1’s can merge any two monotonically increasing sequences of
arbitrary numbers.

27.4-2
How many different zero-one input sequences must be applied to the input of a
comparison network to verify that it is a merging network?

27.4-3
Show that any network that can merge 1 item with n − 1 sorted items to produce a
sorted sequence of length n must have depth at least lg n.

27.4-4 !
Consider a merging network with inputs a1, a2, . . . , an , for n an exact power of 2,
in which the two monotonic sequences to be merged are 〈a1, a3, . . . , an−1〉 and
〈a2, a4, . . . , an〉. Prove that the number of comparators in this kind of merging
network is "(n lg n). Why is this an interesting lower bound? (Hint: Partition the
comparators into three sets.)

27.4-5 !
Prove that any merging network, regardless of the order of inputs, requires
"(n lg n) comparators.

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

1.

2.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 25

Construction of a Sorting Network

1. BITONIC-SORTER[n]
sorts any bitonic sequence
depth log n

2. MERGER[n]
merges two sorted input sequences
depth log n

Main Components

SORTER[n] is defined recursively:
If n = 2k , use two copies of SORTER[n/2] to
sort two subsequences of length n/2 each.
Then merge them using MERGER[n].
If n = 1, network consists of a single wire.

Batcher’s Sorting Network

can be seen as a parallel version of merge sort

27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

718 Chapter 27 Sorting Networks

0
0
1
0
1
1
1
1

0
0
1
0
1
1
1
1

0
0
1
1
0
1
1
1

0
0
0
1
1
1
1
1

(b)(a)

sorted

sorted

sorted

BITONIC-
SORTER[n/2]

BITONIC-
SORTER[n/2]

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[n] can be viewed as BITONIC-SORTER[n]with the first half-cleaner altered to
compare inputs i and n− i+1 for i = 1, 2, . . . , n/2. Here, n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[n/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

quences of 0’s and 1’s can merge any two monotonically increasing sequences of
arbitrary numbers.

27.4-2
How many different zero-one input sequences must be applied to the input of a
comparison network to verify that it is a merging network?

27.4-3
Show that any network that can merge 1 item with n − 1 sorted items to produce a
sorted sequence of length n must have depth at least lg n.

27.4-4 !
Consider a merging network with inputs a1, a2, . . . , an , for n an exact power of 2,
in which the two monotonic sequences to be merged are 〈a1, a3, . . . , an−1〉 and
〈a2, a4, . . . , an〉. Prove that the number of comparators in this kind of merging
network is "(n lg n). Why is this an interesting lower bound? (Hint: Partition the
comparators into three sets.)

27.4-5 !
Prove that any merging network, regardless of the order of inputs, requires
"(n lg n) comparators.

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

1.

2.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 25

Unrolling the Recursion (Figure 27.12)720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

Recursion for D(n):

D(n) =

{
0 if n = 1,
D(n/2) + log n if n = 2k .

Solution: D(n) = Θ(log2 n).

SORTER[n] has depth Θ(log2 n) and sorts any input.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 26

Unrolling the Recursion (Figure 27.12)720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

Recursion for D(n):

D(n) =

{
0 if n = 1,
D(n/2) + log n if n = 2k .

Solution: D(n) = Θ(log2 n).

SORTER[n] has depth Θ(log2 n) and sorts any input.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 26

Unrolling the Recursion (Figure 27.12)720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

Recursion for D(n):

D(n) =

{
0 if n = 1,
D(n/2) + log n if n = 2k .

Solution: D(n) = Θ(log2 n).

SORTER[n] has depth Θ(log2 n) and sorts any input.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 26

Unrolling the Recursion (Figure 27.12)720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

Recursion for D(n):

D(n) =

{
0 if n = 1,
D(n/2) + log n if n = 2k .

Solution: D(n) = Θ(log2 n).

SORTER[n] has depth Θ(log2 n) and sorts any input.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 26

Unrolling the Recursion (Figure 27.12)720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

Recursion for D(n):

D(n) =

{
0 if n = 1,
D(n/2) + log n if n = 2k .

Solution: D(n) = Θ(log2 n).

SORTER[n] has depth Θ(log2 n) and sorts any input.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 26

Unrolling the Recursion (Figure 27.12)720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

Recursion for D(n):

D(n) =

{
0 if n = 1,
D(n/2) + log n if n = 2k .

Solution: D(n) = Θ(log2 n).

SORTER[n] has depth Θ(log2 n) and sorts any input.

I. Course Intro and Sorting Networks Batcher’s Sorting Network 26

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparison network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparison network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Course Intro and Sorting Networks Batcher’s Sorting Network 27

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparison network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparison network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Course Intro and Sorting Networks Batcher’s Sorting Network 27

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparison network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparison network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Course Intro and Sorting Networks Batcher’s Sorting Network 27

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparison network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparison network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Course Intro and Sorting Networks Batcher’s Sorting Network 27

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparison network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparison network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Course Intro and Sorting Networks Batcher’s Sorting Network 27

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparison network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparison network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Course Intro and Sorting Networks Batcher’s Sorting Network 27

Expander Graphs

A bipartite (n, d , µ)-expander is a graph with:

G has n vertices (n/2 on each side)

the edge-set is union of d perfect matchings

For every subset S ⊆ V being in one part,

|N(S)| > min{µ · |S|, n/2− |S|}

Expander Graphs

L R

Specific definition tailored for sorting
network - many other variants exist!

Expander Graphs:
probabilistic construction “easy”: take d (disjoint) random matchings

explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

many applications in networking, complexity theory and coding theory

I. Course Intro and Sorting Networks Batcher’s Sorting Network 28

Expander Graphs

A bipartite (n, d , µ)-expander is a graph with:

G has n vertices (n/2 on each side)

the edge-set is union of d perfect matchings

For every subset S ⊆ V being in one part,

|N(S)| > min{µ · |S|, n/2− |S|}

Expander Graphs

L R

Specific definition tailored for sorting
network - many other variants exist!

Expander Graphs:
probabilistic construction “easy”: take d (disjoint) random matchings

explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

many applications in networking, complexity theory and coding theory

I. Course Intro and Sorting Networks Batcher’s Sorting Network 28

Expander Graphs

A bipartite (n, d , µ)-expander is a graph with:

G has n vertices (n/2 on each side)

the edge-set is union of d perfect matchings

For every subset S ⊆ V being in one part,

|N(S)| > min{µ · |S|, n/2− |S|}

Expander Graphs

L R

Specific definition tailored for sorting
network - many other variants exist!

Expander Graphs:
probabilistic construction “easy”: take d (disjoint) random matchings

explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

many applications in networking, complexity theory and coding theory

I. Course Intro and Sorting Networks Batcher’s Sorting Network 28

Expander Graphs

A bipartite (n, d , µ)-expander is a graph with:

G has n vertices (n/2 on each side)

the edge-set is union of d perfect matchings

For every subset S ⊆ V being in one part,

|N(S)| > min{µ · |S|, n/2− |S|}

Expander Graphs

L R

Specific definition tailored for sorting
network - many other variants exist!

Expander Graphs:
probabilistic construction “easy”: take d (disjoint) random matchings

explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

many applications in networking, complexity theory and coding theory

I. Course Intro and Sorting Networks Batcher’s Sorting Network 28

Expander Graphs

A bipartite (n, d , µ)-expander is a graph with:

G has n vertices (n/2 on each side)

the edge-set is union of d perfect matchings

For every subset S ⊆ V being in one part,

|N(S)| > min{µ · |S|, n/2− |S|}

Expander Graphs

L RSpecific definition tailored for sorting
network - many other variants exist!

Expander Graphs:
probabilistic construction “easy”: take d (disjoint) random matchings

explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

many applications in networking, complexity theory and coding theory

I. Course Intro and Sorting Networks Batcher’s Sorting Network 28

Expander Graphs

A bipartite (n, d , µ)-expander is a graph with:

G has n vertices (n/2 on each side)

the edge-set is union of d perfect matchings

For every subset S ⊆ V being in one part,

|N(S)| > min{µ · |S|, n/2− |S|}

Expander Graphs

L R

Specific definition tailored for sorting
network - many other variants exist!

Expander Graphs:
probabilistic construction “easy”: take d (disjoint) random matchings

explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

many applications in networking, complexity theory and coding theory

I. Course Intro and Sorting Networks Batcher’s Sorting Network 28

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Course Intro and Sorting Networks Batcher’s Sorting Network 29

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Course Intro and Sorting Networks Batcher’s Sorting Network 29

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Course Intro and Sorting Networks Batcher’s Sorting Network 29

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Course Intro and Sorting Networks Batcher’s Sorting Network 29

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Course Intro and Sorting Networks Batcher’s Sorting Network 29

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Course Intro and Sorting Networks Batcher’s Sorting Network 29

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Course Intro and Sorting Networks Batcher’s Sorting Network 29

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Course Intro and Sorting Networks Batcher’s Sorting Network 29

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Course Intro and Sorting Networks Batcher’s Sorting Network 29

Existence of Approximate Halvers (non-examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output (note
vd ∈ X)
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander graphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (non-examinable)
Proof:

X := keys with the k smallest inputs

Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output (note
vd ∈ X)
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander graphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (non-examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs

For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output (note
vd ∈ X)
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander graphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (non-examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y

Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output (note
vd ∈ X)
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander graphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (non-examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output (note
vd ∈ X)

Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander graphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (non-examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output (note
vd ∈ X)

Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander graphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (non-examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output (note
vd ∈ X)

Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander graphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (non-examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output (note
vd ∈ X)
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander graphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (non-examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output (note
vd ∈ X)
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander graphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (non-examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output (note
vd ∈ X)
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander graphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (non-examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output (note
vd ∈ X)
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

> |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander graphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (non-examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output (note
vd ∈ X)
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)| > |Y |+ min{µ|Y |, n/2− |Y |}

= min{(1 + µ)|Y |, n/2}.
Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander graphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (non-examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output (note
vd ∈ X)
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)| > |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander graphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (non-examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output (note
vd ∈ X)
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)| > |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander graphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (non-examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output (note
vd ∈ X)
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)| > |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander graphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

Existence of Approximate Halvers (non-examinable)
Proof:

X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparat. (u, v), v ∈ Y
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output (note
vd ∈ X)
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)| > |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

Same argument⇒ at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

typical application of expander graphs in parallel algorithms
Much more work needed to construct the AKS sorting network

I. Course Intro and Sorting Networks Batcher’s Sorting Network 30

AKS network vs. Batcher’s network

Donald E. Knuth (Stanford)

“Batcher’s method is much
better, unless n exceeds the
total memory capacity of all
computers on earth!”

Richard J. Lipton (Georgia Tech)

“The AKS sorting network is
galactic: it needs that n be
larger than 278 or so to finally
be smaller than Batcher’s
network for n items.”

I. Course Intro and Sorting Networks Batcher’s Sorting Network 31

Siblings of Sorting Network

sorts any input of size n

special case of Comparison Networks

Sorting Networks

creates a random permutation of n items

special case of Permutation Networks

Switching (Shuffling) Networks

balances any stream of tokens over n wires

special case of Balancing Networks

Counting Networks

7 2

2 7

comparator

<
=
>

7 ?

2 ?

switch

7 5

2 4

balancer

I. Course Intro and Sorting Networks Batcher’s Sorting Network 32

Siblings of Sorting Network

sorts any input of size n

special case of Comparison Networks

Sorting Networks

creates a random permutation of n items

special case of Permutation Networks

Switching (Shuffling) Networks

balances any stream of tokens over n wires

special case of Balancing Networks

Counting Networks

7 2

2 7

comparator

<
=
>

7 ?

2 ?

switch

7 5

2 4

balancer

I. Course Intro and Sorting Networks Batcher’s Sorting Network 32

Siblings of Sorting Network

sorts any input of size n

special case of Comparison Networks

Sorting Networks

creates a random permutation of n items

special case of Permutation Networks

Switching (Shuffling) Networks

balances any stream of tokens over n wires

special case of Balancing Networks

Counting Networks

7 2

2 7

comparator

<
=
>

7 ?

2 ?

switch

7 5

2 4

balancer

I. Course Intro and Sorting Networks Batcher’s Sorting Network 32

Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher’s Sorting Network

Counting Networks

I. Course Intro and Sorting Networks Counting Networks 33

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Course Intro and Sorting Networks Counting Networks 34

Bitonic Counting Network

1. Let x1, x2, . . . , xn be the number of tokens (ever received) on the
designated input wires

2. Let y1, y2, . . . , yn be the number of tokens (ever received) on the
designated output wires

3. In a quiescent state:
∑n

i=1 xi =
∑n

i=1 yi

4. A counting network is a balancing network with the step-property:

0 ≤ yi − yj ≤ 1 for any i < j .

Counting Network (Formal Definition)

Bitonic Counting Network: Take Batcher’s Sorting Network and re-
place each comparator by a balancer.

I. Course Intro and Sorting Networks Counting Networks 35

Bitonic Counting Network

1. Let x1, x2, . . . , xn be the number of tokens (ever received) on the
designated input wires

2. Let y1, y2, . . . , yn be the number of tokens (ever received) on the
designated output wires

3. In a quiescent state:
∑n

i=1 xi =
∑n

i=1 yi

4. A counting network is a balancing network with the step-property:

0 ≤ yi − yj ≤ 1 for any i < j .

Counting Network (Formal Definition)

Bitonic Counting Network: Take Batcher’s Sorting Network and re-
place each comparator by a balancer.

I. Course Intro and Sorting Networks Counting Networks 35

Bitonic Counting Network

1. Let x1, x2, . . . , xn be the number of tokens (ever received) on the
designated input wires

2. Let y1, y2, . . . , yn be the number of tokens (ever received) on the
designated output wires

3. In a quiescent state:
∑n

i=1 xi =
∑n

i=1 yi

4. A counting network is a balancing network with the step-property:

0 ≤ yi − yj ≤ 1 for any i < j .

Counting Network (Formal Definition)

Bitonic Counting Network: Take Batcher’s Sorting Network and re-
place each comparator by a balancer.

I. Course Intro and Sorting Networks Counting Networks 35

Correctness of the Bitonic Counting Network (non-examinable)

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋

2. If
∑n

i=1 xi =
∑n

i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

Proof (by induction on n being a power of 2)

Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2:

Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
Claim: |Z − Z ′| ≤ 1 (since Z ′ = b 1

2

∑n/2
i=1 xic+ d 1

2

∑n
i=n/2+1 xie)

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X
Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network (non-examinable)

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋

2. If
∑n

i=1 xi =
∑n

i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

Consider a MERGER[n]. Then if the inputs x1, . . . , xn/2 and xn/2+1, . . . , xn

have the step property, then so does the output y1, . . . , yn.

Key Lemma

Proof (by induction on n being a power of 2)

Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2:

Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
Claim: |Z − Z ′| ≤ 1 (since Z ′ = b 1

2

∑n/2
i=1 xic+ d 1

2

∑n
i=n/2+1 xie)

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X
Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network (non-examinable)

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋

2. If
∑n

i=1 xi =
∑n

i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)

Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2:

Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
Claim: |Z − Z ′| ≤ 1 (since Z ′ = b 1

2

∑n/2
i=1 xic+ d 1

2

∑n
i=n/2+1 xie)

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X
Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network (non-examinable)

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋

2. If
∑n

i=1 xi =
∑n

i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer

n > 2:

Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
Claim: |Z − Z ′| ≤ 1 (since Z ′ = b 1

2

∑n/2
i=1 xic+ d 1

2

∑n
i=n/2+1 xie)

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X
Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network (non-examinable)

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋

2. If
∑n

i=1 xi =
∑n

i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2:

Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks
IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
Claim: |Z − Z ′| ≤ 1 (since Z ′ = b 1

2

∑n/2
i=1 xic+ d 1

2

∑n
i=n/2+1 xie)

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X
Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network (non-examinable)

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋

2. If
∑n

i=1 xi =
∑n

i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
Claim: |Z − Z ′| ≤ 1 (since Z ′ = b 1

2

∑n/2
i=1 xic+ d 1

2

∑n
i=n/2+1 xie)

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X
Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network (non-examinable)

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋

2. If
∑n

i=1 xi =
∑n

i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
Claim: |Z − Z ′| ≤ 1 (since Z ′ = b 1

2

∑n/2
i=1 xic+ d 1

2

∑n
i=n/2+1 xie)

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X
Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network (non-examinable)

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋

2. If
∑n

i=1 xi =
∑n

i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
Claim: |Z − Z ′| ≤ 1 (since Z ′ = b 1

2

∑n/2
i=1 xic+ d 1

2

∑n
i=n/2+1 xie)

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X
Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network (non-examinable)

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋

2. If
∑n

i=1 xi =
∑n

i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
Claim: |Z − Z ′| ≤ 1 (since Z ′ = b 1

2

∑n/2
i=1 xic+ d 1

2

∑n
i=n/2+1 xie)

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X
Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network (non-examinable)

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋

2. If
∑n

i=1 xi =
∑n

i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
Claim: |Z − Z ′| ≤ 1 (since Z ′ = b 1

2

∑n/2
i=1 xic+ d 1

2

∑n
i=n/2+1 xie)

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X
Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network (non-examinable)

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋

2. If
∑n

i=1 xi =
∑n

i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks
IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
Claim: |Z − Z ′| ≤ 1 (since Z ′ = b 1

2

∑n/2
i=1 xic+ d 1

2

∑n
i=n/2+1 xie)

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X
Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network (non-examinable)

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋

2. If
∑n

i=1 xi =
∑n

i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks
IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i

Claim: |Z − Z ′| ≤ 1 (since Z ′ = b 1
2

∑n/2
i=1 xic+ d 1

2

∑n
i=n/2+1 xie)

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X
Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network (non-examinable)

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋

2. If
∑n

i=1 xi =
∑n

i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks
IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
Claim: |Z − Z ′| ≤ 1 (since Z ′ = b 1

2

∑n/2
i=1 xic+ d 1

2

∑n
i=n/2+1 xie)

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X
Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network (non-examinable)

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋

2. If
∑n

i=1 xi =
∑n

i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks
IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
Claim: |Z − Z ′| ≤ 1 (since Z ′ = b 1

2

∑n/2
i=1 xic+ d 1

2

∑n
i=n/2+1 xie)

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X
Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network (non-examinable)

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋

2. If
∑n

i=1 xi =
∑n

i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks
IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
Claim: |Z − Z ′| ≤ 1 (since Z ′ = b 1

2

∑n/2
i=1 xic+ d 1

2

∑n
i=n/2+1 xie)

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .
Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Correctness of the Bitonic Counting Network (non-examinable)

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋

2. If
∑n

i=1 xi =
∑n

i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n being a power of 2)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks
IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
Claim: |Z − Z ′| ≤ 1 (since Z ′ = b 1

2

∑n/2
i=1 xic+ d 1

2

∑n
i=n/2+1 xie)

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X
Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Course Intro and Sorting Networks Counting Networks 36

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1

111111111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1

1

11111111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 1

1

1111111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 11

1

111111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111

1

11111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 1111

1

1111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 11111

1

111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111

1

11

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 1111111

1

1

1

11111111111

1

11111111111111

1

1111111 1

2

2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 11111111

1

1

11111111111

1

11111111111111

1

1111111 1

2

2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

3

3 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

1

1111111111

1

11111111111111

1

1111111 1

2 2

2

2

2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

1

1

111111111

1

11111111111111

1

1111111 1

2 2

2

2

2

2

2

222222222222222222222222222222222

2

22222 2

33

3

33333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11

1

11111111

1

11111111111111

1

1111111 1

2 2

2

2 2

2

2

222222222222222222222222222222222

2

22222 2

33 3

3

3333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

111

1

1111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 33

3

333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

1111

1

111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

2

22222222222222222222222222222222

2

22222 2

33 333

3

33

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111

1

11111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

2

2

2222222222222222222222222222222

2

22222 2

33 3333

3

3

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

111111

1

1111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

22

2

222222222222222222222222222222

2

22222 2

33 33333

3

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

1111111

1

111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222

2

22222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111

1

11

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

2222

2

2222222222222222222222222222

2

22222 2

33 333333

3

3

33333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

111111111

1

1

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

22222

2

222222222222222222222222222

2

22222 2

33 333333

3

3

3

3333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

1111111111

1

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222

2

22222222222222222222222222

2

22222 2

33 333333

3

33

3

333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

2222222

2

2222222222222222222222222

2

22222 2

33 333333

3

333

3

33333

3

3 3 3 3 3 3 3

3

33333 3

4

4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

1

1111111111111

1

1111111 1

2 2

2

2 2 2

2

22222222

2

222222222222222222222222

2

22222 2

33 333333

3

3333

3

3333

3

3 3 3 3 3 3 3

3

33333 3

4

4

444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

1

1

111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222

2

22222222222222222222222

2

22222 2

33 333333

3

33333

3

333

3

3 3 3 3 3 3 3

3

33333 3

4 4

4

44444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11

1

11111111111

1

1111111 1

2 2

2

2 2 2

2

2222222222

2

2222222222222222222222

2

22222 2

33 333333

3

333333

3

33

3

3 3 3 3 3 3 3

3

33333 3

4 44

4

4444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

111

1

1111111111

1

1111111 1

2 2

2

2 2 2

2

22222222222

2

222222222222222222222

2

22222 2

33 333333

3

3333333

3

3

3

3 3 3 3 3 3 3

3

33333 3

4 444

4

444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

1111

1

111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222

2

22222222222222222222

2

22222 2

33 333333

3

33333333

3

3

3 3 3 3 3 3 3

3

33333 3

4 4444

4

44444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111

1

11111111

1

1111111 1

2 2

2

2 2 2

2

2222222222222

2

2222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 44444

4

4444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

111111

1

1111111

1

1111111 1

2 2

2

2 2 2

2

22222222222222

2

222222222222222222

2

22222 2

33 333333

3

333333333

3

3

3 3 3 3 3 3

3

33333 3

4 444444

4

444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

1111111

1

111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222

2

22222222222222222

2

22222 2

33 333333

3

333333333

3

3

3

3 3 3 3 3

3

33333 3

4 4444444

4

44444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111

1

11111

1

1111111 1

2 2

2

2 2 2

2

2222222222222222

2

2222222222222222

2

22222 2

33 333333

3

333333333

3

3 3

3

3 3 3 3

3

33333 3

4 44444444

4

4444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

111111111

1

1111

1

1111111 1

2 2

2

2 2 2

2

22222222222222222

2

222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3

3

3 3 3

3

33333 3

4 444444444

4

444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

1111111111

1

111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222

2

22222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3

3

3 3

3

33333 3

4 4444444444

4

44444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111

1

11

1

1111111 1

2 2

2

2 2 2

2

2222222222222222222

2

2222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3

3

3

3

33333 3

4 44444444444

4

4444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

111111111111

1

1

1

1111111 1

2 2

2

2 2 2

2

22222222222222222222

2

222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3

3

3

33333 3

4 444444444444

4

444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

1111111111111

1

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222

2

22222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333 3

4 4444444444444

4

44444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

2222222222222222222222

2

2222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

3

3333 3

4 44444444444444

4

4444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1

111111 1

2 2

2

2 2 2

2

22222222222222222222222

2

222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

3

3

333 3

4 444444444444444

4

444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6

666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1

1

11111 1

2 2

2

2 2 2

2

222222222222222222222222

2

22222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33

3

33 3

4 4444444444444444

4

44

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6

6

66666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

11

1

1111 1

2 2

2

2 2 2

2

2222222222222222222222222

2

2222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

333

3

3 3

4 44444444444444444

4

4

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 6

6

6666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

111

1

111 1

2 2

2

2 2 2

2

22222222222222222222222222

2

222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

3333

3

3

4 444444444444444444

4

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 66

6

666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111

1

11 1

2 2

2

2 2 2

2

222222222222222222222222222

2

22222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666

6

66666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

11111

1

1 1

2 2

2

2 2 2

2

2222222222222222222222222222

2

2222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4

444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 6666

6

6666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

111111

1

1

2 2

2

2 2 2

2

22222222222222222222222222222

2

222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4

4

44444444444

4

44444444444444444444444444444

4

4444444 4

5

5 55555

5

555555555555555

5

5 5 5

5

5 5

6 66666

6

666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111 1

2 2

2

2 2 2

2

222222222222222222222222222222

2

22

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

44

4

4444444444

4

44444444444444444444444444444

4

4444444 4

55

5

5555

5

555555555555555

5

5 5 5

5

5 5

6 666666

6

66666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

2222222222222222222222222222222

2

2

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

444

4

444444444

4

44444444444444444444444444444

4

4444444 4

55 5

5

555

5

555555555555555

5

5 5 5

5

5 5

6 6666666

6

6666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

22222222222222222222222222222222

2

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444

4

44444444

4

44444444444444444444444444444

4

4444444 4

55 55

5

55

5

555555555555555

5

5 5 5

5

5 5

6 66666666

6

666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

44444

4

4444444

4

44444444444444444444444444444

4

4444444 4

55 555

5

5

5

555555555555555

5

5 5 5

5

5 5

6 666666666

6

66666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

2

2222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

444444

4

444444

4

44444444444444444444444444444

4

4444444 4

55 5555

5

5

555555555555555

5

5 5 5

5

5 5

6 6666666666

6

6666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

2

2

222 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444

4

44444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 66666666666

6

666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22

2

22 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

44444444

4

4444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

5

55555555555555

5

5 5 5

5

5 5

6 666666666666

6

66

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

222

2

2 2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

444444444

4

444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

5

5

5555555555555

5

5 5 5

5

5 5

6 6666666666666

6

6

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

2222

2

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444

4

44

4

44444444444444444444444444444

4

4444444 4

55 55555

5

55

5

555555555555

5

5 5 5

5

5 5

6 66666666666666

6

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

44444444444

4

4

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555

5

55555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

444444444444

4

4

44444444444444444444444444444

4

4444444 4

55 55555

5

5555

5

5555555555

5

5 5 5

5

5 5

6 666666666666666

6

6

666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

55555

5

555555555

5

5 5 5

5

5 5

6 666666666666666

6

6

6

66666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4

4444444444444444444444444444

4

4444444 4

55 55555

5

555555

5

55555555

5

5 5 5

5

5 5

6 666666666666666

6

66

6

6666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4

4

444444444444444444444444444

4

4444444 4

55 55555

5

5555555

5

5555555

5

5 5 5

5

5 5

6 666666666666666

6

666

6

666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44

4

44444444444444444444444444

4

4444444 4

55 55555

5

55555555

5

555555

5

5 5 5

5

5 5

6 666666666666666

6

6666

6

66

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

444

4

4444444444444444444444444

4

4444444 4

55 55555

5

555555555

5

55555

5

5 5 5

5

5 5

6 666666666666666

6

66666

6

6

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4444

4

444444444444444444444444

4

4444444 4

55 55555

5

5555555555

5

5555

5

5 5 5

5

5 5

6 666666666666666

6

666666

6

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444

4

44444444444444444444444

4

4444444 4

55 55555

5

55555555555

5

555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

444444

4

4444444444444444444444

4

4444444 4

55 55555

5

555555555555

5

55

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

6

6666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4444444

4

444444444444444444444

4

4444444 4

55 55555

5

5555555555555

5

5

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

6

6

666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444

4

44444444444444444444

4

4444444 4

55 55555

5

55555555555555

5

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

66

6

66666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

444444444

4

4444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

666

6

6666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4444444444

4

444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5

5 5

5

5 5

6 666666666666666

6

6666666

6

6666

6

666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444

4

44444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5

5

5

5

5 5

6 666666666666666

6

6666666

6

66666

6

66666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

444444444444

4

4444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5

5

5

5 5

6 666666666666666

6

6666666

6

666666

6

6666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4444444444444

4

444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5 5

6 666666666666666

6

6666666

6

6666666

6

666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444

4

44444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666

6

66

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

444444444444444

4

4444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

666666666

6

6

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4444444444444444

4

444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

6666666666

6

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444

4

44444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

444444444444444444

4

4444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6

666666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4444444444444444444

4

444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6

6

66666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444

4

44444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

66

6

6666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

444444444444444444444

4

4444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

666

6

666 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4444444444444444444444

4

444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666

6

66 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444

4

44444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

66666

6

6 6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

444444444444444444444444

4

4444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

666666

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4444444444444444444444444

4

444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444

4

44

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

444444444444444444444444444

4

4

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

4444444444444444444444444444

4

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4

444444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4

4

44444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

44

4

4444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

444

4

444 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444

4

44 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

44444

4

4 4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

444444

4

4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444

4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

Bitonic Counting Network in Action (Asychnronous Execution)

x1 y1

x2 y2

x3 y3

x4 y4

1 111111111

1

11111111111

1

11111111111111

1

1111111

1

2 2

2

2 2 2

2

222222222222222222222222222222222

2

22222

2

33 333333

3

333333333

3

3 3 3 3 3 3 3

3

33333

3

4 4444444444444444444

4

4444444444444

4

44444444444444444444444444444

4

4444444

4

55 55555

5

555555555555555

5

5 5 5

5

5

5

6 666666666666666

6

6666666

6

66666666666

6

6666666

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Course Intro and Sorting Networks Counting Networks 37

A Periodic Counting Network [Aspnes, Herlihy, Shavit, JACM 1994]

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x6 y6

x7 y7

x8 y8

Consists of log n BLOCK[n] networks each of which has depth log n

I. Course Intro and Sorting Networks Counting Networks 38

A Periodic Counting Network [Aspnes, Herlihy, Shavit, JACM 1994]

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x6 y6

x7 y7

x8 y8

Consists of log n BLOCK[n] networks each of which has depth log n

I. Course Intro and Sorting Networks Counting Networks 38

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.

Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.

Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.

Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network

Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C

S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network

Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S

Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S

Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.

C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires

S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires

S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires

S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires

S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires

S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires

By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires

By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Course Intro and Sorting Networks Counting Networks 39

II. Matrix Multiplication
Thomas Sauerwald

Easter 2018

Outline

Introduction

Serial Matrix Multiplication

Digression: Multithreading

Multithreaded Matrix Multiplication

II. Matrix Multiplication Introduction 2

Matrix Multiplication

Remember: If A = (aij) and B = (bij) are square n × n matrices, then the
matrix product C = A · B is defined by

cij =
n∑

k=1

aik · bkj ∀i, j = 1, 2, . . . , n.

4.2 Strassen’s algorithm for matrix multiplication 75

ray is 0. How would you change any of the algorithms that do not allow empty
subarrays to permit an empty subarray to be the result?
4.1-5
Use the following ideas to develop a nonrecursive, linear-time algorithm for the
maximum-subarray problem. Start at the left end of the array, and progress toward
the right, keeping track of the maximum subarray seen so far. Knowing a maximum
subarray of AŒ1 : : j !, extend the answer to find a maximum subarray ending at in-
dex jC1 by using the following observation: a maximum subarray of AŒ1 : : j C 1!
is either a maximum subarray of AŒ1 : : j ! or a subarray AŒi : : j C 1!, for some
1 ! i ! j C 1. Determine a maximum subarray of the form AŒi : : j C 1! in
constant time based on knowing a maximum subarray ending at index j .

4.2 Strassen’s algorithm for matrix multiplication

If you have seen matrices before, then you probably know how to multiply them.
(Otherwise, you should read Section D.1 in Appendix D.) If A D .aij / and
B D .bij / are square n " n matrices, then in the product C D A # B , we define the
entry cij , for i; j D 1; 2; : : : ; n, by

cij D
nX

kD1

aik # bkj : (4.8)

We must compute n2 matrix entries, and each is the sum of n values. The following
procedure takes n " n matrices A and B and multiplies them, returning their n " n
product C . We assume that each matrix has an attribute rows, giving the number
of rows in the matrix.
SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n " n matrix
3 for i D 1 to n
4 for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik # bkj

8 return C

The SQUARE-MATRIX-MULTIPLY procedure works as follows. The for loop
of lines 3–7 computes the entries of each row i , and within a given row i , theSQUARE-MATRIX-MULTIPLY(A,B) takes time Θ(n3).

This definition suggests that n2 · n = n3

arithmetic operations are necessary.

II. Matrix Multiplication Introduction 3

Matrix Multiplication

Remember: If A = (aij) and B = (bij) are square n × n matrices, then the
matrix product C = A · B is defined by

cij =
n∑

k=1

aik · bkj ∀i, j = 1, 2, . . . , n.

4.2 Strassen’s algorithm for matrix multiplication 75

ray is 0. How would you change any of the algorithms that do not allow empty
subarrays to permit an empty subarray to be the result?
4.1-5
Use the following ideas to develop a nonrecursive, linear-time algorithm for the
maximum-subarray problem. Start at the left end of the array, and progress toward
the right, keeping track of the maximum subarray seen so far. Knowing a maximum
subarray of AŒ1 : : j !, extend the answer to find a maximum subarray ending at in-
dex jC1 by using the following observation: a maximum subarray of AŒ1 : : j C 1!
is either a maximum subarray of AŒ1 : : j ! or a subarray AŒi : : j C 1!, for some
1 ! i ! j C 1. Determine a maximum subarray of the form AŒi : : j C 1! in
constant time based on knowing a maximum subarray ending at index j .

4.2 Strassen’s algorithm for matrix multiplication

If you have seen matrices before, then you probably know how to multiply them.
(Otherwise, you should read Section D.1 in Appendix D.) If A D .aij / and
B D .bij / are square n " n matrices, then in the product C D A # B , we define the
entry cij , for i; j D 1; 2; : : : ; n, by

cij D
nX

kD1

aik # bkj : (4.8)

We must compute n2 matrix entries, and each is the sum of n values. The following
procedure takes n " n matrices A and B and multiplies them, returning their n " n
product C . We assume that each matrix has an attribute rows, giving the number
of rows in the matrix.
SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n " n matrix
3 for i D 1 to n
4 for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik # bkj

8 return C

The SQUARE-MATRIX-MULTIPLY procedure works as follows. The for loop
of lines 3–7 computes the entries of each row i , and within a given row i , the

SQUARE-MATRIX-MULTIPLY(A,B) takes time Θ(n3).

This definition suggests that n2 · n = n3

arithmetic operations are necessary.

II. Matrix Multiplication Introduction 3

Matrix Multiplication

Remember: If A = (aij) and B = (bij) are square n × n matrices, then the
matrix product C = A · B is defined by

cij =
n∑

k=1

aik · bkj ∀i, j = 1, 2, . . . , n.

4.2 Strassen’s algorithm for matrix multiplication 75

ray is 0. How would you change any of the algorithms that do not allow empty
subarrays to permit an empty subarray to be the result?
4.1-5
Use the following ideas to develop a nonrecursive, linear-time algorithm for the
maximum-subarray problem. Start at the left end of the array, and progress toward
the right, keeping track of the maximum subarray seen so far. Knowing a maximum
subarray of AŒ1 : : j !, extend the answer to find a maximum subarray ending at in-
dex jC1 by using the following observation: a maximum subarray of AŒ1 : : j C 1!
is either a maximum subarray of AŒ1 : : j ! or a subarray AŒi : : j C 1!, for some
1 ! i ! j C 1. Determine a maximum subarray of the form AŒi : : j C 1! in
constant time based on knowing a maximum subarray ending at index j .

4.2 Strassen’s algorithm for matrix multiplication

If you have seen matrices before, then you probably know how to multiply them.
(Otherwise, you should read Section D.1 in Appendix D.) If A D .aij / and
B D .bij / are square n " n matrices, then in the product C D A # B , we define the
entry cij , for i; j D 1; 2; : : : ; n, by

cij D
nX

kD1

aik # bkj : (4.8)

We must compute n2 matrix entries, and each is the sum of n values. The following
procedure takes n " n matrices A and B and multiplies them, returning their n " n
product C . We assume that each matrix has an attribute rows, giving the number
of rows in the matrix.
SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n " n matrix
3 for i D 1 to n
4 for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik # bkj

8 return C

The SQUARE-MATRIX-MULTIPLY procedure works as follows. The for loop
of lines 3–7 computes the entries of each row i , and within a given row i , theSQUARE-MATRIX-MULTIPLY(A,B) takes time Θ(n3).

This definition suggests that n2 · n = n3

arithmetic operations are necessary.

II. Matrix Multiplication Introduction 3

Matrix Multiplication

Remember: If A = (aij) and B = (bij) are square n × n matrices, then the
matrix product C = A · B is defined by

cij =
n∑

k=1

aik · bkj ∀i, j = 1, 2, . . . , n.

4.2 Strassen’s algorithm for matrix multiplication 75

ray is 0. How would you change any of the algorithms that do not allow empty
subarrays to permit an empty subarray to be the result?
4.1-5
Use the following ideas to develop a nonrecursive, linear-time algorithm for the
maximum-subarray problem. Start at the left end of the array, and progress toward
the right, keeping track of the maximum subarray seen so far. Knowing a maximum
subarray of AŒ1 : : j !, extend the answer to find a maximum subarray ending at in-
dex jC1 by using the following observation: a maximum subarray of AŒ1 : : j C 1!
is either a maximum subarray of AŒ1 : : j ! or a subarray AŒi : : j C 1!, for some
1 ! i ! j C 1. Determine a maximum subarray of the form AŒi : : j C 1! in
constant time based on knowing a maximum subarray ending at index j .

4.2 Strassen’s algorithm for matrix multiplication

If you have seen matrices before, then you probably know how to multiply them.
(Otherwise, you should read Section D.1 in Appendix D.) If A D .aij / and
B D .bij / are square n " n matrices, then in the product C D A # B , we define the
entry cij , for i; j D 1; 2; : : : ; n, by

cij D
nX

kD1

aik # bkj : (4.8)

We must compute n2 matrix entries, and each is the sum of n values. The following
procedure takes n " n matrices A and B and multiplies them, returning their n " n
product C . We assume that each matrix has an attribute rows, giving the number
of rows in the matrix.
SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n " n matrix
3 for i D 1 to n
4 for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik # bkj

8 return C

The SQUARE-MATRIX-MULTIPLY procedure works as follows. The for loop
of lines 3–7 computes the entries of each row i , and within a given row i , theSQUARE-MATRIX-MULTIPLY(A,B) takes time Θ(n3).

This definition suggests that n2 · n = n3

arithmetic operations are necessary.

II. Matrix Multiplication Introduction 3

Outline

Introduction

Serial Matrix Multiplication

Digression: Multithreading

Multithreaded Matrix Multiplication

II. Matrix Multiplication Serial Matrix Multiplication 4

Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:
(

C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)

This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5

Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:
(

C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)

This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5

Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:
(

C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)

This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5

Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:

(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)

This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5

Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:
(

C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)

This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5

Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:
(

C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)

This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5

Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:
(

C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)

This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5

Divide & Conquer: First Approach (Pseudocode)

4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C11 = A21 · B12 + A22 · B22

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C11 = A21 · B12 + A22 · B22

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C11 = A21 · B12 + A22 · B22

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure.

8 Multiplications 4 Additions and PartitioningGoal: Reduce the number of multiplicationsNo improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,

8 · T (n/2) + Θ(n2)

if n > 1.

8 Multiplications 4 Additions and PartitioningGoal: Reduce the number of multiplicationsNo improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,

8 · T (n/2) + Θ(n2)

if n > 1.

8 Multiplications

4 Additions and PartitioningGoal: Reduce the number of multiplicationsNo improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2)

+ Θ(n2)

if n > 1.

8 Multiplications

4 Additions and PartitioningGoal: Reduce the number of multiplicationsNo improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2)

+ Θ(n2)

if n > 1.

8 Multiplications 4 Additions and Partitioning

Goal: Reduce the number of multiplicationsNo improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2) + Θ(n2) if n > 1.

8 Multiplications 4 Additions and Partitioning

Goal: Reduce the number of multiplicationsNo improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2) + Θ(n2) if n > 1.

8 Multiplications 4 Additions and PartitioningGoal: Reduce the number of multiplications

Solution: T (n) =

No improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2) + Θ(n2) if n > 1.

8 Multiplications 4 Additions and PartitioningGoal: Reduce the number of multiplications

Solution: T (n) = Θ(8log2 n)

No improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2) + Θ(n2) if n > 1.

8 Multiplications 4 Additions and PartitioningGoal: Reduce the number of multiplications

Solution: T (n) = Θ(8log2 n) = Θ(n3) No improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2) + Θ(n2) if n > 1.

8 Multiplications 4 Additions and PartitioningGoal: Reduce the number of multiplications

Solution: T (n) = Θ(8log2 n) = Θ(n3)

No improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2) + Θ(n2) if n > 1.

8 Multiplications 4 Additions and Partitioning

Goal: Reduce the number of multiplicationsSolution: T (n) = Θ(8log2 n) = Θ(n3)

No improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only 7 recursive
multiplications of n/2× n/2 matrices.

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (1969)

Time for steps 1,2,4: Θ(n2), hence T (n) = 7 · T (n/2) + Θ(n2)⇒ T (n) = Θ(nlog 7).

II. Matrix Multiplication Serial Matrix Multiplication 7

Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only 7 recursive
multiplications of n/2× n/2 matrices.

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (1969)

Time for steps 1,2,4: Θ(n2), hence T (n) = 7 · T (n/2) + Θ(n2)⇒ T (n) = Θ(nlog 7).

II. Matrix Multiplication Serial Matrix Multiplication 7

Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only 7 recursive
multiplications of n/2× n/2 matrices.

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (1969)

Time for steps 1,2,4: Θ(n2), hence T (n) = 7 · T (n/2) + Θ(n2)⇒ T (n) = Θ(nlog 7).

II. Matrix Multiplication Serial Matrix Multiplication 7

Solving the Recursion
T (n) = 7 · T (n/2) + c · n2

II. Matrix Multiplication Serial Matrix Multiplication 8

Details of Strassen’s Algorithm

P1 = A11 · S1 = A11 · (B12 − B22)

P2 = S2 · B22 = (A11 + A12) · B22

P3 = S3 · B11 = (A21 + A22) · B11

P4 = A22 · S4 = A22 · (B21 − B11)

P5 = S5 · S6 = (A11 + A22) · (B11 + B22)

P6 = S7 · S8 = (A12 − A22) · (B21 + B22)

P7 = S9 · S10 = (A11 − A21) · (B11 + B12)

The 10 Submatrices and 7 Products

(
A11B11 + A12B21 A11B12 + A12B21
A21B11 + A22B21 A21B12 + A22B22

)
=

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P5 + P1 − P3 − P7

)Claim

Proof:

P5 + P4 − P2 + P6 =

= A11B11 + A12B21

Other three blocks can be verified similarly.

II. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

P1 = A11 · S1 = A11 · (B12 − B22)

P2 = S2 · B22 = (A11 + A12) · B22

P3 = S3 · B11 = (A21 + A22) · B11

P4 = A22 · S4 = A22 · (B21 − B11)

P5 = S5 · S6 = (A11 + A22) · (B11 + B22)

P6 = S7 · S8 = (A12 − A22) · (B21 + B22)

P7 = S9 · S10 = (A11 − A21) · (B11 + B12)

The 10 Submatrices and 7 Products

(
A11B11 + A12B21 A11B12 + A12B21
A21B11 + A22B21 A21B12 + A22B22

)
=

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P5 + P1 − P3 − P7

)Claim

Proof:

P5 + P4 − P2 + P6 =

= A11B11 + A12B21

Other three blocks can be verified similarly.

II. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

P1 = A11 · S1 = A11 · (B12 − B22)

P2 = S2 · B22 = (A11 + A12) · B22

P3 = S3 · B11 = (A21 + A22) · B11

P4 = A22 · S4 = A22 · (B21 − B11)

P5 = S5 · S6 = (A11 + A22) · (B11 + B22)

P6 = S7 · S8 = (A12 − A22) · (B21 + B22)

P7 = S9 · S10 = (A11 − A21) · (B11 + B12)

The 10 Submatrices and 7 Products

(
A11B11 + A12B21 A11B12 + A12B21
A21B11 + A22B21 A21B12 + A22B22

)
=

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P5 + P1 − P3 − P7

)Claim

Proof:

P5 + P4 − P2 + P6 =

= A11B11 + A12B21

Other three blocks can be verified similarly.

II. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

P1 = A11 · S1 = A11 · (B12 − B22)

P2 = S2 · B22 = (A11 + A12) · B22

P3 = S3 · B11 = (A21 + A22) · B11

P4 = A22 · S4 = A22 · (B21 − B11)

P5 = S5 · S6 = (A11 + A22) · (B11 + B22)

P6 = S7 · S8 = (A12 − A22) · (B21 + B22)

P7 = S9 · S10 = (A11 − A21) · (B11 + B12)

The 10 Submatrices and 7 Products

(
A11B11 + A12B21 A11B12 + A12B21
A21B11 + A22B21 A21B12 + A22B22

)
=

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P5 + P1 − P3 − P7

)Claim

Proof:

P5 + P4 − P2 + P6 =

= A11B11 + A12B21

Other three blocks can be verified similarly.

II. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

P1 = A11 · S1 = A11 · (B12 − B22)

P2 = S2 · B22 = (A11 + A12) · B22

P3 = S3 · B11 = (A21 + A22) · B11

P4 = A22 · S4 = A22 · (B21 − B11)

P5 = S5 · S6 = (A11 + A22) · (B11 + B22)

P6 = S7 · S8 = (A12 − A22) · (B21 + B22)

P7 = S9 · S10 = (A11 − A21) · (B11 + B12)

The 10 Submatrices and 7 Products

(
A11B11 + A12B21 A11B12 + A12B21
A21B11 + A22B21 A21B12 + A22B22

)
=

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P5 + P1 − P3 − P7

)Claim

Proof:

P5 + P4 − P2 + P6 = A11B11 + A11B22 + A22B11 + A22B22 + A22B21 − A22B11

− A11B22 − A12B22 + A12B21 + A12B22 − A22B21 − A22B22

= A11B11 + A12B21

Other three blocks can be verified similarly.

II. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

P1 = A11 · S1 = A11 · (B12 − B22)

P2 = S2 · B22 = (A11 + A12) · B22

P3 = S3 · B11 = (A21 + A22) · B11

P4 = A22 · S4 = A22 · (B21 − B11)

P5 = S5 · S6 = (A11 + A22) · (B11 + B22)

P6 = S7 · S8 = (A12 − A22) · (B21 + B22)

P7 = S9 · S10 = (A11 − A21) · (B11 + B12)

The 10 Submatrices and 7 Products

(
A11B11 + A12B21 A11B12 + A12B21
A21B11 + A22B21 A21B12 + A22B22

)
=

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P5 + P1 − P3 − P7

)Claim

Proof:

P5 + P4 − P2 + P6 = A11B11 +���A11B22 +���A22B11 +���A22B22 +���A22B21 −���A22B11

−���A11B22 −���A12B22 + A12B21 +���A12B22 −���A22B21 −���A22B22

= A11B11 + A12B21

Other three blocks can be verified similarly.

II. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

P1 = A11 · S1 = A11 · (B12 − B22)

P2 = S2 · B22 = (A11 + A12) · B22

P3 = S3 · B11 = (A21 + A22) · B11

P4 = A22 · S4 = A22 · (B21 − B11)

P5 = S5 · S6 = (A11 + A22) · (B11 + B22)

P6 = S7 · S8 = (A12 − A22) · (B21 + B22)

P7 = S9 · S10 = (A11 − A21) · (B11 + B12)

The 10 Submatrices and 7 Products

(
A11B11 + A12B21 A11B12 + A12B21
A21B11 + A22B21 A21B12 + A22B22

)
=

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P5 + P1 − P3 − P7

)Claim

Proof:

P5 + P4 − P2 + P6 = A11B11 +���A11B22 +���A22B11 +���A22B22 +���A22B21 −���A22B11

−���A11B22 −���A12B22 + A12B21 +���A12B22 −���A22B21 −���A22B22

= A11B11 + A12B21

Other three blocks can be verified similarly.

II. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

P1 = A11 · S1 = A11 · (B12 − B22)

P2 = S2 · B22 = (A11 + A12) · B22

P3 = S3 · B11 = (A21 + A22) · B11

P4 = A22 · S4 = A22 · (B21 − B11)

P5 = S5 · S6 = (A11 + A22) · (B11 + B22)

P6 = S7 · S8 = (A12 − A22) · (B21 + B22)

P7 = S9 · S10 = (A11 − A21) · (B11 + B12)

The 10 Submatrices and 7 Products

(
A11B11 + A12B21 A11B12 + A12B21
A21B11 + A22B21 A21B12 + A22B22

)
=

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P5 + P1 − P3 − P7

)Claim

Proof:

P5 + P4 − P2 + P6 = A11B11 +���A11B22 +���A22B11 +���A22B22 +���A22B21 −���A22B11

−���A11B22 −���A12B22 + A12B21 +���A12B22 −���A22B21 −���A22B22

= A11B11 + A12B21

Other three blocks can be verified similarly.

II. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

P1 = A11 · S1 = A11 · (B12 − B22)

P2 = S2 · B22 = (A11 + A12) · B22

P3 = S3 · B11 = (A21 + A22) · B11

P4 = A22 · S4 = A22 · (B21 − B11)

P5 = S5 · S6 = (A11 + A22) · (B11 + B22)

P6 = S7 · S8 = (A12 − A22) · (B21 + B22)

P7 = S9 · S10 = (A11 − A21) · (B11 + B12)

The 10 Submatrices and 7 Products

(
A11B11 + A12B21 A11B12 + A12B21
A21B11 + A22B21 A21B12 + A22B22

)
=

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P5 + P1 − P3 − P7

)Claim

Proof:

P5 + P4 − P2 + P6 = A11B11 +���A11B22 +���A22B11 +���A22B22 +���A22B21 −���A22B11

−���A11B22 −���A12B22 + A12B21 +���A12B22 −���A22B21 −���A22B22

= A11B11 + A12B21

Other three blocks can be verified similarly.

II. Matrix Multiplication Serial Matrix Multiplication 9

Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:

O(n3), naive approach
O(n2.808), Strassen (1969)
O(n2.796), Pan (1978)
O(n2.522), Schönhage (1981)
O(n2.517), Romani (1982)
O(n2.496), Coppersmith and Winograd (1982)
O(n2.479), Strassen (1986)
O(n2.376), Coppersmith and Winograd (1989)
O(n2.374), Stothers (2010)
O(n2.3728642), V. Williams (2011)
O(n2.3728639), Le Gall (2014)
. . .

II. Matrix Multiplication Serial Matrix Multiplication 10

Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:
O(n3), naive approach

O(n2.808), Strassen (1969)
O(n2.796), Pan (1978)
O(n2.522), Schönhage (1981)
O(n2.517), Romani (1982)
O(n2.496), Coppersmith and Winograd (1982)
O(n2.479), Strassen (1986)
O(n2.376), Coppersmith and Winograd (1989)
O(n2.374), Stothers (2010)
O(n2.3728642), V. Williams (2011)
O(n2.3728639), Le Gall (2014)
. . .

II. Matrix Multiplication Serial Matrix Multiplication 10

Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:
O(n3), naive approach
O(n2.808), Strassen (1969)

O(n2.796), Pan (1978)
O(n2.522), Schönhage (1981)
O(n2.517), Romani (1982)
O(n2.496), Coppersmith and Winograd (1982)
O(n2.479), Strassen (1986)
O(n2.376), Coppersmith and Winograd (1989)
O(n2.374), Stothers (2010)
O(n2.3728642), V. Williams (2011)
O(n2.3728639), Le Gall (2014)
. . .

II. Matrix Multiplication Serial Matrix Multiplication 10

Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:
O(n3), naive approach
O(n2.808), Strassen (1969)
O(n2.796), Pan (1978)
O(n2.522), Schönhage (1981)
O(n2.517), Romani (1982)
O(n2.496), Coppersmith and Winograd (1982)
O(n2.479), Strassen (1986)
O(n2.376), Coppersmith and Winograd (1989)

O(n2.374), Stothers (2010)
O(n2.3728642), V. Williams (2011)
O(n2.3728639), Le Gall (2014)
. . .

II. Matrix Multiplication Serial Matrix Multiplication 10

Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:
O(n3), naive approach
O(n2.808), Strassen (1969)
O(n2.796), Pan (1978)
O(n2.522), Schönhage (1981)
O(n2.517), Romani (1982)
O(n2.496), Coppersmith and Winograd (1982)
O(n2.479), Strassen (1986)
O(n2.376), Coppersmith and Winograd (1989)
O(n2.374), Stothers (2010)
O(n2.3728642), V. Williams (2011)
O(n2.3728639), Le Gall (2014)
. . .

II. Matrix Multiplication Serial Matrix Multiplication 10

Outline

Introduction

Serial Matrix Multiplication

Digression: Multithreading

Multithreaded Matrix Multiplication

II. Matrix Multiplication Digression: Multithreading 11

Memory Models

Each processor has its private memory

Access to memory of another processor via messages

Distributed Memory

1 2 3 4 5 6

Central location of memory

Each processor has direct access

Shared Memory

Shared Memory

1 2 3 4 5 6

II. Matrix Multiplication Digression: Multithreading 12

Memory Models

Each processor has its private memory

Access to memory of another processor via messages

Distributed Memory

1 2 3 4 5 6

Central location of memory

Each processor has direct access

Shared Memory

Shared Memory

1 2 3 4 5 6

II. Matrix Multiplication Digression: Multithreading 12

Memory Models

Each processor has its private memory

Access to memory of another processor via messages

Distributed Memory

1 2 3 4 5 6

Central location of memory

Each processor has direct access

Shared Memory

Shared Memory

1 2 3 4 5 6

II. Matrix Multiplication Digression: Multithreading 12

Memory Models

Each processor has its private memory

Access to memory of another processor via messages

Distributed Memory

1 2 3 4 5 6

Central location of memory

Each processor has direct access

Shared Memory

Shared Memory

1 2 3 4 5 6

II. Matrix Multiplication Digression: Multithreading 12

Dynamic Multithreading

Programming shared-memory parallel computer difficult

Use concurrency platform which coordinates all resources

Scheduling jobs, communication protocols, load balancing etc.

Functionalities:

spawn

(optional) prefix to a procedure call statement
procedure is executed in a separate thread

sync

wait until all spawned threads are done

parallel

(optinal) prefix to the standard loop for
each iteration is called in its own thread

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

II. Matrix Multiplication Digression: Multithreading 13

Dynamic Multithreading

Programming shared-memory parallel computer difficult

Use concurrency platform which coordinates all resources

Scheduling jobs, communication protocols, load balancing etc.

Functionalities:

spawn

(optional) prefix to a procedure call statement
procedure is executed in a separate thread

sync

wait until all spawned threads are done

parallel

(optinal) prefix to the standard loop for
each iteration is called in its own thread

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

II. Matrix Multiplication Digression: Multithreading 13

Dynamic Multithreading

Programming shared-memory parallel computer difficult

Use concurrency platform which coordinates all resources

Scheduling jobs, communication protocols, load balancing etc.

Functionalities:

spawn

(optional) prefix to a procedure call statement
procedure is executed in a separate thread

sync

wait until all spawned threads are done

parallel

(optinal) prefix to the standard loop for
each iteration is called in its own thread

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

II. Matrix Multiplication Digression: Multithreading 13

Dynamic Multithreading

Programming shared-memory parallel computer difficult

Use concurrency platform which coordinates all resources

Scheduling jobs, communication protocols, load balancing etc.

Functionalities:

spawn

(optional) prefix to a procedure call statement
procedure is executed in a separate thread

sync

wait until all spawned threads are done

parallel

(optinal) prefix to the standard loop for
each iteration is called in its own thread

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

II. Matrix Multiplication Digression: Multithreading 13

Dynamic Multithreading

Programming shared-memory parallel computer difficult

Use concurrency platform which coordinates all resources

Scheduling jobs, communication protocols, load balancing etc.

Functionalities:
spawn

(optional) prefix to a procedure call statement
procedure is executed in a separate thread

sync

wait until all spawned threads are done

parallel

(optinal) prefix to the standard loop for
each iteration is called in its own thread

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

II. Matrix Multiplication Digression: Multithreading 13

Dynamic Multithreading

Programming shared-memory parallel computer difficult

Use concurrency platform which coordinates all resources

Scheduling jobs, communication protocols, load balancing etc.

Functionalities:
spawn

(optional) prefix to a procedure call statement
procedure is executed in a separate thread

sync

wait until all spawned threads are done
parallel

(optinal) prefix to the standard loop for
each iteration is called in its own thread

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

II. Matrix Multiplication Digression: Multithreading 13

Dynamic Multithreading

Programming shared-memory parallel computer difficult

Use concurrency platform which coordinates all resources

Scheduling jobs, communication protocols, load balancing etc.

Functionalities:
spawn

(optional) prefix to a procedure call statement
procedure is executed in a separate thread

sync
wait until all spawned threads are done

parallel

(optinal) prefix to the standard loop for
each iteration is called in its own thread

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

II. Matrix Multiplication Digression: Multithreading 13

Dynamic Multithreading

Programming shared-memory parallel computer difficult

Use concurrency platform which coordinates all resources

Scheduling jobs, communication protocols, load balancing etc.

Functionalities:
spawn

(optional) prefix to a procedure call statement
procedure is executed in a separate thread

sync
wait until all spawned threads are done

parallel
(optinal) prefix to the standard loop for
each iteration is called in its own thread

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

II. Matrix Multiplication Digression: Multithreading 13

Dynamic Multithreading

Programming shared-memory parallel computer difficult

Use concurrency platform which coordinates all resources

Scheduling jobs, communication protocols, load balancing etc.

Functionalities:
spawn

(optional) prefix to a procedure call statement
procedure is executed in a separate thread

sync
wait until all spawned threads are done

parallel
(optinal) prefix to the standard loop for
each iteration is called in its own thread

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

II. Matrix Multiplication Digression: Multithreading 13

Computing Fibonacci Numbers Recursively (Fig. 27.1)

27.1 The basics of dynamic multithreading 775

FIB.0/

FIB.0/FIB.0/FIB.0/

FIB.0/

FIB.1/FIB.1/

FIB.1/

FIB.1/

FIB.1/FIB.1/FIB.1/

FIB.1/

FIB.2/

FIB.2/FIB.2/FIB.2/

FIB.2/

FIB.3/FIB.3/

FIB.3/

FIB.4/

FIB.4/

FIB.5/

FIB.6/

Figure 27.1 The tree of recursive procedure instances when computing FIB.6/. Each instance of
FIB with the same argument does the same work to produce the same result, providing an inefficient
but interesting way to compute Fibonacci numbers.

FIB.n/

1 if n ! 1
2 return n
3 else x D FIB.n " 1/
4 y D FIB.n " 2/
5 return x C y

You would not really want to compute large Fibonacci numbers this way, be-
cause this computation does much repeated work. Figure 27.1 shows the tree of
recursive procedure instances that are created when computing F6. For example,
a call to FIB.6/ recursively calls FIB.5/ and then FIB.4/. But, the call to FIB.5/
also results in a call to FIB.4/. Both instances of FIB.4/ return the same result
(F4 D 3). Since the FIB procedure does not memoize, the second call to FIB.4/
replicates the work that the first call performs.

Let T .n/ denote the running time of FIB.n/. Since FIB.n/ contains two recur-
sive calls plus a constant amount of extra work, we obtain the recurrence
T .n/ D T .n " 1/C T .n " 2/C‚.1/ :

This recurrence has solution T .n/ D ‚.Fn/, which we can show using the substi-
tution method. For an inductive hypothesis, assume that T .n/ ! aFn " b, where
a > 1 and b > 0 are constants. Substituting, we obtain

Very inefficient – exponential time!

0: FIB(n)
1: if n<=1 return n
2: else x=FIB(n-1)
3: y=FIB(n-2)
4: return x+y

II. Matrix Multiplication Digression: Multithreading 14

Computing Fibonacci Numbers Recursively (Fig. 27.1)27.1 The basics of dynamic multithreading 775

FIB.0/

FIB.0/FIB.0/FIB.0/

FIB.0/

FIB.1/FIB.1/

FIB.1/

FIB.1/

FIB.1/FIB.1/FIB.1/

FIB.1/

FIB.2/

FIB.2/FIB.2/FIB.2/

FIB.2/

FIB.3/FIB.3/

FIB.3/

FIB.4/

FIB.4/

FIB.5/

FIB.6/

Figure 27.1 The tree of recursive procedure instances when computing FIB.6/. Each instance of
FIB with the same argument does the same work to produce the same result, providing an inefficient
but interesting way to compute Fibonacci numbers.

FIB.n/

1 if n ! 1
2 return n
3 else x D FIB.n " 1/
4 y D FIB.n " 2/
5 return x C y

You would not really want to compute large Fibonacci numbers this way, be-
cause this computation does much repeated work. Figure 27.1 shows the tree of
recursive procedure instances that are created when computing F6. For example,
a call to FIB.6/ recursively calls FIB.5/ and then FIB.4/. But, the call to FIB.5/
also results in a call to FIB.4/. Both instances of FIB.4/ return the same result
(F4 D 3). Since the FIB procedure does not memoize, the second call to FIB.4/
replicates the work that the first call performs.

Let T .n/ denote the running time of FIB.n/. Since FIB.n/ contains two recur-
sive calls plus a constant amount of extra work, we obtain the recurrence
T .n/ D T .n " 1/C T .n " 2/C‚.1/ :

This recurrence has solution T .n/ D ‚.Fn/, which we can show using the substi-
tution method. For an inductive hypothesis, assume that T .n/ ! aFn " b, where
a > 1 and b > 0 are constants. Substituting, we obtain

Very inefficient – exponential time!

0: FIB(n)
1: if n<=1 return n
2: else x=FIB(n-1)
3: y=FIB(n-2)
4: return x+y

II. Matrix Multiplication Digression: Multithreading 14

Computing Fibonacci Numbers Recursively (Fig. 27.1)27.1 The basics of dynamic multithreading 775

FIB.0/

FIB.0/FIB.0/FIB.0/

FIB.0/

FIB.1/FIB.1/

FIB.1/

FIB.1/

FIB.1/FIB.1/FIB.1/

FIB.1/

FIB.2/

FIB.2/FIB.2/FIB.2/

FIB.2/

FIB.3/FIB.3/

FIB.3/

FIB.4/

FIB.4/

FIB.5/

FIB.6/

Figure 27.1 The tree of recursive procedure instances when computing FIB.6/. Each instance of
FIB with the same argument does the same work to produce the same result, providing an inefficient
but interesting way to compute Fibonacci numbers.

FIB.n/

1 if n ! 1
2 return n
3 else x D FIB.n " 1/
4 y D FIB.n " 2/
5 return x C y

You would not really want to compute large Fibonacci numbers this way, be-
cause this computation does much repeated work. Figure 27.1 shows the tree of
recursive procedure instances that are created when computing F6. For example,
a call to FIB.6/ recursively calls FIB.5/ and then FIB.4/. But, the call to FIB.5/
also results in a call to FIB.4/. Both instances of FIB.4/ return the same result
(F4 D 3). Since the FIB procedure does not memoize, the second call to FIB.4/
replicates the work that the first call performs.

Let T .n/ denote the running time of FIB.n/. Since FIB.n/ contains two recur-
sive calls plus a constant amount of extra work, we obtain the recurrence
T .n/ D T .n " 1/C T .n " 2/C‚.1/ :

This recurrence has solution T .n/ D ‚.Fn/, which we can show using the substi-
tution method. For an inductive hypothesis, assume that T .n/ ! aFn " b, where
a > 1 and b > 0 are constants. Substituting, we obtain

Very inefficient – exponential time!

0: FIB(n)
1: if n<=1 return n
2: else x=FIB(n-1)
3: y=FIB(n-2)
4: return x+y

II. Matrix Multiplication Digression: Multithreading 14

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)

Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)

Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)

Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)

Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies

Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies

Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3)

P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3)

P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2)

P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2)

P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies

Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16

Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17

Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17

Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17

Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17

Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17

Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18

#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17

Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17

Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17

Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17

Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18

#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17

Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2

T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2

T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2

T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2

T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2

T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2

T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2

T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2

T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18

Outline

Introduction

Serial Matrix Multiplication

Digression: Multithreading

Multithreaded Matrix Multiplication

II. Matrix Multiplication Multithreaded Matrix Multiplication 19

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n × n matrix A = (aij) and n-vector x = (xj) yields
an n-vector y = (yi) given by

yi =
n∑

j=1

aijxj for i = 1, 2, . . . , n.

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

The parallel for-loops can be used since
different entries of y can be computed concurrently.

How can a compiler implement the parallel for-loop?

II. Matrix Multiplication Multithreaded Matrix Multiplication 20

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n × n matrix A = (aij) and n-vector x = (xj) yields
an n-vector y = (yi) given by

yi =
n∑

j=1

aijxj for i = 1, 2, . . . , n.

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

The parallel for-loops can be used since
different entries of y can be computed concurrently.

How can a compiler implement the parallel for-loop?

II. Matrix Multiplication Multithreaded Matrix Multiplication 20

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n × n matrix A = (aij) and n-vector x = (xj) yields
an n-vector y = (yi) given by

yi =
n∑

j=1

aijxj for i = 1, 2, . . . , n.

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

The parallel for-loops can be used since
different entries of y can be computed concurrently.

How can a compiler implement the parallel for-loop?

II. Matrix Multiplication Multithreaded Matrix Multiplication 20

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n × n matrix A = (aij) and n-vector x = (xj) yields
an n-vector y = (yi) given by

yi =
n∑

j=1

aijxj for i = 1, 2, . . . , n.

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

The parallel for-loops can be used since
different entries of y can be computed concurrently.

How can a compiler implement the parallel for-loop?

II. Matrix Multiplication Multithreaded Matrix Multiplication 20

Implementing parallel for based on Divide-and-Conquer

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

T1(n) =

Θ(n2)

T∞(n) =

Θ(log n) + max
1≤i≤n

iter(n)

= Θ(n).

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

II. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

T1(n) =

Θ(n2)

T∞(n) =

Θ(log n) + max
1≤i≤n

iter(n)

= Θ(n).

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

II. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

T1(n) =

Θ(n2)

T∞(n) =

Θ(log n) + max
1≤i≤n

iter(n)

= Θ(n).

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

II. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

T1(n) =

Θ(n2)

T∞(n) =

Θ(log n) + max
1≤i≤n

iter(n)

= Θ(n).

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

II. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

T1(n) = Θ(n2)

T∞(n) =

Θ(log n) + max
1≤i≤n

iter(n)

= Θ(n).

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

II. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

T1(n) = Θ(n2)

T∞(n) =

Θ(log n) + max
1≤i≤n

iter(n)

= Θ(n).

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

II. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

T1(n) = Θ(n2)

T∞(n) =

Θ(log n) + max
1≤i≤n

iter(n)

= Θ(n).

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

II. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

T1(n) = Θ(n2)

T∞(n) = Θ(log n) + max
1≤i≤n

iter(n)

= Θ(n).

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

II. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

T1(n) = Θ(n2)

T∞(n) = Θ(log n) + max
1≤i≤n

iter(n)

= Θ(n).

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

II. Matrix Multiplication Multithreaded Matrix Multiplication 21

Naive Algorithm in Parallel

27.2 Multithreaded matrix multiplication 793

P-SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 parallel for i D 1 to n
4 parallel for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik " bkj

8 return C

To analyze this algorithm, observe that since the serialization of the algorithm is
just SQUARE-MATRIX-MULTIPLY, the work is therefore simply T1.n/ D ‚.n3/,
the same as the running time of SQUARE-MATRIX-MULTIPLY. The span is
T1.n/ D ‚.n/, because it follows a path down the tree of recursion for the
parallel for loop starting in line 3, then down the tree of recursion for the parallel
for loop starting in line 4, and then executes all n iterations of the ordinary for loop
starting in line 6, resulting in a total span of ‚.lg n/ C ‚.lg n/ C ‚.n/ D ‚.n/.
Thus, the parallelism is ‚.n3/=‚.n/ D ‚.n2/. Exercise 27.2-3 asks you to par-
allelize the inner loop to obtain a parallelism of ‚.n3= lg n/, which you cannot do
straightforwardly using parallel for, because you would create races.

A divide-and-conquer multithreaded algorithm for matrix multiplication
As we learned in Section 4.2, we can multiply n ! n matrices serially in time
‚.nlg 7/ D O.n2:81/ using Strassen’s divide-and-conquer strategy, which motivates
us to look at multithreading such an algorithm. We begin, as we did in Section 4.2,
with multithreading a simpler divide-and-conquer algorithm.

Recall from page 77 that the SQUARE-MATRIX-MULTIPLY-RECURSIVE proce-
dure, which multiplies two n ! n matrices A and B to produce the n ! n matrix C ,
relies on partitioning each of the three matrices into four n=2 ! n=2 submatrices:

A D
!

A11 A12

A21 A22

"
; B D

!
B11 B12

B21 B22

"
; C D

!
C11 C12

C21 C22

"
:

Then, we can write the matrix product as
!

C11 C12

C21 C22

"
D

!
A11 A12

A21 A22

"!
B11 B12

B21 B22

"

D
!

A11B11 A11B12

A21B11 A21B12

"
C

!
A12B21 A12B22

A22B21 A22B22

"
: (27.6)

Thus, to multiply two n!n matrices, we perform eight multiplications of n=2!n=2
matrices and one addition of n!n matrices. The following pseudocode implements

P-SQUARE-MATRIX-MULTIPLY(A,B) has work T1(n) = Θ(n3) and span T∞(n) =

Θ(n)

.

The first two nested for-loops parallelise perfectly.

With a more careful implementation,
T∞(n) = O(log n) (CLRS, Exercise 27.2-3)

II. Matrix Multiplication Multithreaded Matrix Multiplication 22

Naive Algorithm in Parallel

27.2 Multithreaded matrix multiplication 793

P-SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 parallel for i D 1 to n
4 parallel for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik " bkj

8 return C

To analyze this algorithm, observe that since the serialization of the algorithm is
just SQUARE-MATRIX-MULTIPLY, the work is therefore simply T1.n/ D ‚.n3/,
the same as the running time of SQUARE-MATRIX-MULTIPLY. The span is
T1.n/ D ‚.n/, because it follows a path down the tree of recursion for the
parallel for loop starting in line 3, then down the tree of recursion for the parallel
for loop starting in line 4, and then executes all n iterations of the ordinary for loop
starting in line 6, resulting in a total span of ‚.lg n/ C ‚.lg n/ C ‚.n/ D ‚.n/.
Thus, the parallelism is ‚.n3/=‚.n/ D ‚.n2/. Exercise 27.2-3 asks you to par-
allelize the inner loop to obtain a parallelism of ‚.n3= lg n/, which you cannot do
straightforwardly using parallel for, because you would create races.

A divide-and-conquer multithreaded algorithm for matrix multiplication
As we learned in Section 4.2, we can multiply n ! n matrices serially in time
‚.nlg 7/ D O.n2:81/ using Strassen’s divide-and-conquer strategy, which motivates
us to look at multithreading such an algorithm. We begin, as we did in Section 4.2,
with multithreading a simpler divide-and-conquer algorithm.

Recall from page 77 that the SQUARE-MATRIX-MULTIPLY-RECURSIVE proce-
dure, which multiplies two n ! n matrices A and B to produce the n ! n matrix C ,
relies on partitioning each of the three matrices into four n=2 ! n=2 submatrices:

A D
!

A11 A12

A21 A22

"
; B D

!
B11 B12

B21 B22

"
; C D

!
C11 C12

C21 C22

"
:

Then, we can write the matrix product as
!

C11 C12

C21 C22

"
D

!
A11 A12

A21 A22

"!
B11 B12

B21 B22

"

D
!

A11B11 A11B12

A21B11 A21B12

"
C

!
A12B21 A12B22

A22B21 A22B22

"
: (27.6)

Thus, to multiply two n!n matrices, we perform eight multiplications of n=2!n=2
matrices and one addition of n!n matrices. The following pseudocode implements

P-SQUARE-MATRIX-MULTIPLY(A,B) has work T1(n) = Θ(n3) and span T∞(n) = Θ(n).

The first two nested for-loops parallelise perfectly.

With a more careful implementation,
T∞(n) = O(log n) (CLRS, Exercise 27.2-3)

II. Matrix Multiplication Multithreaded Matrix Multiplication 22

The Simple Divide&Conquer Approach in Parallel

794 Chapter 27 Multithreaded Algorithms

this divide-and-conquer strategy using nested parallelism. Unlike the SQUARE-
MATRIX-MULTIPLY-RECURSIVE procedure on which it is based, P-MATRIX-
MULTIPLY-RECURSIVE takes the output matrix as a parameter to avoid allocating
matrices unnecessarily.

P-MATRIX-MULTIPLY-RECURSIVE.C; A; B/

1 n D A:rows
2 if n == 1
3 c11 D a11b11

4 else let T be a new n ! n matrix
5 partition A, B , C , and T into n=2 ! n=2 submatrices

A11; A12; A21; A22; B11; B12; B21; B22; C11; C12; C21; C22;
and T11; T12; T21; T22; respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE.C11; A11; B11/
7 spawn P-MATRIX-MULTIPLY-RECURSIVE.C12; A11; B12/
8 spawn P-MATRIX-MULTIPLY-RECURSIVE.C21; A21; B11/
9 spawn P-MATRIX-MULTIPLY-RECURSIVE.C22; A21; B12/

10 spawn P-MATRIX-MULTIPLY-RECURSIVE.T11; A12; B21/
11 spawn P-MATRIX-MULTIPLY-RECURSIVE.T12; A12; B22/
12 spawn P-MATRIX-MULTIPLY-RECURSIVE.T21; A22; B21/
13 P-MATRIX-MULTIPLY-RECURSIVE.T22; A22; B22/
14 sync
15 parallel for i D 1 to n
16 parallel for j D 1 to n
17 cij D cij C tij

Line 3 handles the base case, where we are multiplying 1 ! 1 matrices. We handle
the recursive case in lines 4–17. We allocate a temporary matrix T in line 4, and
line 5 partitions each of the matrices A, B , C , and T into n=2 ! n=2 submatrices.
(As with SQUARE-MATRIX-MULTIPLY-RECURSIVE on page 77, we gloss over
the minor issue of how to use index calculations to represent submatrix sections
of a matrix.) The recursive call in line 6 sets the submatrix C11 to the submatrix
product A11B11, so that C11 equals the first of the two terms that form its sum in
equation (27.6). Similarly, lines 7–9 set C12, C21, and C22 to the first of the two
terms that equal their sums in equation (27.6). Line 10 sets the submatrix T11 to
the submatrix product A12B21, so that T11 equals the second of the two terms that
form C11’s sum. Lines 11–13 set T12, T21, and T22 to the second of the two terms
that form the sums of C12, C21, and C22, respectively. The first seven recursive
calls are spawned, and the last one runs in the main strand. The sync statement in
line 14 ensures that all the submatrix products in lines 6–13 have been computed,

P-MATRIX-MULTIPLY-RECURSIVE has work T1(n) = Θ(n3) and span T∞(n) =

Θ(log2 n).

The same as before.

T∞(n) = T∞(n/2) + Θ(log n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 23

The Simple Divide&Conquer Approach in Parallel

794 Chapter 27 Multithreaded Algorithms

this divide-and-conquer strategy using nested parallelism. Unlike the SQUARE-
MATRIX-MULTIPLY-RECURSIVE procedure on which it is based, P-MATRIX-
MULTIPLY-RECURSIVE takes the output matrix as a parameter to avoid allocating
matrices unnecessarily.

P-MATRIX-MULTIPLY-RECURSIVE.C; A; B/

1 n D A:rows
2 if n == 1
3 c11 D a11b11

4 else let T be a new n ! n matrix
5 partition A, B , C , and T into n=2 ! n=2 submatrices

A11; A12; A21; A22; B11; B12; B21; B22; C11; C12; C21; C22;
and T11; T12; T21; T22; respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE.C11; A11; B11/
7 spawn P-MATRIX-MULTIPLY-RECURSIVE.C12; A11; B12/
8 spawn P-MATRIX-MULTIPLY-RECURSIVE.C21; A21; B11/
9 spawn P-MATRIX-MULTIPLY-RECURSIVE.C22; A21; B12/

10 spawn P-MATRIX-MULTIPLY-RECURSIVE.T11; A12; B21/
11 spawn P-MATRIX-MULTIPLY-RECURSIVE.T12; A12; B22/
12 spawn P-MATRIX-MULTIPLY-RECURSIVE.T21; A22; B21/
13 P-MATRIX-MULTIPLY-RECURSIVE.T22; A22; B22/
14 sync
15 parallel for i D 1 to n
16 parallel for j D 1 to n
17 cij D cij C tij

Line 3 handles the base case, where we are multiplying 1 ! 1 matrices. We handle
the recursive case in lines 4–17. We allocate a temporary matrix T in line 4, and
line 5 partitions each of the matrices A, B , C , and T into n=2 ! n=2 submatrices.
(As with SQUARE-MATRIX-MULTIPLY-RECURSIVE on page 77, we gloss over
the minor issue of how to use index calculations to represent submatrix sections
of a matrix.) The recursive call in line 6 sets the submatrix C11 to the submatrix
product A11B11, so that C11 equals the first of the two terms that form its sum in
equation (27.6). Similarly, lines 7–9 set C12, C21, and C22 to the first of the two
terms that equal their sums in equation (27.6). Line 10 sets the submatrix T11 to
the submatrix product A12B21, so that T11 equals the second of the two terms that
form C11’s sum. Lines 11–13 set T12, T21, and T22 to the second of the two terms
that form the sums of C12, C21, and C22, respectively. The first seven recursive
calls are spawned, and the last one runs in the main strand. The sync statement in
line 14 ensures that all the submatrix products in lines 6–13 have been computed,

P-MATRIX-MULTIPLY-RECURSIVE has work T1(n) = Θ(n3) and span T∞(n) =

Θ(log2 n).

The same as before.

T∞(n) = T∞(n/2) + Θ(log n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 23

The Simple Divide&Conquer Approach in Parallel

794 Chapter 27 Multithreaded Algorithms

this divide-and-conquer strategy using nested parallelism. Unlike the SQUARE-
MATRIX-MULTIPLY-RECURSIVE procedure on which it is based, P-MATRIX-
MULTIPLY-RECURSIVE takes the output matrix as a parameter to avoid allocating
matrices unnecessarily.

P-MATRIX-MULTIPLY-RECURSIVE.C; A; B/

1 n D A:rows
2 if n == 1
3 c11 D a11b11

4 else let T be a new n ! n matrix
5 partition A, B , C , and T into n=2 ! n=2 submatrices

A11; A12; A21; A22; B11; B12; B21; B22; C11; C12; C21; C22;
and T11; T12; T21; T22; respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE.C11; A11; B11/
7 spawn P-MATRIX-MULTIPLY-RECURSIVE.C12; A11; B12/
8 spawn P-MATRIX-MULTIPLY-RECURSIVE.C21; A21; B11/
9 spawn P-MATRIX-MULTIPLY-RECURSIVE.C22; A21; B12/

10 spawn P-MATRIX-MULTIPLY-RECURSIVE.T11; A12; B21/
11 spawn P-MATRIX-MULTIPLY-RECURSIVE.T12; A12; B22/
12 spawn P-MATRIX-MULTIPLY-RECURSIVE.T21; A22; B21/
13 P-MATRIX-MULTIPLY-RECURSIVE.T22; A22; B22/
14 sync
15 parallel for i D 1 to n
16 parallel for j D 1 to n
17 cij D cij C tij

Line 3 handles the base case, where we are multiplying 1 ! 1 matrices. We handle
the recursive case in lines 4–17. We allocate a temporary matrix T in line 4, and
line 5 partitions each of the matrices A, B , C , and T into n=2 ! n=2 submatrices.
(As with SQUARE-MATRIX-MULTIPLY-RECURSIVE on page 77, we gloss over
the minor issue of how to use index calculations to represent submatrix sections
of a matrix.) The recursive call in line 6 sets the submatrix C11 to the submatrix
product A11B11, so that C11 equals the first of the two terms that form its sum in
equation (27.6). Similarly, lines 7–9 set C12, C21, and C22 to the first of the two
terms that equal their sums in equation (27.6). Line 10 sets the submatrix T11 to
the submatrix product A12B21, so that T11 equals the second of the two terms that
form C11’s sum. Lines 11–13 set T12, T21, and T22 to the second of the two terms
that form the sums of C12, C21, and C22, respectively. The first seven recursive
calls are spawned, and the last one runs in the main strand. The sync statement in
line 14 ensures that all the submatrix products in lines 6–13 have been computed,

P-MATRIX-MULTIPLY-RECURSIVE has work T1(n) = Θ(n3) and span T∞(n) =

Θ(log2 n).

The same as before.

T∞(n) = T∞(n/2) + Θ(log n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 23

The Simple Divide&Conquer Approach in Parallel

794 Chapter 27 Multithreaded Algorithms

this divide-and-conquer strategy using nested parallelism. Unlike the SQUARE-
MATRIX-MULTIPLY-RECURSIVE procedure on which it is based, P-MATRIX-
MULTIPLY-RECURSIVE takes the output matrix as a parameter to avoid allocating
matrices unnecessarily.

P-MATRIX-MULTIPLY-RECURSIVE.C; A; B/

1 n D A:rows
2 if n == 1
3 c11 D a11b11

4 else let T be a new n ! n matrix
5 partition A, B , C , and T into n=2 ! n=2 submatrices

A11; A12; A21; A22; B11; B12; B21; B22; C11; C12; C21; C22;
and T11; T12; T21; T22; respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE.C11; A11; B11/
7 spawn P-MATRIX-MULTIPLY-RECURSIVE.C12; A11; B12/
8 spawn P-MATRIX-MULTIPLY-RECURSIVE.C21; A21; B11/
9 spawn P-MATRIX-MULTIPLY-RECURSIVE.C22; A21; B12/

10 spawn P-MATRIX-MULTIPLY-RECURSIVE.T11; A12; B21/
11 spawn P-MATRIX-MULTIPLY-RECURSIVE.T12; A12; B22/
12 spawn P-MATRIX-MULTIPLY-RECURSIVE.T21; A22; B21/
13 P-MATRIX-MULTIPLY-RECURSIVE.T22; A22; B22/
14 sync
15 parallel for i D 1 to n
16 parallel for j D 1 to n
17 cij D cij C tij

Line 3 handles the base case, where we are multiplying 1 ! 1 matrices. We handle
the recursive case in lines 4–17. We allocate a temporary matrix T in line 4, and
line 5 partitions each of the matrices A, B , C , and T into n=2 ! n=2 submatrices.
(As with SQUARE-MATRIX-MULTIPLY-RECURSIVE on page 77, we gloss over
the minor issue of how to use index calculations to represent submatrix sections
of a matrix.) The recursive call in line 6 sets the submatrix C11 to the submatrix
product A11B11, so that C11 equals the first of the two terms that form its sum in
equation (27.6). Similarly, lines 7–9 set C12, C21, and C22 to the first of the two
terms that equal their sums in equation (27.6). Line 10 sets the submatrix T11 to
the submatrix product A12B21, so that T11 equals the second of the two terms that
form C11’s sum. Lines 11–13 set T12, T21, and T22 to the second of the two terms
that form the sums of C12, C21, and C22, respectively. The first seven recursive
calls are spawned, and the last one runs in the main strand. The sync statement in
line 14 ensures that all the submatrix products in lines 6–13 have been computed,

P-MATRIX-MULTIPLY-RECURSIVE has work T1(n) = Θ(n3) and span T∞(n) = Θ(log2 n).

The same as before.

T∞(n) = T∞(n/2) + Θ(log n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 23

Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24

Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24

Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24

Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24

Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24

Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24

Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24

Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24

Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24

Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24

III. Linear Programming
Thomas Sauerwald

Easter 2018

Outline

Introduction

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

III. Linear Programming Introduction 2

Introduction

maximize or minimize an objective, given limited resources and
competing constraint

constraints are specified as (in)equalities

Linear Programming (informal definition)

Imagine you are a politician trying to win an election

Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

Aim: at least half of the registered voters in each of the three regions
should vote for you

Possible Actions: Advertise on one of the primary issues which are (i)
building more roads, (ii) gun control, (iii) farm subsidies and (iv) a
gasoline tax dedicated to improve public transit.

Example: Political Advertising

III. Linear Programming Introduction 3

Introduction

maximize or minimize an objective, given limited resources and
competing constraint

constraints are specified as (in)equalities

Linear Programming (informal definition)

Imagine you are a politician trying to win an election

Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

Aim: at least half of the registered voters in each of the three regions
should vote for you

Possible Actions: Advertise on one of the primary issues which are (i)
building more roads, (ii) gun control, (iii) farm subsidies and (iv) a
gasoline tax dedicated to improve public transit.

Example: Political Advertising

III. Linear Programming Introduction 3

Introduction

maximize or minimize an objective, given limited resources and
competing constraint

constraints are specified as (in)equalities

Linear Programming (informal definition)

Imagine you are a politician trying to win an election

Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

Aim: at least half of the registered voters in each of the three regions
should vote for you

Possible Actions: Advertise on one of the primary issues which are (i)
building more roads, (ii) gun control, (iii) farm subsidies and (iv) a
gasoline tax dedicated to improve public transit.

Example: Political Advertising

III. Linear Programming Introduction 3

Introduction

maximize or minimize an objective, given limited resources and
competing constraint

constraints are specified as (in)equalities

Linear Programming (informal definition)

Imagine you are a politician trying to win an election

Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

Aim: at least half of the registered voters in each of the three regions
should vote for you

Possible Actions: Advertise on one of the primary issues which are (i)
building more roads, (ii) gun control, (iii) farm subsidies and (iv) a
gasoline tax dedicated to improve public transit.

Example: Political Advertising

III. Linear Programming Introduction 3

Introduction

maximize or minimize an objective, given limited resources and
competing constraint

constraints are specified as (in)equalities

Linear Programming (informal definition)

Imagine you are a politician trying to win an election

Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

Aim: at least half of the registered voters in each of the three regions
should vote for you

Possible Actions: Advertise on one of the primary issues which are (i)
building more roads, (ii) gun control, (iii) farm subsidies and (iv) a
gasoline tax dedicated to improve public transit.

Example: Political Advertising

III. Linear Programming Introduction 3

Introduction

maximize or minimize an objective, given limited resources and
competing constraint

constraints are specified as (in)equalities

Linear Programming (informal definition)

Imagine you are a politician trying to win an election

Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

Aim: at least half of the registered voters in each of the three regions
should vote for you

Possible Actions: Advertise on one of the primary issues which are (i)
building more roads, (ii) gun control, (iii) farm subsidies and (iv) a
gasoline tax dedicated to improve public transit.

Example: Political Advertising

III. Linear Programming Introduction 3

Political Advertising Continued
policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

Possible Solution:
$20,000 on advertising to building roads
$0 on advertising to gun control
$4,000 on advertising to farm subsidies
$9,000 on advertising to a gasoline tax

Total cost: $33,000

What is the best possible strategy?

III. Linear Programming Introduction 4

Political Advertising Continued
policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

Possible Solution:
$20,000 on advertising to building roads
$0 on advertising to gun control
$4,000 on advertising to farm subsidies
$9,000 on advertising to a gasoline tax

Total cost: $33,000

What is the best possible strategy?

III. Linear Programming Introduction 4

Political Advertising Continued
policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

Possible Solution:
$20,000 on advertising to building roads
$0 on advertising to gun control
$4,000 on advertising to farm subsidies
$9,000 on advertising to a gasoline tax

Total cost: $33,000

What is the best possible strategy?

III. Linear Programming Introduction 4

Political Advertising Continued
policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

Possible Solution:
$20,000 on advertising to building roads
$0 on advertising to gun control
$4,000 on advertising to farm subsidies
$9,000 on advertising to a gasoline tax

Total cost: $33,000

What is the best possible strategy?

III. Linear Programming Introduction 4

Towards a Linear Program

policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

x1 = number of thousands of dollars spent on advertising on building roads
x2 = number of thousands of dollars spent on advertising on gun control
x3 = number of thousands of dollars spent on advertising on farm subsidies
x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

−2x1 + 8x2 + 0x3 + 10x4 ≥ 50
5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

Objective: Minimize x1 + x2 + x3 + x4

III. Linear Programming Introduction 5

Towards a Linear Program

policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

x1 = number of thousands of dollars spent on advertising on building roads
x2 = number of thousands of dollars spent on advertising on gun control
x3 = number of thousands of dollars spent on advertising on farm subsidies
x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

−2x1 + 8x2 + 0x3 + 10x4 ≥ 50
5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

Objective: Minimize x1 + x2 + x3 + x4

III. Linear Programming Introduction 5

Towards a Linear Program

policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

x1 = number of thousands of dollars spent on advertising on building roads
x2 = number of thousands of dollars spent on advertising on gun control
x3 = number of thousands of dollars spent on advertising on farm subsidies
x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

−2x1 + 8x2 + 0x3 + 10x4 ≥ 50
5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

Objective: Minimize x1 + x2 + x3 + x4

III. Linear Programming Introduction 5

Towards a Linear Program

policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

x1 = number of thousands of dollars spent on advertising on building roads
x2 = number of thousands of dollars spent on advertising on gun control
x3 = number of thousands of dollars spent on advertising on farm subsidies
x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50

5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

Objective: Minimize x1 + x2 + x3 + x4

III. Linear Programming Introduction 5

Towards a Linear Program

policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

x1 = number of thousands of dollars spent on advertising on building roads
x2 = number of thousands of dollars spent on advertising on gun control
x3 = number of thousands of dollars spent on advertising on farm subsidies
x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50
5x1 + 2x2 + 0x3 + 0x4 ≥ 100

3x1 − 5x2 + 10x3 − 2x4 ≥ 25

Objective: Minimize x1 + x2 + x3 + x4

III. Linear Programming Introduction 5

Towards a Linear Program

policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

x1 = number of thousands of dollars spent on advertising on building roads
x2 = number of thousands of dollars spent on advertising on gun control
x3 = number of thousands of dollars spent on advertising on farm subsidies
x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50
5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

Objective: Minimize x1 + x2 + x3 + x4

III. Linear Programming Introduction 5

Towards a Linear Program

policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

x1 = number of thousands of dollars spent on advertising on building roads
x2 = number of thousands of dollars spent on advertising on gun control
x3 = number of thousands of dollars spent on advertising on farm subsidies
x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50
5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

Objective: Minimize x1 + x2 + x3 + x4

III. Linear Programming Introduction 5

The Linear Program

minimize x1 + x2 + x3 + x4

subject to
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50

5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

x1, x2, x3, x4 ≥ 0

Linear Program for the Advertising Problem

The solution of this linear program yields the optimal advertising strategy.

Given a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, a linear
function f is defined by

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Linear Equality: f (x1, x2, . . . , xn) = b

Linear Inequality: f (x1, x2, . . . , xn)
≥
≤b

Linear-Progamming Problem: either minimize or maximize a linear
function subject to a set of linear constraints

Formal Definition of Linear Program

Linear Constraints

III. Linear Programming Introduction 6

The Linear Program

minimize x1 + x2 + x3 + x4

subject to
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50

5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

x1, x2, x3, x4 ≥ 0

Linear Program for the Advertising Problem

The solution of this linear program yields the optimal advertising strategy.

Given a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, a linear
function f is defined by

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Linear Equality: f (x1, x2, . . . , xn) = b

Linear Inequality: f (x1, x2, . . . , xn)
≥
≤b

Linear-Progamming Problem: either minimize or maximize a linear
function subject to a set of linear constraints

Formal Definition of Linear Program

Linear Constraints

III. Linear Programming Introduction 6

The Linear Program

minimize x1 + x2 + x3 + x4

subject to
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50

5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

x1, x2, x3, x4 ≥ 0

Linear Program for the Advertising Problem

The solution of this linear program yields the optimal advertising strategy.

Given a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, a linear
function f is defined by

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Linear Equality: f (x1, x2, . . . , xn) = b

Linear Inequality: f (x1, x2, . . . , xn)
≥
≤b

Linear-Progamming Problem: either minimize or maximize a linear
function subject to a set of linear constraints

Formal Definition of Linear Program

Linear Constraints

III. Linear Programming Introduction 6

The Linear Program

minimize x1 + x2 + x3 + x4

subject to
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50

5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

x1, x2, x3, x4 ≥ 0

Linear Program for the Advertising Problem

The solution of this linear program yields the optimal advertising strategy.

Given a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, a linear
function f is defined by

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Linear Equality: f (x1, x2, . . . , xn) = b

Linear Inequality: f (x1, x2, . . . , xn)
≥
≤b

Linear-Progamming Problem: either minimize or maximize a linear
function subject to a set of linear constraints

Formal Definition of Linear Program

Linear Constraints

III. Linear Programming Introduction 6

The Linear Program

minimize x1 + x2 + x3 + x4

subject to
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50

5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

x1, x2, x3, x4 ≥ 0

Linear Program for the Advertising Problem

The solution of this linear program yields the optimal advertising strategy.

Given a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, a linear
function f is defined by

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Linear Equality: f (x1, x2, . . . , xn) = b

Linear Inequality: f (x1, x2, . . . , xn)
≥
≤b

Linear-Progamming Problem: either minimize or maximize a linear
function subject to a set of linear constraints

Formal Definition of Linear Program

Linear Constraints

III. Linear Programming Introduction 6

The Linear Program

minimize x1 + x2 + x3 + x4

subject to
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50

5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

x1, x2, x3, x4 ≥ 0

Linear Program for the Advertising Problem

The solution of this linear program yields the optimal advertising strategy.

Given a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, a linear
function f is defined by

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Linear Equality: f (x1, x2, . . . , xn) = b

Linear Inequality: f (x1, x2, . . . , xn)
≥
≤b

Linear-Progamming Problem: either minimize or maximize a linear
function subject to a set of linear constraints

Formal Definition of Linear Program

Linear Constraints

III. Linear Programming Introduction 6

The Linear Program

minimize x1 + x2 + x3 + x4

subject to
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50

5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

x1, x2, x3, x4 ≥ 0

Linear Program for the Advertising Problem

The solution of this linear program yields the optimal advertising strategy.

Given a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, a linear
function f is defined by

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Linear Equality: f (x1, x2, . . . , xn) = b

Linear Inequality: f (x1, x2, . . . , xn)
≥
≤b

Linear-Progamming Problem: either minimize or maximize a linear
function subject to a set of linear constraints

Formal Definition of Linear Program

Linear Constraints

III. Linear Programming Introduction 6

The Linear Program

minimize x1 + x2 + x3 + x4

subject to
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50

5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

x1, x2, x3, x4 ≥ 0

Linear Program for the Advertising Problem

The solution of this linear program yields the optimal advertising strategy.

Given a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, a linear
function f is defined by

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Linear Equality: f (x1, x2, . . . , xn) = b

Linear Inequality: f (x1, x2, . . . , xn)
≥
≤b

Linear-Progamming Problem: either minimize or maximize a linear
function subject to a set of linear constraints

Formal Definition of Linear Program

Linear Constraints

III. Linear Programming Introduction 6

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution
Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

Outline

Introduction

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

III. Linear Programming Standard and Slack Forms 8

Standard and Slack Forms

maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for i = 1, 2, . . . ,m

xj ≥ 0 for j = 1, 2, . . . , n

Standard Form

maximize cT x

subject to

Ax ≤ b

x ≥ 0

Standard Form (Matrix-Vector-Notation)

Objective Function

n + m Constraints

Non-Negativity Constraints

Inner product of two vectors

Matrix-vector product

III. Linear Programming Standard and Slack Forms 9

Standard and Slack Forms

maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for i = 1, 2, . . . ,m

xj ≥ 0 for j = 1, 2, . . . , n

Standard Form

maximize cT x

subject to

Ax ≤ b

x ≥ 0

Standard Form (Matrix-Vector-Notation)

Objective Function

n + m Constraints

Non-Negativity Constraints

Inner product of two vectors

Matrix-vector product

III. Linear Programming Standard and Slack Forms 9

Standard and Slack Forms

maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for i = 1, 2, . . . ,m

xj ≥ 0 for j = 1, 2, . . . , n

Standard Form

maximize cT x

subject to

Ax ≤ b

x ≥ 0

Standard Form (Matrix-Vector-Notation)

Objective Function

n + m Constraints

Non-Negativity Constraints

Inner product of two vectors

Matrix-vector product

III. Linear Programming Standard and Slack Forms 9

Standard and Slack Forms

maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for i = 1, 2, . . . ,m

xj ≥ 0 for j = 1, 2, . . . , n

Standard Form

maximize cT x

subject to

Ax ≤ b

x ≥ 0

Standard Form (Matrix-Vector-Notation)

Objective Function

n + m Constraints

Non-Negativity Constraints

Inner product of two vectors

Matrix-vector product

III. Linear Programming Standard and Slack Forms 9

Standard and Slack Forms

maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for i = 1, 2, . . . ,m

xj ≥ 0 for j = 1, 2, . . . , n

Standard Form

maximize cT x

subject to

Ax ≤ b

x ≥ 0

Standard Form (Matrix-Vector-Notation)

Objective Function

n + m Constraints

Non-Negativity Constraints

Inner product of two vectors

Matrix-vector product

III. Linear Programming Standard and Slack Forms 9

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.

4. There might be inequality constraints (with ≥ instead of ≤).

Goal: Convert linear program into an equivalent program
which is in standard form

Equivalence: a correspondence (not necessarily a bijection)
between solutions so that their objective values are identical.

When switching from maximization to
minimization, sign of objective value changes.

III. Linear Programming Standard and Slack Forms 10

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.

4. There might be inequality constraints (with ≥ instead of ≤).

Goal: Convert linear program into an equivalent program
which is in standard form

Equivalence: a correspondence (not necessarily a bijection)
between solutions so that their objective values are identical.

When switching from maximization to
minimization, sign of objective value changes.

III. Linear Programming Standard and Slack Forms 10

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.

4. There might be inequality constraints (with ≥ instead of ≤).

Goal: Convert linear program into an equivalent program
which is in standard form

Equivalence: a correspondence (not necessarily a bijection)
between solutions so that their objective values are identical.

When switching from maximization to
minimization, sign of objective value changes.

III. Linear Programming Standard and Slack Forms 10

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.

4. There might be inequality constraints (with ≥ instead of ≤).

Goal: Convert linear program into an equivalent program
which is in standard form

Equivalence: a correspondence (not necessarily a bijection)
between solutions so that their objective values are identical.

When switching from maximization to
minimization, sign of objective value changes.

III. Linear Programming Standard and Slack Forms 10

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

minimize −2x1 + 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximize 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

Negate objective function

III. Linear Programming Standard and Slack Forms 11

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

minimize −2x1 + 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximize 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

Negate objective function

III. Linear Programming Standard and Slack Forms 11

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

minimize −2x1 + 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximize 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

Negate objective function

III. Linear Programming Standard and Slack Forms 11

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

minimize −2x1 + 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximize 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

Negate objective function

III. Linear Programming Standard and Slack Forms 11

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

maximize 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace x2 by two non-negative
variables x ′2 and x ′′2

III. Linear Programming Standard and Slack Forms 12

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

maximize 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace x2 by two non-negative
variables x ′2 and x ′′2

III. Linear Programming Standard and Slack Forms 12

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

maximize 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace x2 by two non-negative
variables x ′2 and x ′′2

III. Linear Programming Standard and Slack Forms 12

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

maximize 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace x2 by two non-negative
variables x ′2 and x ′′2

III. Linear Programming Standard and Slack Forms 12

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace each equality
by two inequalities.

III. Linear Programming Standard and Slack Forms 13

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace each equality
by two inequalities.

III. Linear Programming Standard and Slack Forms 13

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace each equality
by two inequalities.

III. Linear Programming Standard and Slack Forms 13

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace each equality
by two inequalities.

III. Linear Programming Standard and Slack Forms 13

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with ≥ instead of ≤).

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
−x1 − x ′2 + x ′′2 ≤ −7

x1 − 2x ′2 + 2x ′′2 ≤ 4
x1, x ′2, x

′′
2 ≥ 0

Negate respective inequalities.

III. Linear Programming Standard and Slack Forms 14

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with ≥ instead of ≤).

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
−x1 − x ′2 + x ′′2 ≤ −7

x1 − 2x ′2 + 2x ′′2 ≤ 4
x1, x ′2, x

′′
2 ≥ 0

Negate respective inequalities.

III. Linear Programming Standard and Slack Forms 14

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with ≥ instead of ≤).

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
−x1 − x ′2 + x ′′2 ≤ −7

x1 − 2x ′2 + 2x ′′2 ≤ 4
x1, x ′2, x

′′
2 ≥ 0

Negate respective inequalities.

III. Linear Programming Standard and Slack Forms 14

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with ≥ instead of ≤).

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
−x1 − x ′2 + x ′′2 ≤ −7

x1 − 2x ′2 + 2x ′′2 ≤ 4
x1, x ′2, x

′′
2 ≥ 0

Negate respective inequalities.

III. Linear Programming Standard and Slack Forms 14

Converting into Standard Form (5/5)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

Rename variable names (for consistency).

It is always possible to convert a linear program into standard form.

III. Linear Programming Standard and Slack Forms 15

Converting into Standard Form (5/5)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

Rename variable names (for consistency).

It is always possible to convert a linear program into standard form.

III. Linear Programming Standard and Slack Forms 15

Converting into Standard Form (5/5)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

Rename variable names (for consistency).

It is always possible to convert a linear program into standard form.

III. Linear Programming Standard and Slack Forms 15

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.

III. Linear Programming Standard and Slack Forms 16

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.

III. Linear Programming Standard and Slack Forms 16

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.

III. Linear Programming Standard and Slack Forms 16

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.

III. Linear Programming Standard and Slack Forms 16

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.

III. Linear Programming Standard and Slack Forms 16

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.

III. Linear Programming Standard and Slack Forms 16

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.

III. Linear Programming Standard and Slack Forms 16

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.

III. Linear Programming Standard and Slack Forms 16

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.

III. Linear Programming Standard and Slack Forms 16

Converting Standard Form into Slack Form (2/3)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

Introduce slack variables

III. Linear Programming Standard and Slack Forms 17

Converting Standard Form into Slack Form (2/3)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

Introduce slack variables

III. Linear Programming Standard and Slack Forms 17

Converting Standard Form into Slack Form (2/3)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

Introduce slack variables

III. Linear Programming Standard and Slack Forms 17

Converting Standard Form into Slack Form (2/3)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

Introduce slack variables

III. Linear Programming Standard and Slack Forms 17

Converting Standard Form into Slack Form (2/3)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

Introduce slack variables

III. Linear Programming Standard and Slack Forms 17

Converting Standard Form into Slack Form (2/3)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

Introduce slack variables

III. Linear Programming Standard and Slack Forms 17

Converting Standard Form into Slack Form (2/3)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

Introduce slack variables

III. Linear Programming Standard and Slack Forms 17

Converting Standard Form into Slack Form (3/3)

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Use variable z to denote objective function
and omit the nonnegativity constraints.

This is called slack form.

III. Linear Programming Standard and Slack Forms 18

Converting Standard Form into Slack Form (3/3)

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Use variable z to denote objective function
and omit the nonnegativity constraints.

This is called slack form.

III. Linear Programming Standard and Slack Forms 18

Converting Standard Form into Slack Form (3/3)

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Use variable z to denote objective function
and omit the nonnegativity constraints.

This is called slack form.

III. Linear Programming Standard and Slack Forms 18

Converting Standard Form into Slack Form (3/3)

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Use variable z to denote objective function
and omit the nonnegativity constraints.

This is called slack form.

III. Linear Programming Standard and Slack Forms 18

Basic and Non-Basic Variables

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Basic Variables: B = {4, 5, 6} Non-Basic Variables: N = {1, 2, 3}

Slack form is given by a tuple (N,B,A, b, c, v) so that

z = v +
∑

j∈N

cjxj

xi = bi −
∑

j∈N

aijxj for i ∈ B,

and all variables are non-negative.

Slack Form (Formal Definition)

Variables/Coefficients on the right hand side are indexed by B and N.

III. Linear Programming Standard and Slack Forms 19

Basic and Non-Basic Variables

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Basic Variables: B = {4, 5, 6}

Non-Basic Variables: N = {1, 2, 3}

Slack form is given by a tuple (N,B,A, b, c, v) so that

z = v +
∑

j∈N

cjxj

xi = bi −
∑

j∈N

aijxj for i ∈ B,

and all variables are non-negative.

Slack Form (Formal Definition)

Variables/Coefficients on the right hand side are indexed by B and N.

III. Linear Programming Standard and Slack Forms 19

Basic and Non-Basic Variables

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Basic Variables: B = {4, 5, 6} Non-Basic Variables: N = {1, 2, 3}

Slack form is given by a tuple (N,B,A, b, c, v) so that

z = v +
∑

j∈N

cjxj

xi = bi −
∑

j∈N

aijxj for i ∈ B,

and all variables are non-negative.

Slack Form (Formal Definition)

Variables/Coefficients on the right hand side are indexed by B and N.

III. Linear Programming Standard and Slack Forms 19

Basic and Non-Basic Variables

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Basic Variables: B = {4, 5, 6} Non-Basic Variables: N = {1, 2, 3}

Slack form is given by a tuple (N,B,A, b, c, v) so that

z = v +
∑

j∈N

cjxj

xi = bi −
∑

j∈N

aijxj for i ∈ B,

and all variables are non-negative.

Slack Form (Formal Definition)

Variables/Coefficients on the right hand side are indexed by B and N.

III. Linear Programming Standard and Slack Forms 19

Basic and Non-Basic Variables

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Basic Variables: B = {4, 5, 6} Non-Basic Variables: N = {1, 2, 3}

Slack form is given by a tuple (N,B,A, b, c, v) so that

z = v +
∑

j∈N

cjxj

xi = bi −
∑

j∈N

aijxj for i ∈ B,

and all variables are non-negative.

Slack Form (Formal Definition)

Variables/Coefficients on the right hand side are indexed by B and N.

III. Linear Programming Standard and Slack Forms 19

Slack Form (Example)

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

B = {1, 2, 4}, N = {3, 5, 6}

A =




a13 a15 a16

a23 a25 a26

a43 a45 a46


 =



−1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0




b =




b1

b2

b3


 =




8
4
18


 ,

c =




c3

c5

c6


 =



−1/6
−1/6
−2/3




v = 28

Slack Form Notation

III. Linear Programming Standard and Slack Forms 20

Slack Form (Example)

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

B = {1, 2, 4}, N = {3, 5, 6}

A =




a13 a15 a16

a23 a25 a26

a43 a45 a46


 =



−1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0




b =




b1

b2

b3


 =




8
4
18


 ,

c =




c3

c5

c6


 =



−1/6
−1/6
−2/3




v = 28

Slack Form Notation

III. Linear Programming Standard and Slack Forms 20

Slack Form (Example)

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

B = {1, 2, 4}, N = {3, 5, 6}

A =




a13 a15 a16

a23 a25 a26

a43 a45 a46


 =



−1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0




b =




b1

b2

b3


 =




8
4
18


 ,

c =




c3

c5

c6


 =



−1/6
−1/6
−2/3




v = 28

Slack Form Notation

III. Linear Programming Standard and Slack Forms 20

Slack Form (Example)

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

B = {1, 2, 4}, N = {3, 5, 6}

A =




a13 a15 a16

a23 a25 a26

a43 a45 a46


 =



−1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0




b =




b1

b2

b3


 =




8
4
18


 ,

c =




c3

c5

c6


 =



−1/6
−1/6
−2/3




v = 28

Slack Form Notation

III. Linear Programming Standard and Slack Forms 20

Slack Form (Example)

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

B = {1, 2, 4}, N = {3, 5, 6}

A =




a13 a15 a16

a23 a25 a26

a43 a45 a46


 =



−1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0




b =




b1

b2

b3


 =




8
4
18


 ,

c =




c3

c5

c6


 =



−1/6
−1/6
−2/3




v = 28

Slack Form Notation

III. Linear Programming Standard and Slack Forms 20

Slack Form (Example)

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

B = {1, 2, 4}, N = {3, 5, 6}

A =




a13 a15 a16

a23 a25 a26

a43 a45 a46


 =



−1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0




b =




b1

b2

b3


 =




8
4
18


 , c =




c3

c5

c6


 =



−1/6
−1/6
−2/3




v = 28

Slack Form Notation

III. Linear Programming Standard and Slack Forms 20

Slack Form (Example)

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

B = {1, 2, 4}, N = {3, 5, 6}

A =




a13 a15 a16

a23 a25 a26

a43 a45 a46


 =



−1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0




b =




b1

b2

b3


 =




8
4
18


 , c =




c3

c5

c6


 =



−1/6
−1/6
−2/3




v = 28

Slack Form Notation

III. Linear Programming Standard and Slack Forms 20

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):

Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex

⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):

Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex

⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):

Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex

⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex

⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex

⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

Case 1: There exists j with dj < 0

Increase λ from 0 to λ′ until a new entry of x + λd
becomes zero
x + λ′d feasible, since A(x + λ′d) = Ax = b and
x + λ′d ≥ 0
cT (x + λ′d) = cT x + cTλ′d ≥ cT x

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

Case 1: There exists j with dj < 0

Increase λ from 0 to λ′ until a new entry of x + λd
becomes zero

x + λ′d feasible, since A(x + λ′d) = Ax = b and
x + λ′d ≥ 0
cT (x + λ′d) = cT x + cTλ′d ≥ cT x

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

Case 1: There exists j with dj < 0

Increase λ from 0 to λ′ until a new entry of x + λd
becomes zero
x + λ′d feasible, since A(x + λ′d) = Ax = b and
x + λ′d ≥ 0

cT (x + λ′d) = cT x + cTλ′d ≥ cT x

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

Case 1: There exists j with dj < 0

Increase λ from 0 to λ′ until a new entry of x + λd
becomes zero
x + λ′d feasible, since A(x + λ′d) = Ax = b and
x + λ′d ≥ 0
cT (x + λ′d) = cT x + cTλ′d ≥ cT x x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

Case 2: For all j , dj ≥ 0

x + λd is feasible for all λ ≥ 0: A(x + λd) = b and
x + λd ≥ x ≥ 0
If λ→∞, then cT (x + λd)→∞

⇒ This contradicts the assumption that there exists an
optimal solution.

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

Case 2: For all j , dj ≥ 0

x + λd is feasible for all λ ≥ 0: A(x + λd) = b and
x + λd ≥ x ≥ 0

If λ→∞, then cT (x + λd)→∞
⇒ This contradicts the assumption that there exists an

optimal solution.

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

Case 2: For all j , dj ≥ 0

x + λd is feasible for all λ ≥ 0: A(x + λd) = b and
x + λd ≥ x ≥ 0
If λ→∞, then cT (x + λd)→∞

⇒ This contradicts the assumption that there exists an
optimal solution.

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

Case 2: For all j , dj ≥ 0

x + λd is feasible for all λ ≥ 0: A(x + λd) = b and
x + λd ≥ x ≥ 0
If λ→∞, then cT (x + λd)→∞

⇒ This contradicts the assumption that there exists an
optimal solution. x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

Case 2: For all j , dj ≥ 0

x + λd is feasible for all λ ≥ 0: A(x + λd) = b and
x + λd ≥ x ≥ 0
If λ→∞, then cT (x + λd)→∞

⇒ This contradicts the assumption that there exists an
optimal solution. x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

Outline

Introduction

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

III. Linear Programming Formulating Problems as Linear Programs 22

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to

dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}

III. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to

dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}

III. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to

dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}

III. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to

dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}

III. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to

dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}

III. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to
dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}

III. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to
dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}

III. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to
dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}

III. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to
dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}

III. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to
dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}

III. Linear Programming Formulating Problems as Linear Programs 23

Maximum Flow

Given: directed graph G = (V ,E) with edge capacities c : E → R+,
pair of vertices s, t ∈ V

Goal: Find a maximum flow f : V × V → R from s to t which
satisfies the capacity constraints and flow conservation

Maximum Flow Problem

s

2

3

4

5 t

|f | = 19

0/10

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

10/10

9/10
0/2 5/6

4/4

6/8

9/9

9/10

10/10

maximize
∑

v∈V fsv − ∑
v∈V fvs

subject to
fuv ≤ c(u, v) for each u, v ∈ V ,∑

v∈V fvu =
∑

v∈V fuv for each u ∈ V \ {s, t},
fuv ≥ 0 for each u, v ∈ V .

Maximum Flow as LP

III. Linear Programming Formulating Problems as Linear Programs 24

Maximum Flow

Given: directed graph G = (V ,E) with edge capacities c : E → R+,
pair of vertices s, t ∈ V

Goal: Find a maximum flow f : V × V → R from s to t which
satisfies the capacity constraints and flow conservation

Maximum Flow Problem

s

2

3

4

5 t

|f | = 19

0/10

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

10/10

9/10
0/2 5/6

4/4

6/8

9/9

9/10

10/10

maximize
∑

v∈V fsv − ∑
v∈V fvs

subject to
fuv ≤ c(u, v) for each u, v ∈ V ,∑

v∈V fvu =
∑

v∈V fuv for each u ∈ V \ {s, t},
fuv ≥ 0 for each u, v ∈ V .

Maximum Flow as LP

III. Linear Programming Formulating Problems as Linear Programs 24

Maximum Flow

Given: directed graph G = (V ,E) with edge capacities c : E → R+,
pair of vertices s, t ∈ V

Goal: Find a maximum flow f : V × V → R from s to t which
satisfies the capacity constraints and flow conservation

Maximum Flow Problem

s

2

3

4

5 t

|f | = 19

0/10

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

10/10

9/10
0/2 5/6

4/4

6/8

9/9

9/10

10/10

maximize
∑

v∈V fsv − ∑
v∈V fvs

subject to
fuv ≤ c(u, v) for each u, v ∈ V ,∑

v∈V fvu =
∑

v∈V fuv for each u ∈ V \ {s, t},
fuv ≥ 0 for each u, v ∈ V .

Maximum Flow as LP

III. Linear Programming Formulating Problems as Linear Programs 24

Maximum Flow

Given: directed graph G = (V ,E) with edge capacities c : E → R+,
pair of vertices s, t ∈ V

Goal: Find a maximum flow f : V × V → R from s to t which
satisfies the capacity constraints and flow conservation

Maximum Flow Problem

s

2

3

4

5 t

|f | = 19

0/10

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

10/10

9/10
0/2 5/6

4/4

6/8

9/9

9/10

10/10

maximize
∑

v∈V fsv − ∑
v∈V fvs

subject to
fuv ≤ c(u, v) for each u, v ∈ V ,∑

v∈V fvu =
∑

v∈V fuv for each u ∈ V \ {s, t},
fuv ≥ 0 for each u, v ∈ V .

Maximum Flow as LP

III. Linear Programming Formulating Problems as Linear Programs 24

Maximum Flow

Given: directed graph G = (V ,E) with edge capacities c : E → R+,
pair of vertices s, t ∈ V

Goal: Find a maximum flow f : V × V → R from s to t which
satisfies the capacity constraints and flow conservation

Maximum Flow Problem

s

2

3

4

5 t

|f | = 19

0/10

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

10/10

9/10
0/2 5/6

4/4

6/8

9/9

9/10

10/10

maximize
∑

v∈V fsv − ∑
v∈V fvs

subject to
fuv ≤ c(u, v) for each u, v ∈ V ,∑

v∈V fvu =
∑

v∈V fuv for each u ∈ V \ {s, t},
fuv ≥ 0 for each u, v ∈ V .

Maximum Flow as LP

III. Linear Programming Formulating Problems as Linear Programs 24

Minimum-Cost Flow

Given: directed graph G = (V ,E) with capacities c : E → R+, pair of
vertices s, t ∈ V , cost function a : E → R+, flow demand of d units

Goal: Find a flow f : V × V → R from s to t with |f | = d while
minimising the total cost

∑
(u,v)∈E a(u, v)fuv incurrred by the flow.

Minimum-Cost-Flow Problem

862 Chapter 29 Linear Programming

s

x

t

y

(a)

c = 1
a = 3

c = 5
a = 2

c = 4
a = 1

c = 2a = 7

c = 2a = 5

s

x

t

y

(b)

1/1
a = 3

2/5
a = 2

3/4
a = 1

1/2a = 7

2/2a = 5

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and
the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow
from s to t . (b)A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t . For each edge, the flow and capacity are written as flow/capacity.

straint that the value of the flow be exactly d units, and with the new objective
function of minimizing the cost:
minimize

X

.u;!/2E

a.u; !/fu! (29.51)
subject to

fu! ! c.u; !/ for each u; ! 2 V ;
X

!2V

f!u "
X

!2V

fu! D 0 for each u 2 V " fs; tg ;

X

!2V

fs! "
X

!2V

f!s D d ;

fu! # 0 for each u; ! 2 V : (29.52)

Multicommodity flow
As a final example, we consider another flow problem. Suppose that the Lucky
Puck company from Section 26.1 decides to diversify its product line and ship
not only hockey pucks, but also hockey sticks and hockey helmets. Each piece of
equipment is manufactured in its own factory, has its own warehouse, and must
be shipped, each day, from factory to warehouse. The sticks are manufactured in
Vancouver and must be shipped to Saskatoon, and the helmets are manufactured in
Edmonton and must be shipped to Regina. The capacity of the shipping network
does not change, however, and the different items, or commodities, must share the
same network.

This example is an instance of amulticommodity-flow problem. In this problem,
we are again given a directed graph G D .V; E/ in which each edge .u; !/ 2 E
has a nonnegative capacity c.u; !/ # 0. As in the maximum-flow problem, we im-
plicitly assume that c.u; !/ D 0 for .u; !/ 62 E, and that the graph has no antipar-

Extension of the Maximum Flow Problem

Optimal Solution with total cost:∑
(u,v)∈E a(u, v)fuv = (2·2)+(5·2)+(3·1)+(7·1)+(1·3) = 27

III. Linear Programming Formulating Problems as Linear Programs 25

Minimum-Cost Flow

Given: directed graph G = (V ,E) with capacities c : E → R+, pair of
vertices s, t ∈ V , cost function a : E → R+, flow demand of d units

Goal: Find a flow f : V × V → R from s to t with |f | = d while
minimising the total cost

∑
(u,v)∈E a(u, v)fuv incurrred by the flow.

Minimum-Cost-Flow Problem

862 Chapter 29 Linear Programming

s

x

t

y

(a)

c = 1
a = 3

c = 5
a = 2

c = 4
a = 1

c = 2a = 7

c = 2a = 5

s

x

t

y

(b)

1/1
a = 3

2/5
a = 2

3/4
a = 1

1/2a = 7

2/2a = 5

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and
the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow
from s to t . (b)A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t . For each edge, the flow and capacity are written as flow/capacity.

straint that the value of the flow be exactly d units, and with the new objective
function of minimizing the cost:
minimize

X

.u;!/2E

a.u; !/fu! (29.51)
subject to

fu! ! c.u; !/ for each u; ! 2 V ;
X

!2V

f!u "
X

!2V

fu! D 0 for each u 2 V " fs; tg ;

X

!2V

fs! "
X

!2V

f!s D d ;

fu! # 0 for each u; ! 2 V : (29.52)

Multicommodity flow
As a final example, we consider another flow problem. Suppose that the Lucky
Puck company from Section 26.1 decides to diversify its product line and ship
not only hockey pucks, but also hockey sticks and hockey helmets. Each piece of
equipment is manufactured in its own factory, has its own warehouse, and must
be shipped, each day, from factory to warehouse. The sticks are manufactured in
Vancouver and must be shipped to Saskatoon, and the helmets are manufactured in
Edmonton and must be shipped to Regina. The capacity of the shipping network
does not change, however, and the different items, or commodities, must share the
same network.

This example is an instance of amulticommodity-flow problem. In this problem,
we are again given a directed graph G D .V; E/ in which each edge .u; !/ 2 E
has a nonnegative capacity c.u; !/ # 0. As in the maximum-flow problem, we im-
plicitly assume that c.u; !/ D 0 for .u; !/ 62 E, and that the graph has no antipar-

Extension of the Maximum Flow Problem

Optimal Solution with total cost:∑
(u,v)∈E a(u, v)fuv = (2·2)+(5·2)+(3·1)+(7·1)+(1·3) = 27

III. Linear Programming Formulating Problems as Linear Programs 25

Minimum-Cost Flow

Given: directed graph G = (V ,E) with capacities c : E → R+, pair of
vertices s, t ∈ V , cost function a : E → R+, flow demand of d units

Goal: Find a flow f : V × V → R from s to t with |f | = d while
minimising the total cost

∑
(u,v)∈E a(u, v)fuv incurrred by the flow.

Minimum-Cost-Flow Problem

862 Chapter 29 Linear Programming

s

x

t

y

(a)

c = 1
a = 3

c = 5
a = 2

c = 4
a = 1

c = 2a = 7

c = 2a = 5

s

x

t

y

(b)

1/1
a = 3

2/5
a = 2

3/4
a = 1

1/2a = 7

2/2a = 5

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and
the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow
from s to t . (b)A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t . For each edge, the flow and capacity are written as flow/capacity.

straint that the value of the flow be exactly d units, and with the new objective
function of minimizing the cost:
minimize

X

.u;!/2E

a.u; !/fu! (29.51)
subject to

fu! ! c.u; !/ for each u; ! 2 V ;
X

!2V

f!u "
X

!2V

fu! D 0 for each u 2 V " fs; tg ;

X

!2V

fs! "
X

!2V

f!s D d ;

fu! # 0 for each u; ! 2 V : (29.52)

Multicommodity flow
As a final example, we consider another flow problem. Suppose that the Lucky
Puck company from Section 26.1 decides to diversify its product line and ship
not only hockey pucks, but also hockey sticks and hockey helmets. Each piece of
equipment is manufactured in its own factory, has its own warehouse, and must
be shipped, each day, from factory to warehouse. The sticks are manufactured in
Vancouver and must be shipped to Saskatoon, and the helmets are manufactured in
Edmonton and must be shipped to Regina. The capacity of the shipping network
does not change, however, and the different items, or commodities, must share the
same network.

This example is an instance of amulticommodity-flow problem. In this problem,
we are again given a directed graph G D .V; E/ in which each edge .u; !/ 2 E
has a nonnegative capacity c.u; !/ # 0. As in the maximum-flow problem, we im-
plicitly assume that c.u; !/ D 0 for .u; !/ 62 E, and that the graph has no antipar-

Extension of the Maximum Flow Problem

Optimal Solution with total cost:∑
(u,v)∈E a(u, v)fuv = (2·2)+(5·2)+(3·1)+(7·1)+(1·3) = 27

III. Linear Programming Formulating Problems as Linear Programs 25

Minimum-Cost Flow

Given: directed graph G = (V ,E) with capacities c : E → R+, pair of
vertices s, t ∈ V , cost function a : E → R+, flow demand of d units

Goal: Find a flow f : V × V → R from s to t with |f | = d while
minimising the total cost

∑
(u,v)∈E a(u, v)fuv incurrred by the flow.

Minimum-Cost-Flow Problem

862 Chapter 29 Linear Programming

s

x

t

y

(a)

c = 1
a = 3

c = 5
a = 2

c = 4
a = 1

c = 2a = 7

c = 2a = 5

s

x

t

y

(b)

1/1
a = 3

2/5
a = 2

3/4
a = 1

1/2a = 7

2/2a = 5

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and
the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow
from s to t . (b)A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t . For each edge, the flow and capacity are written as flow/capacity.

straint that the value of the flow be exactly d units, and with the new objective
function of minimizing the cost:
minimize

X

.u;!/2E

a.u; !/fu! (29.51)
subject to

fu! ! c.u; !/ for each u; ! 2 V ;
X

!2V

f!u "
X

!2V

fu! D 0 for each u 2 V " fs; tg ;

X

!2V

fs! "
X

!2V

f!s D d ;

fu! # 0 for each u; ! 2 V : (29.52)

Multicommodity flow
As a final example, we consider another flow problem. Suppose that the Lucky
Puck company from Section 26.1 decides to diversify its product line and ship
not only hockey pucks, but also hockey sticks and hockey helmets. Each piece of
equipment is manufactured in its own factory, has its own warehouse, and must
be shipped, each day, from factory to warehouse. The sticks are manufactured in
Vancouver and must be shipped to Saskatoon, and the helmets are manufactured in
Edmonton and must be shipped to Regina. The capacity of the shipping network
does not change, however, and the different items, or commodities, must share the
same network.

This example is an instance of amulticommodity-flow problem. In this problem,
we are again given a directed graph G D .V; E/ in which each edge .u; !/ 2 E
has a nonnegative capacity c.u; !/ # 0. As in the maximum-flow problem, we im-
plicitly assume that c.u; !/ D 0 for .u; !/ 62 E, and that the graph has no antipar-

Extension of the Maximum Flow Problem

Optimal Solution with total cost:∑
(u,v)∈E a(u, v)fuv = (2·2)+(5·2)+(3·1)+(7·1)+(1·3) = 27

III. Linear Programming Formulating Problems as Linear Programs 25

Minimum-Cost Flow

Given: directed graph G = (V ,E) with capacities c : E → R+, pair of
vertices s, t ∈ V , cost function a : E → R+, flow demand of d units

Goal: Find a flow f : V × V → R from s to t with |f | = d while
minimising the total cost

∑
(u,v)∈E a(u, v)fuv incurrred by the flow.

Minimum-Cost-Flow Problem

862 Chapter 29 Linear Programming

s

x

t

y

(a)

c = 1
a = 3

c = 5
a = 2

c = 4
a = 1

c = 2a = 7

c = 2a = 5

s

x

t

y

(b)

1/1
a = 3

2/5
a = 2

3/4
a = 1

1/2a = 7

2/2a = 5

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and
the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow
from s to t . (b)A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t . For each edge, the flow and capacity are written as flow/capacity.

straint that the value of the flow be exactly d units, and with the new objective
function of minimizing the cost:
minimize

X

.u;!/2E

a.u; !/fu! (29.51)
subject to

fu! ! c.u; !/ for each u; ! 2 V ;
X

!2V

f!u "
X

!2V

fu! D 0 for each u 2 V " fs; tg ;

X

!2V

fs! "
X

!2V

f!s D d ;

fu! # 0 for each u; ! 2 V : (29.52)

Multicommodity flow
As a final example, we consider another flow problem. Suppose that the Lucky
Puck company from Section 26.1 decides to diversify its product line and ship
not only hockey pucks, but also hockey sticks and hockey helmets. Each piece of
equipment is manufactured in its own factory, has its own warehouse, and must
be shipped, each day, from factory to warehouse. The sticks are manufactured in
Vancouver and must be shipped to Saskatoon, and the helmets are manufactured in
Edmonton and must be shipped to Regina. The capacity of the shipping network
does not change, however, and the different items, or commodities, must share the
same network.

This example is an instance of amulticommodity-flow problem. In this problem,
we are again given a directed graph G D .V; E/ in which each edge .u; !/ 2 E
has a nonnegative capacity c.u; !/ # 0. As in the maximum-flow problem, we im-
plicitly assume that c.u; !/ D 0 for .u; !/ 62 E, and that the graph has no antipar-

Extension of the Maximum Flow Problem

Optimal Solution with total cost:∑
(u,v)∈E a(u, v)fuv = (2·2)+(5·2)+(3·1)+(7·1)+(1·3) = 27

III. Linear Programming Formulating Problems as Linear Programs 25

Minimum-Cost Flow as a LP

minimize
∑

(u,v)∈E a(u, v)fuv

subject to
fuv ≤ c(u, v) for each u, v ∈ V ,∑

v∈V fvu −
∑

v∈V fuv = 0 for each u ∈ V \ {s, t},∑
v∈V fsv −

∑
v∈V fvs = d ,

fuv ≥ 0 for each u, v ∈ V .

Minimum Cost Flow as LP

Real power of Linear Programming comes
from the ability to solve new problems!

III. Linear Programming Formulating Problems as Linear Programs 26

Minimum-Cost Flow as a LP

minimize
∑

(u,v)∈E a(u, v)fuv

subject to
fuv ≤ c(u, v) for each u, v ∈ V ,∑

v∈V fvu −
∑

v∈V fuv = 0 for each u ∈ V \ {s, t},∑
v∈V fsv −

∑
v∈V fvs = d ,

fuv ≥ 0 for each u, v ∈ V .

Minimum Cost Flow as LP

Real power of Linear Programming comes
from the ability to solve new problems!

III. Linear Programming Formulating Problems as Linear Programs 26

Outline

Introduction

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

III. Linear Programming Simplex Algorithm 27

Simplex Algorithm: Introduction

classical method for solving linear programs (Dantzig, 1947)

usually fast in practice although worst-case runtime not polynomial

iterative procedure somewhat similar to Gaussian elimination

Simplex Algorithm

Basic Idea:
Each iteration corresponds to a “basic solution” of the slack form

All non-basic variables are 0, and the basic variables are
determined from the equality constraints

Each iteration converts one slack form into an equivalent one while
the objective value will not decrease

Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable

In that sense, it is a greedy algorithm.

III. Linear Programming Simplex Algorithm 28

Simplex Algorithm: Introduction

classical method for solving linear programs (Dantzig, 1947)

usually fast in practice although worst-case runtime not polynomial

iterative procedure somewhat similar to Gaussian elimination

Simplex Algorithm

Basic Idea:
Each iteration corresponds to a “basic solution” of the slack form

All non-basic variables are 0, and the basic variables are
determined from the equality constraints

Each iteration converts one slack form into an equivalent one while
the objective value will not decrease

Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable

In that sense, it is a greedy algorithm.

III. Linear Programming Simplex Algorithm 28

Simplex Algorithm: Introduction

classical method for solving linear programs (Dantzig, 1947)

usually fast in practice although worst-case runtime not polynomial

iterative procedure somewhat similar to Gaussian elimination

Simplex Algorithm

Basic Idea:
Each iteration corresponds to a “basic solution” of the slack form

All non-basic variables are 0, and the basic variables are
determined from the equality constraints

Each iteration converts one slack form into an equivalent one while
the objective value will not decrease

Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable

In that sense, it is a greedy algorithm.

III. Linear Programming Simplex Algorithm 28

Extended Example: Conversion into Slack Form

maximize 3x1 + x2 + 2x3

subject to
x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Conversion into slack form

III. Linear Programming Simplex Algorithm 29

Extended Example: Conversion into Slack Form

maximize 3x1 + x2 + 2x3

subject to
x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Conversion into slack form

III. Linear Programming Simplex Algorithm 29

Extended Example: Conversion into Slack Form

maximize 3x1 + x2 + 2x3

subject to
x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Conversion into slack form

III. Linear Programming Simplex Algorithm 29

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:

Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)

Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:

Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)

Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible

Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:

Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)

Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:

Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)

Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:

Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.

The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:

Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.

The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:

Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.

The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.

The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

z = 27 +
x2
4 +

x3
2 − 3x6

4

x1 = 9 − x2
4 − x3

2 − x6
4

x4 = 21 − 3x2
4 − 5x3

2 +
x6
4

x5 = 6 − 3x2
2 − 4x3 +

x6
2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

z = 27 +
x2
4 +

x3
2 − 3x6

4

x1 = 9 − x2
4 − x3

2 − x6
4

x4 = 21 − 3x2
4 − 5x3

2 +
x6
4

x5 = 6 − 3x2
2 − 4x3 +

x6
2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)

Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27

Basic solution: (x1, x2, . . . , x6) = (33
4 , 0,

3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

z = 27 +
x2
4 +

x3
2 − 3x6

4

x1 = 9 − x2
4 − x3

2 − x6
4

x4 = 21 − 3x2
4 − 5x3

2 +
x6
4

x5 = 6 − 3x2
2 − 4x3 +

x6
2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)

Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27

Basic solution: (x1, x2, . . . , x6) = (33
4 , 0,

3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

z = 27 +
x2
4 +

x3
2 − 3x6

4

x1 = 9 − x2
4 − x3

2 − x6
4

x4 = 21 − 3x2
4 − 5x3

2 +
x6
4

x5 = 6 − 3x2
2 − 4x3 +

x6
2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.

The third constraint is the tightest and limits how much we can increase x3.

The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

z = 27 +
x2
4 +

x3
2 − 3x6

4

x1 = 9 − x2
4 − x3

2 − x6
4

x4 = 21 − 3x2
4 − 5x3

2 +
x6
4

x5 = 6 − 3x2
2 − 4x3 +

x6
2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.

The third constraint is the tightest and limits how much we can increase x3.

The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

z = 27 +
x2
4 +

x3
2 − 3x6

4

x1 = 9 − x2
4 − x3

2 − x6
4

x4 = 21 − 3x2
4 − 5x3

2 +
x6
4

x5 = 6 − 3x2
2 − 4x3 +

x6
2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.

The third constraint is the tightest and limits how much we can increase x3.

The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

z = 27 +
x2
4 +

x3
2 − 3x6

4

x1 = 9 − x2
4 − x3

2 − x6
4

x4 = 21 − 3x2
4 − 5x3

2 +
x6
4

x5 = 6 − 3x2
2 − 4x3 +

x6
2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.

The third constraint is the tightest and limits how much we can increase x3.

The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

z = 111
4 +

x2
16 − x5

8 − 11x6
16

x1 = 33
4 − x2

16 + x5
8 − 5x6

16

x3 = 3
2 − 3x2

8 − x5
4 +

x6
8

x4 = 69
4 +

3x2
16 + 5x5

8 − x6
16

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

z = 111
4 +

x2
16 − x5

8 − 11x6
16

x1 = 33
4 − x2

16 + x5
8 − 5x6

16

x3 = 3
2 − 3x2

8 − x5
4 +

x6
8

x4 = 69
4 +

3x2
16 + 5x5

8 − x6
16

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27

Basic solution: (x1, x2, . . . , x6) = (33
4 , 0,

3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75

Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

z = 111
4 +

x2
16 − x5

8 − 11x6
16

x1 = 33
4 − x2

16 + x5
8 − 5x6

16

x3 = 3
2 − 3x2

8 − x5
4 +

x6
8

x4 = 69
4 +

3x2
16 + 5x5

8 − x6
16

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27

Basic solution: (x1, x2, . . . , x6) = (33
4 , 0,

3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75

Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.

All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

z = 111
4 +

x2
16 − x5

8 − 11x6
16

x1 = 33
4 − x2

16 + x5
8 − 5x6

16

x3 = 3
2 − 3x2

8 − x5
4 +

x6
8

x4 = 69
4 +

3x2
16 + 5x5

8 − x6
16

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.

All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.

The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

z = 111
4 +

x2
16 − x5

8 − 11x6
16

x1 = 33
4 − x2

16 + x5
8 − 5x6

16

x3 = 3
2 − 3x2

8 − x5
4 +

x6
8

x4 = 69
4 +

3x2
16 + 5x5

8 − x6
16

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.

All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.

The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

z = 111
4 +

x2
16 − x5

8 − 11x6
16

x1 = 33
4 − x2

16 + x5
8 − 5x6

16

x3 = 3
2 − 3x2

8 − x5
4 +

x6
8

x4 = 69
4 +

3x2
16 + 5x5

8 − x6
16

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.

All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.

The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:
Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

z = 111
4 +

x2
16 − x5

8 − 11x6
16

x1 = 33
4 − x2

16 + x5
8 − 5x6

16

x3 = 3
2 − 3x2

8 − x5
4 +

x6
8

x4 = 69
4 +

3x2
16 + 5x5

8 − x6
16

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.

All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.

The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:
Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 4

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:
Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 4

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75

Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:
Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 4

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75

Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.

All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:
Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Visualization of SIMPLEX

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75

28

12

9.6

Exercise: How many basic solutions (including non-feasible ones) are there?

III. Linear Programming Simplex Algorithm 31

Extended Example: Visualization of SIMPLEX

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75

28

12

9.6

Exercise: How many basic solutions (including non-feasible ones) are there?

III. Linear Programming Simplex Algorithm 31

Extended Example: Visualization of SIMPLEX

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75

28

12

9.6

Exercise: How many basic solutions (including non-feasible ones) are there?

III. Linear Programming Simplex Algorithm 31

Extended Example: Visualization of SIMPLEX

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75

28

12

9.6

Exercise: How many basic solutions (including non-feasible ones) are there?

III. Linear Programming Simplex Algorithm 31

Extended Example: Alternative Runs (1/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 12 + 2x1 − x3
2

− x5
2

x2 = 12 − x1 − 5x3
2

− x5
2

x4 = 18 − x2 − x3
2

+
x5
2

x6 = 24 − 3x1 +
x3
2

+
x5
2

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x2 and x5

Switch roles of x1 and x6

III. Linear Programming Simplex Algorithm 32

Extended Example: Alternative Runs (1/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 12 + 2x1 − x3
2

− x5
2

x2 = 12 − x1 − 5x3
2

− x5
2

x4 = 18 − x2 − x3
2

+
x5
2

x6 = 24 − 3x1 +
x3
2

+
x5
2

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x2 and x5

Switch roles of x1 and x6

III. Linear Programming Simplex Algorithm 32

Extended Example: Alternative Runs (1/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 12 + 2x1 − x3
2

− x5
2

x2 = 12 − x1 − 5x3
2

− x5
2

x4 = 18 − x2 − x3
2

+
x5
2

x6 = 24 − 3x1 +
x3
2

+
x5
2

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x2 and x5

Switch roles of x1 and x6

III. Linear Programming Simplex Algorithm 32

Extended Example: Alternative Runs (1/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 12 + 2x1 − x3
2

− x5
2

x2 = 12 − x1 − 5x3
2

− x5
2

x4 = 18 − x2 − x3
2

+
x5
2

x6 = 24 − 3x1 +
x3
2

+
x5
2

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x2 and x5

Switch roles of x1 and x6

III. Linear Programming Simplex Algorithm 32

Extended Example: Alternative Runs (1/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 12 + 2x1 − x3
2

− x5
2

x2 = 12 − x1 − 5x3
2

− x5
2

x4 = 18 − x2 − x3
2

+
x5
2

x6 = 24 − 3x1 +
x3
2

+
x5
2

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x2 and x5

Switch roles of x1 and x6

III. Linear Programming Simplex Algorithm 32

Extended Example: Alternative Runs (2/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 48
5 +

11x1
5 +

x2
5 − 2x5

5

x4 = 78
5 +

x1
5 +

x2
5 +

3x5
5

x3 = 24
5 − 2x1

5 − 2x2
5 − x5

5

x6 = 132
5 − 16x1

5 − x2
5 +

2x3
5

z = 111
4

+
x2
16

− x5
8

− 11x6
16

x1 = 33
4

− x2
16

+
x5
8

− 5x6
16

x3 = 3
2

− 3x2
8

− x5
4

+
x6
8

x4 = 69
4

+
3x2
16

+
5x5
8

− x6
16

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x3 and x5

Switch roles of x1 and x6 Switch roles of x2 and x3

III. Linear Programming Simplex Algorithm 33

Extended Example: Alternative Runs (2/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 48
5 +

11x1
5 +

x2
5 − 2x5

5

x4 = 78
5 +

x1
5 +

x2
5 +

3x5
5

x3 = 24
5 − 2x1

5 − 2x2
5 − x5

5

x6 = 132
5 − 16x1

5 − x2
5 +

2x3
5

z = 111
4

+
x2
16

− x5
8

− 11x6
16

x1 = 33
4

− x2
16

+
x5
8

− 5x6
16

x3 = 3
2

− 3x2
8

− x5
4

+
x6
8

x4 = 69
4

+
3x2
16

+
5x5
8

− x6
16

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x3 and x5

Switch roles of x1 and x6 Switch roles of x2 and x3

III. Linear Programming Simplex Algorithm 33

Extended Example: Alternative Runs (2/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 48
5 +

11x1
5 +

x2
5 − 2x5

5

x4 = 78
5 +

x1
5 +

x2
5 +

3x5
5

x3 = 24
5 − 2x1

5 − 2x2
5 − x5

5

x6 = 132
5 − 16x1

5 − x2
5 +

2x3
5

z = 111
4

+
x2
16

− x5
8

− 11x6
16

x1 = 33
4

− x2
16

+
x5
8

− 5x6
16

x3 = 3
2

− 3x2
8

− x5
4

+
x6
8

x4 = 69
4

+
3x2
16

+
5x5
8

− x6
16

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x3 and x5

Switch roles of x1 and x6 Switch roles of x2 and x3

III. Linear Programming Simplex Algorithm 33

Extended Example: Alternative Runs (2/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 48
5 +

11x1
5 +

x2
5 − 2x5

5

x4 = 78
5 +

x1
5 +

x2
5 +

3x5
5

x3 = 24
5 − 2x1

5 − 2x2
5 − x5

5

x6 = 132
5 − 16x1

5 − x2
5 +

2x3
5

z = 111
4

+
x2
16

− x5
8

− 11x6
16

x1 = 33
4

− x2
16

+
x5
8

− 5x6
16

x3 = 3
2

− 3x2
8

− x5
4

+
x6
8

x4 = 69
4

+
3x2
16

+
5x5
8

− x6
16

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x3 and x5

Switch roles of x1 and x6

Switch roles of x2 and x3

III. Linear Programming Simplex Algorithm 33

Extended Example: Alternative Runs (2/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 48
5 +

11x1
5 +

x2
5 − 2x5

5

x4 = 78
5 +

x1
5 +

x2
5 +

3x5
5

x3 = 24
5 − 2x1

5 − 2x2
5 − x5

5

x6 = 132
5 − 16x1

5 − x2
5 +

2x3
5

z = 111
4

+
x2
16

− x5
8

− 11x6
16

x1 = 33
4

− x2
16

+
x5
8

− 5x6
16

x3 = 3
2

− 3x2
8

− x5
4

+
x6
8

x4 = 69
4

+
3x2
16

+
5x5
8

− x6
16

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x3 and x5

Switch roles of x1 and x6

Switch roles of x2 and x3

III. Linear Programming Simplex Algorithm 33

Extended Example: Alternative Runs (2/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 48
5 +

11x1
5 +

x2
5 − 2x5

5

x4 = 78
5 +

x1
5 +

x2
5 +

3x5
5

x3 = 24
5 − 2x1

5 − 2x2
5 − x5

5

x6 = 132
5 − 16x1

5 − x2
5 +

2x3
5

z = 111
4

+
x2
16

− x5
8

− 11x6
16

x1 = 33
4

− x2
16

+
x5
8

− 5x6
16

x3 = 3
2

− 3x2
8

− x5
4

+
x6
8

x4 = 69
4

+
3x2
16

+
5x5
8

− x6
16

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x3 and x5

Switch roles of x1 and x6 Switch roles of x2 and x3

III. Linear Programming Simplex Algorithm 33

Extended Example: Alternative Runs (2/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 48
5 +

11x1
5 +

x2
5 − 2x5

5

x4 = 78
5 +

x1
5 +

x2
5 +

3x5
5

x3 = 24
5 − 2x1

5 − 2x2
5 − x5

5

x6 = 132
5 − 16x1

5 − x2
5 +

2x3
5

z = 111
4

+
x2
16

− x5
8

− 11x6
16

x1 = 33
4

− x2
16

+
x5
8

− 5x6
16

x3 = 3
2

− 3x2
8

− x5
4

+
x6
8

x4 = 69
4

+
3x2
16

+
5x5
8

− x6
16

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x3 and x5

Switch roles of x1 and x6 Switch roles of x2 and x3

III. Linear Programming Simplex Algorithm 33

The Pivot Step Formally

29.3 The simplex algorithm 869

necessarily integral. Furthermore, the final solution to a linear program need not
be integral; it is purely coincidental that this example has an integral solution.

Pivoting
We now formalize the procedure for pivoting. The procedure PIVOT takes as in-
put a slack form, given by the tuple .N; B; A; b; c; !/, the index l of the leav-
ing variable xl , and the index e of the entering variable xe. It returns the tuple
. yN ; yB; yA; yb; yc; y!/ describing the new slack form. (Recall again that the entries of
the m!n matrices A and yA are actually the negatives of the coefficients that appear
in the slack form.)

PIVOT.N; B; A; b; c; !; l; e/

1 // Compute the coefficients of the equation for new basic variable xe.
2 let yA be a new m ! n matrix
3 ybe D bl=ale

4 for each j 2 N " feg
5 yaej D alj =ale

6 yael D 1=ale

7 // Compute the coefficients of the remaining constraints.
8 for each i 2 B " flg
9 ybi D bi " aie

ybe

10 for each j 2 N " feg
11 yaij D aij " aieyaej

12 yai l D "aieyael

13 // Compute the objective function.
14 y! D ! C ce

ybe

15 for each j 2 N " feg
16 ycj D cj " ceyaej

17 ycl D "ceyael

18 // Compute new sets of basic and nonbasic variables.
19 yN D N " feg [flg
20 yB D B " flg [feg
21 return . yN ; yB; yA; yb; yc; y!/

PIVOT works as follows. Lines 3–6 compute the coefficients in the new equation
for xe by rewriting the equation that has xl on the left-hand side to instead have xe

on the left-hand side. Lines 8–12 update the remaining equations by substituting
the right-hand side of this new equation for each occurrence of xe. Lines 14–17
do the same substitution for the objective function, and lines 19 and 20 update the

Rewrite “tight” equation
for enterring variable xe.

Substituting xe into
other equations.

Substituting xe into
objective function.

Update non-basic
and basic variables

Need that ale 6= 0!

III. Linear Programming Simplex Algorithm 34

The Pivot Step Formally

29.3 The simplex algorithm 869

necessarily integral. Furthermore, the final solution to a linear program need not
be integral; it is purely coincidental that this example has an integral solution.

Pivoting
We now formalize the procedure for pivoting. The procedure PIVOT takes as in-
put a slack form, given by the tuple .N; B; A; b; c; !/, the index l of the leav-
ing variable xl , and the index e of the entering variable xe. It returns the tuple
. yN ; yB; yA; yb; yc; y!/ describing the new slack form. (Recall again that the entries of
the m!n matrices A and yA are actually the negatives of the coefficients that appear
in the slack form.)

PIVOT.N; B; A; b; c; !; l; e/

1 // Compute the coefficients of the equation for new basic variable xe.
2 let yA be a new m ! n matrix
3 ybe D bl=ale

4 for each j 2 N " feg
5 yaej D alj =ale

6 yael D 1=ale

7 // Compute the coefficients of the remaining constraints.
8 for each i 2 B " flg
9 ybi D bi " aie

ybe

10 for each j 2 N " feg
11 yaij D aij " aieyaej

12 yai l D "aieyael

13 // Compute the objective function.
14 y! D ! C ce

ybe

15 for each j 2 N " feg
16 ycj D cj " ceyaej

17 ycl D "ceyael

18 // Compute new sets of basic and nonbasic variables.
19 yN D N " feg [flg
20 yB D B " flg [feg
21 return . yN ; yB; yA; yb; yc; y!/

PIVOT works as follows. Lines 3–6 compute the coefficients in the new equation
for xe by rewriting the equation that has xl on the left-hand side to instead have xe

on the left-hand side. Lines 8–12 update the remaining equations by substituting
the right-hand side of this new equation for each occurrence of xe. Lines 14–17
do the same substitution for the objective function, and lines 19 and 20 update the

Rewrite “tight” equation
for enterring variable xe.

Substituting xe into
other equations.

Substituting xe into
objective function.

Update non-basic
and basic variables

Need that ale 6= 0!

III. Linear Programming Simplex Algorithm 34

The Pivot Step Formally

29.3 The simplex algorithm 869

necessarily integral. Furthermore, the final solution to a linear program need not
be integral; it is purely coincidental that this example has an integral solution.

Pivoting
We now formalize the procedure for pivoting. The procedure PIVOT takes as in-
put a slack form, given by the tuple .N; B; A; b; c; !/, the index l of the leav-
ing variable xl , and the index e of the entering variable xe. It returns the tuple
. yN ; yB; yA; yb; yc; y!/ describing the new slack form. (Recall again that the entries of
the m!n matrices A and yA are actually the negatives of the coefficients that appear
in the slack form.)

PIVOT.N; B; A; b; c; !; l; e/

1 // Compute the coefficients of the equation for new basic variable xe.
2 let yA be a new m ! n matrix
3 ybe D bl=ale

4 for each j 2 N " feg
5 yaej D alj =ale

6 yael D 1=ale

7 // Compute the coefficients of the remaining constraints.
8 for each i 2 B " flg
9 ybi D bi " aie

ybe

10 for each j 2 N " feg
11 yaij D aij " aieyaej

12 yai l D "aieyael

13 // Compute the objective function.
14 y! D ! C ce

ybe

15 for each j 2 N " feg
16 ycj D cj " ceyaej

17 ycl D "ceyael

18 // Compute new sets of basic and nonbasic variables.
19 yN D N " feg [flg
20 yB D B " flg [feg
21 return . yN ; yB; yA; yb; yc; y!/

PIVOT works as follows. Lines 3–6 compute the coefficients in the new equation
for xe by rewriting the equation that has xl on the left-hand side to instead have xe

on the left-hand side. Lines 8–12 update the remaining equations by substituting
the right-hand side of this new equation for each occurrence of xe. Lines 14–17
do the same substitution for the objective function, and lines 19 and 20 update the

Rewrite “tight” equation
for enterring variable xe.

Substituting xe into
other equations.

Substituting xe into
objective function.

Update non-basic
and basic variables

Need that ale 6= 0!

III. Linear Programming Simplex Algorithm 34

The Pivot Step Formally

29.3 The simplex algorithm 869

necessarily integral. Furthermore, the final solution to a linear program need not
be integral; it is purely coincidental that this example has an integral solution.

Pivoting
We now formalize the procedure for pivoting. The procedure PIVOT takes as in-
put a slack form, given by the tuple .N; B; A; b; c; !/, the index l of the leav-
ing variable xl , and the index e of the entering variable xe. It returns the tuple
. yN ; yB; yA; yb; yc; y!/ describing the new slack form. (Recall again that the entries of
the m!n matrices A and yA are actually the negatives of the coefficients that appear
in the slack form.)

PIVOT.N; B; A; b; c; !; l; e/

1 // Compute the coefficients of the equation for new basic variable xe.
2 let yA be a new m ! n matrix
3 ybe D bl=ale

4 for each j 2 N " feg
5 yaej D alj =ale

6 yael D 1=ale

7 // Compute the coefficients of the remaining constraints.
8 for each i 2 B " flg
9 ybi D bi " aie

ybe

10 for each j 2 N " feg
11 yaij D aij " aieyaej

12 yai l D "aieyael

13 // Compute the objective function.
14 y! D ! C ce

ybe

15 for each j 2 N " feg
16 ycj D cj " ceyaej

17 ycl D "ceyael

18 // Compute new sets of basic and nonbasic variables.
19 yN D N " feg [flg
20 yB D B " flg [feg
21 return . yN ; yB; yA; yb; yc; y!/

PIVOT works as follows. Lines 3–6 compute the coefficients in the new equation
for xe by rewriting the equation that has xl on the left-hand side to instead have xe

on the left-hand side. Lines 8–12 update the remaining equations by substituting
the right-hand side of this new equation for each occurrence of xe. Lines 14–17
do the same substitution for the objective function, and lines 19 and 20 update the

Rewrite “tight” equation
for enterring variable xe.

Substituting xe into
other equations.

Substituting xe into
objective function.

Update non-basic
and basic variables

Need that ale 6= 0!

III. Linear Programming Simplex Algorithm 34

The Pivot Step Formally

29.3 The simplex algorithm 869

necessarily integral. Furthermore, the final solution to a linear program need not
be integral; it is purely coincidental that this example has an integral solution.

Pivoting
We now formalize the procedure for pivoting. The procedure PIVOT takes as in-
put a slack form, given by the tuple .N; B; A; b; c; !/, the index l of the leav-
ing variable xl , and the index e of the entering variable xe. It returns the tuple
. yN ; yB; yA; yb; yc; y!/ describing the new slack form. (Recall again that the entries of
the m!n matrices A and yA are actually the negatives of the coefficients that appear
in the slack form.)

PIVOT.N; B; A; b; c; !; l; e/

1 // Compute the coefficients of the equation for new basic variable xe.
2 let yA be a new m ! n matrix
3 ybe D bl=ale

4 for each j 2 N " feg
5 yaej D alj =ale

6 yael D 1=ale

7 // Compute the coefficients of the remaining constraints.
8 for each i 2 B " flg
9 ybi D bi " aie

ybe

10 for each j 2 N " feg
11 yaij D aij " aieyaej

12 yai l D "aieyael

13 // Compute the objective function.
14 y! D ! C ce

ybe

15 for each j 2 N " feg
16 ycj D cj " ceyaej

17 ycl D "ceyael

18 // Compute new sets of basic and nonbasic variables.
19 yN D N " feg [flg
20 yB D B " flg [feg
21 return . yN ; yB; yA; yb; yc; y!/

PIVOT works as follows. Lines 3–6 compute the coefficients in the new equation
for xe by rewriting the equation that has xl on the left-hand side to instead have xe

on the left-hand side. Lines 8–12 update the remaining equations by substituting
the right-hand side of this new equation for each occurrence of xe. Lines 14–17
do the same substitution for the objective function, and lines 19 and 20 update the

Rewrite “tight” equation
for enterring variable xe.

Substituting xe into
other equations.

Substituting xe into
objective function.

Update non-basic
and basic variables

Need that ale 6= 0!

III. Linear Programming Simplex Algorithm 34

The Pivot Step Formally

29.3 The simplex algorithm 869

necessarily integral. Furthermore, the final solution to a linear program need not
be integral; it is purely coincidental that this example has an integral solution.

Pivoting
We now formalize the procedure for pivoting. The procedure PIVOT takes as in-
put a slack form, given by the tuple .N; B; A; b; c; !/, the index l of the leav-
ing variable xl , and the index e of the entering variable xe. It returns the tuple
. yN ; yB; yA; yb; yc; y!/ describing the new slack form. (Recall again that the entries of
the m!n matrices A and yA are actually the negatives of the coefficients that appear
in the slack form.)

PIVOT.N; B; A; b; c; !; l; e/

1 // Compute the coefficients of the equation for new basic variable xe.
2 let yA be a new m ! n matrix
3 ybe D bl=ale

4 for each j 2 N " feg
5 yaej D alj =ale

6 yael D 1=ale

7 // Compute the coefficients of the remaining constraints.
8 for each i 2 B " flg
9 ybi D bi " aie

ybe

10 for each j 2 N " feg
11 yaij D aij " aieyaej

12 yai l D "aieyael

13 // Compute the objective function.
14 y! D ! C ce

ybe

15 for each j 2 N " feg
16 ycj D cj " ceyaej

17 ycl D "ceyael

18 // Compute new sets of basic and nonbasic variables.
19 yN D N " feg [flg
20 yB D B " flg [feg
21 return . yN ; yB; yA; yb; yc; y!/

PIVOT works as follows. Lines 3–6 compute the coefficients in the new equation
for xe by rewriting the equation that has xl on the left-hand side to instead have xe

on the left-hand side. Lines 8–12 update the remaining equations by substituting
the right-hand side of this new equation for each occurrence of xe. Lines 14–17
do the same substitution for the objective function, and lines 19 and 20 update the

Rewrite “tight” equation
for enterring variable xe.

Substituting xe into
other equations.

Substituting xe into
objective function.

Update non-basic
and basic variables

Need that ale 6= 0!

III. Linear Programming Simplex Algorithm 34

Effect of the Pivot Step

Consider a call to PIVOT(N,B,A, b, c, v , l, e) in which ale 6= 0. Let the
values returned from the call be (N̂, B̂, Â, b̂, ĉ, v̂), and let x denote the
basic solution after the call. Then

1. x j = 0 for each j ∈ N̂.

2. xe = bl/ale.

3. x i = bi − aieb̂e for each i ∈ B̂ \ {e}.

Lemma 29.1

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

xi = b̂i −
∑

j∈N̂

âijxj ,

we have x i = b̂i for each i ∈ B̂. Hence xe = b̂e = bl/ale.

3. After the substituting in the other constraints, we have

x i = b̂i = bi − aieb̂e.

III. Linear Programming Simplex Algorithm 35

Effect of the Pivot Step

Consider a call to PIVOT(N,B,A, b, c, v , l, e) in which ale 6= 0. Let the
values returned from the call be (N̂, B̂, Â, b̂, ĉ, v̂), and let x denote the
basic solution after the call. Then

1. x j = 0 for each j ∈ N̂.

2. xe = bl/ale.

3. x i = bi − aieb̂e for each i ∈ B̂ \ {e}.

Lemma 29.1

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

xi = b̂i −
∑

j∈N̂

âijxj ,

we have x i = b̂i for each i ∈ B̂. Hence xe = b̂e = bl/ale.

3. After the substituting in the other constraints, we have

x i = b̂i = bi − aieb̂e.

III. Linear Programming Simplex Algorithm 35

Effect of the Pivot Step

Consider a call to PIVOT(N,B,A, b, c, v , l, e) in which ale 6= 0. Let the
values returned from the call be (N̂, B̂, Â, b̂, ĉ, v̂), and let x denote the
basic solution after the call. Then

1. x j = 0 for each j ∈ N̂.

2. xe = bl/ale.

3. x i = bi − aieb̂e for each i ∈ B̂ \ {e}.

Lemma 29.1

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

xi = b̂i −
∑

j∈N̂

âijxj ,

we have x i = b̂i for each i ∈ B̂. Hence xe = b̂e = bl/ale.

3. After the substituting in the other constraints, we have

x i = b̂i = bi − aieb̂e.

III. Linear Programming Simplex Algorithm 35

Effect of the Pivot Step

Consider a call to PIVOT(N,B,A, b, c, v , l, e) in which ale 6= 0. Let the
values returned from the call be (N̂, B̂, Â, b̂, ĉ, v̂), and let x denote the
basic solution after the call. Then

1. x j = 0 for each j ∈ N̂.

2. xe = bl/ale.

3. x i = bi − aieb̂e for each i ∈ B̂ \ {e}.

Lemma 29.1

Proof:
1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

xi = b̂i −
∑

j∈N̂

âijxj ,

we have x i = b̂i for each i ∈ B̂. Hence xe = b̂e = bl/ale.
3. After the substituting in the other constraints, we have

x i = b̂i = bi − aieb̂e.

III. Linear Programming Simplex Algorithm 35

Effect of the Pivot Step

Consider a call to PIVOT(N,B,A, b, c, v , l, e) in which ale 6= 0. Let the
values returned from the call be (N̂, B̂, Â, b̂, ĉ, v̂), and let x denote the
basic solution after the call. Then

1. x j = 0 for each j ∈ N̂.

2. xe = bl/ale.

3. x i = bi − aieb̂e for each i ∈ B̂ \ {e}.

Lemma 29.1

Proof:
1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

xi = b̂i −
∑

j∈N̂

âijxj ,

we have x i = b̂i for each i ∈ B̂. Hence xe = b̂e = bl/ale.
3. After the substituting in the other constraints, we have

x i = b̂i = bi − aieb̂e.

III. Linear Programming Simplex Algorithm 35

Effect of the Pivot Step

Consider a call to PIVOT(N,B,A, b, c, v , l, e) in which ale 6= 0. Let the
values returned from the call be (N̂, B̂, Â, b̂, ĉ, v̂), and let x denote the
basic solution after the call. Then

1. x j = 0 for each j ∈ N̂.

2. xe = bl/ale.

3. x i = bi − aieb̂e for each i ∈ B̂ \ {e}.

Lemma 29.1

Proof:
1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

xi = b̂i −
∑

j∈N̂

âijxj ,

we have x i = b̂i for each i ∈ B̂. Hence xe = b̂e = bl/ale.
3. After the substituting in the other constraints, we have

x i = b̂i = bi − aieb̂e.

III. Linear Programming Simplex Algorithm 35

Effect of the Pivot Step

Consider a call to PIVOT(N,B,A, b, c, v , l, e) in which ale 6= 0. Let the
values returned from the call be (N̂, B̂, Â, b̂, ĉ, v̂), and let x denote the
basic solution after the call. Then

1. x j = 0 for each j ∈ N̂.

2. xe = bl/ale.

3. x i = bi − aieb̂e for each i ∈ B̂ \ {e}.

Lemma 29.1

Proof:
1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

xi = b̂i −
∑

j∈N̂

âijxj ,

we have x i = b̂i for each i ∈ B̂. Hence xe = b̂e = bl/ale.
3. After the substituting in the other constraints, we have

x i = b̂i = bi − aieb̂e.

III. Linear Programming Simplex Algorithm 35

Effect of the Pivot Step

Consider a call to PIVOT(N,B,A, b, c, v , l, e) in which ale 6= 0. Let the
values returned from the call be (N̂, B̂, Â, b̂, ĉ, v̂), and let x denote the
basic solution after the call. Then

1. x j = 0 for each j ∈ N̂.

2. xe = bl/ale.

3. x i = bi − aieb̂e for each i ∈ B̂ \ {e}.

Lemma 29.1

Proof:
1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

xi = b̂i −
∑

j∈N̂

âijxj ,

we have x i = b̂i for each i ∈ B̂. Hence xe = b̂e = bl/ale.
3. After the substituting in the other constraints, we have

x i = b̂i = bi − aieb̂e.

III. Linear Programming Simplex Algorithm 35

Effect of the Pivot Step

Consider a call to PIVOT(N,B,A, b, c, v , l, e) in which ale 6= 0. Let the
values returned from the call be (N̂, B̂, Â, b̂, ĉ, v̂), and let x denote the
basic solution after the call. Then

1. x j = 0 for each j ∈ N̂.

2. xe = bl/ale.

3. x i = bi − aieb̂e for each i ∈ B̂ \ {e}.

Lemma 29.1

Proof:
1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

xi = b̂i −
∑

j∈N̂

âijxj ,

we have x i = b̂i for each i ∈ B̂. Hence xe = b̂e = bl/ale.
3. After the substituting in the other constraints, we have

x i = b̂i = bi − aieb̂e.

III. Linear Programming Simplex Algorithm 35

Effect of the Pivot Step

Consider a call to PIVOT(N,B,A, b, c, v , l, e) in which ale 6= 0. Let the
values returned from the call be (N̂, B̂, Â, b̂, ĉ, v̂), and let x denote the
basic solution after the call. Then

1. x j = 0 for each j ∈ N̂.

2. xe = bl/ale.

3. x i = bi − aieb̂e for each i ∈ B̂ \ {e}.

Lemma 29.1

Proof:
1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

xi = b̂i −
∑

j∈N̂

âijxj ,

we have x i = b̂i for each i ∈ B̂. Hence xe = b̂e = bl/ale.
3. After the substituting in the other constraints, we have

x i = b̂i = bi − aieb̂e.

III. Linear Programming Simplex Algorithm 35

Formalizing the Simplex Algorithm: Questions

Questions:
How do we determine whether a linear program is feasible?

What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

How do we determine whether a linear program is unbounded?

How do we choose the entering and leaving variables?

Example before was a particularly nice one!

III. Linear Programming Simplex Algorithm 36

Formalizing the Simplex Algorithm: Questions

Questions:
How do we determine whether a linear program is feasible?

What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

How do we determine whether a linear program is unbounded?

How do we choose the entering and leaving variables?

Example before was a particularly nice one!

III. Linear Programming Simplex Algorithm 36

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leavingCycling: If additionally slack at two iterations
are identical, SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leavingCycling: If additionally slack at two iterations
are identical, SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leavingCycling: If additionally slack at two iterations
are identical, SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leavingCycling: If additionally slack at two iterations
are identical, SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leaving

Cycling: If additionally slack at two iterations
are identical, SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leaving

Cycling: If additionally slack at two iterations
are identical, SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leavingCycling: If additionally slack at two iterations
are identical, SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Outline

Introduction

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

III. Linear Programming Finding an Initial Solution 40

Finding an Initial Solution

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

z = 2x1 − x2

x3 = 2 − 2x1 + x2

x4 = −4 − x1 + 5x2

Conversion into slack form

Basic solution (x1, x2, x3, x4) = (0, 0, 2,−4) is not feasible!

III. Linear Programming Finding an Initial Solution 41

Finding an Initial Solution

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

z = 2x1 − x2

x3 = 2 − 2x1 + x2

x4 = −4 − x1 + 5x2

Conversion into slack form

Basic solution (x1, x2, x3, x4) = (0, 0, 2,−4) is not feasible!

III. Linear Programming Finding an Initial Solution 41

Finding an Initial Solution

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

z = 2x1 − x2

x3 = 2 − 2x1 + x2

x4 = −4 − x1 + 5x2

Conversion into slack form

Basic solution (x1, x2, x3, x4) = (0, 0, 2,−4) is not feasible!

III. Linear Programming Finding an Initial Solution 41

Geometric Illustration

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

x1

x2

2x
1
−

x 2
≤

2
x1 − 5x2 ≤ −4

Questions:

How to determine whether
there is any feasible solution?

If there is one, how to determine
an initial basic solution?

III. Linear Programming Finding an Initial Solution 42

Geometric Illustration

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

x1

x2

2x
1
−

x 2
≤

2
x1 − 5x2 ≤ −4

Questions:

How to determine whether
there is any feasible solution?

If there is one, how to determine
an initial basic solution?

III. Linear Programming Finding an Initial Solution 42

Geometric Illustration

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

x1

x2

2x
1
−

x 2
≤

2
x1 − 5x2 ≤ −4

Questions:

How to determine whether
there is any feasible solution?

If there is one, how to determine
an initial basic solution?

III. Linear Programming Finding an Initial Solution 42

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.

“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.

“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.

“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.

“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.

“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.
“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.
“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.

Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux
“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.
“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.
“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.
“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0
Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.
“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0
Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

INITIALIZE-SIMPLEX

29.5 The initial basic feasible solution 887

maximize !x0 (29.106)
subject to

nX

j D1

aij xj ! x0 " bi for i D 1; 2; : : : ; m ; (29.107)

xj # 0 for j D 0; 1; : : : ; n : (29.108)
Then L is feasible if and only if the optimal objective value of Laux is 0.

Proof Suppose that L has a feasible solution Nx D . Nx1; Nx2; : : : ; Nxn/. Then the
solution Nx0 D 0 combined with Nx is a feasible solution to Laux with objective
value 0. Since x0 # 0 is a constraint of Laux and the objective function is to
maximize !x0, this solution must be optimal for Laux.

Conversely, suppose that the optimal objective value of Laux is 0. Then Nx0 D 0,
and the remaining solution values of Nx satisfy the constraints of L.

We now describe our strategy to find an initial basic feasible solution for a linear
program L in standard form:

INITIALIZE-SIMPLEX.A; b; c/

1 let k be the index of the minimum bi

2 if bk # 0 // is the initial basic solution feasible?
3 return .f1; 2; : : : ; ng ; fnC 1; nC 2; : : : ; nCmg ; A; b; c; 0/
4 form Laux by adding !x0 to the left-hand side of each constraint

and setting the objective function to !x0

5 let .N; B; A; b; c; !/ be the resulting slack form for Laux
6 l D nC k
7 // Laux has nC 1 nonbasic variables and m basic variables.
8 .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; 0/
9 // The basic solution is now feasible for Laux.

10 iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution
to Laux is found

11 if the optimal solution to Laux sets Nx0 to 0
12 if Nx0 is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of Laux, remove x0 from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1, 2, . . . , n}, B = {n + 1, n +

2, . . . , n + m}, x i = bi for i ∈ B, x i = 0 otherwise.

` will be the leaving variable so

that x` has the most negative value.

Pivot step with x` leaving and x0 entering.

This pivot step does not change

the value of any variable.

III. Linear Programming Finding an Initial Solution 44

INITIALIZE-SIMPLEX

29.5 The initial basic feasible solution 887

maximize !x0 (29.106)
subject to

nX

j D1

aij xj ! x0 " bi for i D 1; 2; : : : ; m ; (29.107)

xj # 0 for j D 0; 1; : : : ; n : (29.108)
Then L is feasible if and only if the optimal objective value of Laux is 0.

Proof Suppose that L has a feasible solution Nx D . Nx1; Nx2; : : : ; Nxn/. Then the
solution Nx0 D 0 combined with Nx is a feasible solution to Laux with objective
value 0. Since x0 # 0 is a constraint of Laux and the objective function is to
maximize !x0, this solution must be optimal for Laux.

Conversely, suppose that the optimal objective value of Laux is 0. Then Nx0 D 0,
and the remaining solution values of Nx satisfy the constraints of L.

We now describe our strategy to find an initial basic feasible solution for a linear
program L in standard form:

INITIALIZE-SIMPLEX.A; b; c/

1 let k be the index of the minimum bi

2 if bk # 0 // is the initial basic solution feasible?
3 return .f1; 2; : : : ; ng ; fnC 1; nC 2; : : : ; nCmg ; A; b; c; 0/
4 form Laux by adding !x0 to the left-hand side of each constraint

and setting the objective function to !x0

5 let .N; B; A; b; c; !/ be the resulting slack form for Laux
6 l D nC k
7 // Laux has nC 1 nonbasic variables and m basic variables.
8 .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; 0/
9 // The basic solution is now feasible for Laux.

10 iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution
to Laux is found

11 if the optimal solution to Laux sets Nx0 to 0
12 if Nx0 is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of Laux, remove x0 from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1, 2, . . . , n}, B = {n + 1, n +

2, . . . , n + m}, x i = bi for i ∈ B, x i = 0 otherwise.

` will be the leaving variable so

that x` has the most negative value.

Pivot step with x` leaving and x0 entering.

This pivot step does not change

the value of any variable.

III. Linear Programming Finding an Initial Solution 44

INITIALIZE-SIMPLEX

29.5 The initial basic feasible solution 887

maximize !x0 (29.106)
subject to

nX

j D1

aij xj ! x0 " bi for i D 1; 2; : : : ; m ; (29.107)

xj # 0 for j D 0; 1; : : : ; n : (29.108)
Then L is feasible if and only if the optimal objective value of Laux is 0.

Proof Suppose that L has a feasible solution Nx D . Nx1; Nx2; : : : ; Nxn/. Then the
solution Nx0 D 0 combined with Nx is a feasible solution to Laux with objective
value 0. Since x0 # 0 is a constraint of Laux and the objective function is to
maximize !x0, this solution must be optimal for Laux.

Conversely, suppose that the optimal objective value of Laux is 0. Then Nx0 D 0,
and the remaining solution values of Nx satisfy the constraints of L.

We now describe our strategy to find an initial basic feasible solution for a linear
program L in standard form:

INITIALIZE-SIMPLEX.A; b; c/

1 let k be the index of the minimum bi

2 if bk # 0 // is the initial basic solution feasible?
3 return .f1; 2; : : : ; ng ; fnC 1; nC 2; : : : ; nCmg ; A; b; c; 0/
4 form Laux by adding !x0 to the left-hand side of each constraint

and setting the objective function to !x0

5 let .N; B; A; b; c; !/ be the resulting slack form for Laux
6 l D nC k
7 // Laux has nC 1 nonbasic variables and m basic variables.
8 .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; 0/
9 // The basic solution is now feasible for Laux.

10 iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution
to Laux is found

11 if the optimal solution to Laux sets Nx0 to 0
12 if Nx0 is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of Laux, remove x0 from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1, 2, . . . , n}, B = {n + 1, n +

2, . . . , n + m}, x i = bi for i ∈ B, x i = 0 otherwise.

` will be the leaving variable so

that x` has the most negative value.

Pivot step with x` leaving and x0 entering.

This pivot step does not change

the value of any variable.

III. Linear Programming Finding an Initial Solution 44

INITIALIZE-SIMPLEX

29.5 The initial basic feasible solution 887

maximize !x0 (29.106)
subject to

nX

j D1

aij xj ! x0 " bi for i D 1; 2; : : : ; m ; (29.107)

xj # 0 for j D 0; 1; : : : ; n : (29.108)
Then L is feasible if and only if the optimal objective value of Laux is 0.

Proof Suppose that L has a feasible solution Nx D . Nx1; Nx2; : : : ; Nxn/. Then the
solution Nx0 D 0 combined with Nx is a feasible solution to Laux with objective
value 0. Since x0 # 0 is a constraint of Laux and the objective function is to
maximize !x0, this solution must be optimal for Laux.

Conversely, suppose that the optimal objective value of Laux is 0. Then Nx0 D 0,
and the remaining solution values of Nx satisfy the constraints of L.

We now describe our strategy to find an initial basic feasible solution for a linear
program L in standard form:

INITIALIZE-SIMPLEX.A; b; c/

1 let k be the index of the minimum bi

2 if bk # 0 // is the initial basic solution feasible?
3 return .f1; 2; : : : ; ng ; fnC 1; nC 2; : : : ; nCmg ; A; b; c; 0/
4 form Laux by adding !x0 to the left-hand side of each constraint

and setting the objective function to !x0

5 let .N; B; A; b; c; !/ be the resulting slack form for Laux
6 l D nC k
7 // Laux has nC 1 nonbasic variables and m basic variables.
8 .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; 0/
9 // The basic solution is now feasible for Laux.

10 iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution
to Laux is found

11 if the optimal solution to Laux sets Nx0 to 0
12 if Nx0 is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of Laux, remove x0 from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1, 2, . . . , n}, B = {n + 1, n +

2, . . . , n + m}, x i = bi for i ∈ B, x i = 0 otherwise.

` will be the leaving variable so

that x` has the most negative value.

Pivot step with x` leaving and x0 entering.

This pivot step does not change

the value of any variable.

III. Linear Programming Finding an Initial Solution 44

INITIALIZE-SIMPLEX

29.5 The initial basic feasible solution 887

maximize !x0 (29.106)
subject to

nX

j D1

aij xj ! x0 " bi for i D 1; 2; : : : ; m ; (29.107)

xj # 0 for j D 0; 1; : : : ; n : (29.108)
Then L is feasible if and only if the optimal objective value of Laux is 0.

Proof Suppose that L has a feasible solution Nx D . Nx1; Nx2; : : : ; Nxn/. Then the
solution Nx0 D 0 combined with Nx is a feasible solution to Laux with objective
value 0. Since x0 # 0 is a constraint of Laux and the objective function is to
maximize !x0, this solution must be optimal for Laux.

Conversely, suppose that the optimal objective value of Laux is 0. Then Nx0 D 0,
and the remaining solution values of Nx satisfy the constraints of L.

We now describe our strategy to find an initial basic feasible solution for a linear
program L in standard form:

INITIALIZE-SIMPLEX.A; b; c/

1 let k be the index of the minimum bi

2 if bk # 0 // is the initial basic solution feasible?
3 return .f1; 2; : : : ; ng ; fnC 1; nC 2; : : : ; nCmg ; A; b; c; 0/
4 form Laux by adding !x0 to the left-hand side of each constraint

and setting the objective function to !x0

5 let .N; B; A; b; c; !/ be the resulting slack form for Laux
6 l D nC k
7 // Laux has nC 1 nonbasic variables and m basic variables.
8 .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; 0/
9 // The basic solution is now feasible for Laux.

10 iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution
to Laux is found

11 if the optimal solution to Laux sets Nx0 to 0
12 if Nx0 is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of Laux, remove x0 from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1, 2, . . . , n}, B = {n + 1, n +

2, . . . , n + m}, x i = bi for i ∈ B, x i = 0 otherwise.

` will be the leaving variable so

that x` has the most negative value.

Pivot step with x` leaving and x0 entering.

This pivot step does not change

the value of any variable.

III. Linear Programming Finding an Initial Solution 44

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

maximize − x0

subject to
2x1 − x2 − x0 ≤ 2
x1 − 5x2 − x0 ≤ −4

x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

III. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

maximize − x0

subject to
2x1 − x2 − x0 ≤ 2
x1 − 5x2 − x0 ≤ −4

x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

III. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

maximize − x0

subject to
2x1 − x2 − x0 ≤ 2
x1 − 5x2 − x0 ≤ −4

x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

III. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

maximize − x0

subject to
2x1 − x2 − x0 ≤ 2
x1 − 5x2 − x0 ≤ −4

x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

III. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

maximize − x0

subject to
2x1 − x2 − x0 ≤ 2
x1 − 5x2 − x0 ≤ −4

x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

III. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

maximize − x0

subject to
2x1 − x2 − x0 ≤ 2
x1 − 5x2 − x0 ≤ −4

x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

III. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leavingBasic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!

III. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leavingBasic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!

III. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leavingBasic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!

III. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leaving

Basic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!

III. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leavingBasic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!

III. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leavingBasic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!

III. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (3/3)

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

z = −4
5 +

9x1
5 − x4

5
x2 = 4

5 +
x1
5 +

x4
5

x3 = 14
5 − 9x1

5 +
x4
5

Set x0 = 0 and express objective function
by non-basic variables2x1 − x2 = 2x1 − (4

5 −
x0
5 +

x1
5 +

x4
5)

Basic solution (0, 4
5 ,

14
5 , 0), which is feasible!

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

Lemma 29.12

III. Linear Programming Finding an Initial Solution 47

Example of INITIALIZE-SIMPLEX (3/3)

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

z = −4
5 +

9x1
5 − x4

5
x2 = 4

5 +
x1
5 +

x4
5

x3 = 14
5 − 9x1

5 +
x4
5

Set x0 = 0 and express objective function
by non-basic variables

2x1 − x2 = 2x1 − (4
5 −

x0
5 +

x1
5 +

x4
5)

Basic solution (0, 4
5 ,

14
5 , 0), which is feasible!

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

Lemma 29.12

III. Linear Programming Finding an Initial Solution 47

Example of INITIALIZE-SIMPLEX (3/3)

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

z = −4
5 +

9x1
5 − x4

5
x2 = 4

5 +
x1
5 +

x4
5

x3 = 14
5 − 9x1

5 +
x4
5

Set x0 = 0 and express objective function
by non-basic variables2x1 − x2 = 2x1 − (4

5 −
x0
5 +

x1
5 +

x4
5)

Basic solution (0, 4
5 ,

14
5 , 0), which is feasible!

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

Lemma 29.12

III. Linear Programming Finding an Initial Solution 47

Example of INITIALIZE-SIMPLEX (3/3)

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

z = −4
5 +

9x1
5 − x4

5
x2 = 4

5 +
x1
5 +

x4
5

x3 = 14
5 − 9x1

5 +
x4
5

Set x0 = 0 and express objective function
by non-basic variables2x1 − x2 = 2x1 − (4

5 −
x0
5 +

x1
5 +

x4
5)

Basic solution (0, 4
5 ,

14
5 , 0), which is feasible!

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

Lemma 29.12

III. Linear Programming Finding an Initial Solution 47

Example of INITIALIZE-SIMPLEX (3/3)

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

z = −4
5 +

9x1
5 − x4

5
x2 = 4

5 +
x1
5 +

x4
5

x3 = 14
5 − 9x1

5 +
x4
5

Set x0 = 0 and express objective function
by non-basic variables2x1 − x2 = 2x1 − (4

5 −
x0
5 +

x1
5 +

x4
5)

Basic solution (0, 4
5 ,

14
5 , 0), which is feasible!

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

Lemma 29.12

III. Linear Programming Finding an Initial Solution 47

Fundamental Theorem of Linear Programming

Any linear program L, given in standard form, either

1. has an optimal solution with a finite objective value,

2. is infeasible, or

3. is unbounded.

Theorem 29.13 (Fundamental Theorem of Linear Programming)

If L is infeasible, SIMPLEX returns “infeasible”. If L is unbounded, SIMPLEX returns
“unbounded”. Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of duality, which is not covered
in this course (for details see CLRS3, Chapter 29.4)

III. Linear Programming Finding an Initial Solution 48

Fundamental Theorem of Linear Programming

Any linear program L, given in standard form, either

1. has an optimal solution with a finite objective value,

2. is infeasible, or

3. is unbounded.

Theorem 29.13 (Fundamental Theorem of Linear Programming)

If L is infeasible, SIMPLEX returns “infeasible”. If L is unbounded, SIMPLEX returns
“unbounded”. Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of duality, which is not covered
in this course (for details see CLRS3, Chapter 29.4)

III. Linear Programming Finding an Initial Solution 48

Workflow for Solving Linear Programs

Linear Program (in any form)

Standard Form

Slack Form

No Feasible Solution
INITIALIZE-SIMPLEX terminates

Feasible Basic Solution
INITIALIZE-SIMPLEX followed by SIMPLEX

LP bounded
SIMPLEX returns optimum

LP unbounded
SIMPLEX terminates

III. Linear Programming Finding an Initial Solution 49

Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 50

IV. Approximation Algorithms: Covering
Problems
Thomas Sauerwald

Easter 2018

Outline

Introduction

Vertex Cover

The Set-Covering Problem

IV. Covering Problems Introduction 2

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. . .

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

We will call these approximation algorithms.

IV. Covering Problems Introduction 3

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. . .

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

We will call these approximation algorithms.

IV. Covering Problems Introduction 3

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. . .

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

We will call these approximation algorithms.

IV. Covering Problems Introduction 3

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. . .

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

We will call these approximation algorithms.

IV. Covering Problems Introduction 3

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. . .

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

We will call these approximation algorithms.

IV. Covering Problems Introduction 3

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗
C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗
C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗
C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗
C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗
C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗
C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗
C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗
C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗
C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗
C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗
C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Outline

Introduction

Vertex Cover

The Set-Covering Problem

IV. Covering Problems Vertex Cover 5

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted vertices or hypergraphs (Set-Covering Problem)

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted vertices or hypergraphs (Set-Covering Problem)

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted vertices or hypergraphs (Set-Covering Problem)

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted vertices or hypergraphs (Set-Covering Problem)

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted vertices or hypergraphs (Set-Covering Problem)

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted vertices or hypergraphs (Set-Covering Problem)

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted vertices or hypergraphs (Set-Covering Problem)

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted vertices or hypergraphs (Set-Covering Problem)

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted vertices or hypergraphs (Set-Covering Problem)

IV. Covering Problems Vertex Cover 6

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.

The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.

The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)

Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4

Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|
Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint:

|C∗| ≥ |A|
Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|: |C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|: |C| = 2|A| ≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|: |C| = 2|A| ≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|: |C| = 2|A| ≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:
Running time is O(V + E) (using adjacency lists to represent E ′)
Let A ⊆ E denote the set of edges picked in line 4
Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|: |C| = 2|A| ≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

A "vertex-based" Greedy that adds one vertex at each iter-
ation fails to achieve an approximation ratio of 2 (Exercise)!

IV. Covering Problems Vertex Cover 8

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

IV. Covering Problems Vertex Cover 10

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

IV. Covering Problems Vertex Cover 10

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

IV. Covering Problems Vertex Cover 10

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

IV. Covering Problems Vertex Cover 10

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

IV. Covering Problems Vertex Cover 10

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

IV. Covering Problems Vertex Cover 10

Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Clear: Running time is O(V), and the returned solution is a vertex cover.

Solution is also optimal. (Use inductively the ex-
istence of an optimal vertex cover without leaves)

IV. Covering Problems Vertex Cover 11

Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Clear: Running time is O(V), and the returned solution is a vertex cover.

Solution is also optimal. (Use inductively the ex-
istence of an optimal vertex cover without leaves)

IV. Covering Problems Vertex Cover 11

Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Clear: Running time is O(V), and the returned solution is a vertex cover.

Solution is also optimal. (Use inductively the ex-
istence of an optimal vertex cover without leaves)

IV. Covering Problems Vertex Cover 11

Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Clear: Running time is O(V), and the returned solution is a vertex cover.

Solution is also optimal. (Use inductively the ex-
istence of an optimal vertex cover without leaves)

IV. Covering Problems Vertex Cover 11

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Exact Algorithms

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

Such algorithms are called exact algorithms.

Focus on instances where the minimum vertex cover is small, that is,
less or equal than some given integer k .

Simple Brute-Force Search would take ≈
(n

k

)
= Θ(nk) time.

IV. Covering Problems Vertex Cover 13

Exact Algorithms

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

Such algorithms are called exact algorithms.

Focus on instances where the minimum vertex cover is small, that is,
less or equal than some given integer k .

Simple Brute-Force Search would take ≈
(n

k

)
= Θ(nk) time.

IV. Covering Problems Vertex Cover 13

Exact Algorithms

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

Such algorithms are called exact algorithms.

Focus on instances where the minimum vertex cover is small, that is,
less or equal than some given integer k .

Simple Brute-Force Search would take ≈
(n

k

)
= Θ(nk) time.

IV. Covering Problems Vertex Cover 13

Exact Algorithms

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

Such algorithms are called exact algorithms.

Focus on instances where the minimum vertex cover is small, that is,
less or equal than some given integer k .

Simple Brute-Force Search would take ≈
(n

k

)
= Θ(nk) time.

IV. Covering Problems Vertex Cover 13

Exact Algorithms

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

Such algorithms are called exact algorithms.

Focus on instances where the minimum vertex cover is small, that is,
less or equal than some given integer k .

Simple Brute-Force Search would take ≈
(n

k

)
= Θ(nk) time.

IV. Covering Problems Vertex Cover 13

Towards a more efficient Search

Consider a graph G = (V ,E), edge {u, v} ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.
Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.

Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

uu

Gu v

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Consider a graph G = (V ,E), edge {u, v} ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.

Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

uu

Gu v

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Consider a graph G = (V ,E), edge {u, v} ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:
⇐ Assume Gu has a vertex cover Cu of size k − 1.

Adding u yields a vertex cover of G which is of size k
⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

uu

Gu v

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Consider a graph G = (V ,E), edge {u, v} ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:
⇐ Assume Gu has a vertex cover Cu of size k − 1.

Adding u yields a vertex cover of G which is of size k
⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

u

u

Gu v

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Consider a graph G = (V ,E), edge {u, v} ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:
⇐ Assume Gu has a vertex cover Cu of size k − 1.

Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

u

u

Gu v

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Consider a graph G = (V ,E), edge {u, v} ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:
⇐ Assume Gu has a vertex cover Cu of size k − 1.

Adding u yields a vertex cover of G which is of size k
⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

u

u

Gu v

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Consider a graph G = (V ,E), edge {u, v} ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:
⇐ Assume Gu has a vertex cover Cu of size k − 1.

Adding u yields a vertex cover of G which is of size k
⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

u

u

Gu v

IV. Covering Problems Vertex Cover 14

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return ∅
2: If k = 0 and E 6= ∅ return ⊥
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ⊥ return S1 ∪ {u}
7: if S2 6= ⊥ return S2 ∪ {v}
8: return ⊥

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2

⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return ∅
2: If k = 0 and E 6= ∅ return ⊥
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ⊥ return S1 ∪ {u}
7: if S2 6= ⊥ return S2 ∪ {v}
8: return ⊥

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2

⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return ∅
2: If k = 0 and E 6= ∅ return ⊥
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ⊥ return S1 ∪ {u}
7: if S2 6= ⊥ return S2 ∪ {v}
8: return ⊥

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2

⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return ∅
2: If k = 0 and E 6= ∅ return ⊥
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ⊥ return S1 ∪ {u}
7: if S2 6= ⊥ return S2 ∪ {v}
8: return ⊥

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2

⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return ∅
2: If k = 0 and E 6= ∅ return ⊥
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ⊥ return S1 ∪ {u}
7: if S2 6= ⊥ return S2 ∪ {v}
8: return ⊥

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return ∅
2: If k = 0 and E 6= ∅ return ⊥
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ⊥ return S1 ∪ {u}
7: if S2 6= ⊥ return S2 ∪ {v}
8: return ⊥

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return ∅
2: If k = 0 and E 6= ∅ return ⊥
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ⊥ return S1 ∪ {u}
7: if S2 6= ⊥ return S2 ∪ {v}
8: return ⊥

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return ∅
2: If k = 0 and E 6= ∅ return ⊥
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ⊥ return S1 ∪ {u}
7: if S2 6= ⊥ return S2 ∪ {v}
8: return ⊥

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

Outline

Introduction

Vertex Cover

The Set-Covering Problem

IV. Covering Problems The Set-Covering Problem 16

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C
S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C
S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C
S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C
S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C
S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3

S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C
S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4

S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C
S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C
S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C
S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C
S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C
S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C
S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C
S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4

S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5

S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Approximation Ratio of Greedy

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F})

≤ ln(n) + 1.

Theorem 35.4

H(k) :=
∑k

i=1
1
i ≤ ln(k) + 1

Idea: Distribute cost of 1 for each added set over newly covered elements.

If an element x is covered for the first time by set Si in iteration i , then

cx :=
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
.

Definition of cost

Notice that in the mathematical analysis, Si is the set chosen in itera-
tion i - not to be confused with the sets S1,S2, . . . ,S6 in the example.

IV. Covering Problems The Set-Covering Problem 19

Approximation Ratio of Greedy

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F})

≤ ln(n) + 1.

Theorem 35.4

H(k) :=
∑k

i=1
1
i ≤ ln(k) + 1

Idea: Distribute cost of 1 for each added set over newly covered elements.

If an element x is covered for the first time by set Si in iteration i , then

cx :=
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
.

Definition of cost

Notice that in the mathematical analysis, Si is the set chosen in itera-
tion i - not to be confused with the sets S1,S2, . . . ,S6 in the example.

IV. Covering Problems The Set-Covering Problem 19

Approximation Ratio of Greedy

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F}) ≤ ln(n) + 1.

Theorem 35.4

H(k) :=
∑k

i=1
1
i ≤ ln(k) + 1

Idea: Distribute cost of 1 for each added set over newly covered elements.

If an element x is covered for the first time by set Si in iteration i , then

cx :=
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
.

Definition of cost

Notice that in the mathematical analysis, Si is the set chosen in itera-
tion i - not to be confused with the sets S1,S2, . . . ,S6 in the example.

IV. Covering Problems The Set-Covering Problem 19

Approximation Ratio of Greedy

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F}) ≤ ln(n) + 1.

Theorem 35.4

H(k) :=
∑k

i=1
1
i ≤ ln(k) + 1

Idea: Distribute cost of 1 for each added set over newly covered elements.

If an element x is covered for the first time by set Si in iteration i , then

cx :=
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
.

Definition of cost

Notice that in the mathematical analysis, Si is the set chosen in itera-
tion i - not to be confused with the sets S1,S2, . . . ,S6 in the example.

IV. Covering Problems The Set-Covering Problem 19

Approximation Ratio of Greedy

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F}) ≤ ln(n) + 1.

Theorem 35.4

H(k) :=
∑k

i=1
1
i ≤ ln(k) + 1

Idea: Distribute cost of 1 for each added set over newly covered elements.

If an element x is covered for the first time by set Si in iteration i , then

cx :=
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
.

Definition of cost

Notice that in the mathematical analysis, Si is the set chosen in itera-
tion i - not to be confused with the sets S1,S2, . . . ,S6 in the example.

IV. Covering Problems The Set-Covering Problem 19

Approximation Ratio of Greedy

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F}) ≤ ln(n) + 1.

Theorem 35.4

H(k) :=
∑k

i=1
1
i ≤ ln(k) + 1

Idea: Distribute cost of 1 for each added set over newly covered elements.

If an element x is covered for the first time by set Si in iteration i , then

cx :=
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
.

Definition of cost

Notice that in the mathematical analysis, Si is the set chosen in itera-
tion i - not to be confused with the sets S1,S2, . . . ,S6 in the example.

IV. Covering Problems The Set-Covering Problem 19

Illustration of Costs for Greedy picking S1,S4,S5 and S3

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs for Greedy picking S1,S4,S5 and S3

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs for Greedy picking S1,S4,S5 and S3

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs for Greedy picking S1,S4,S5 and S3

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs for Greedy picking S1,S4,S5 and S3

S1

S2

S3 S4 S5

S6

S1

S4

S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs for Greedy picking S1,S4,S5 and S3

S1

S2

S3 S4 S5

S6

S1

S4

S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs for Greedy picking S1,S4,S5 and S3

S1

S2

S3 S4 S5

S6

S1

S4 S5

S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs for Greedy picking S1,S4,S5 and S3

S1

S2

S3 S4 S5

S6

S1

S4 S5

S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
2

1

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs for Greedy picking S1,S4,S5 and S3

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
2

1

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs for Greedy picking S1,S4,S5 and S3

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs for Greedy picking S1,S4,S5 and S3

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 = ??

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs for Greedy picking S1,S4,S5 and S3

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 = 4

IV. Covering Problems The Set-Covering Problem 20

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)| .
Definition of cost

Proof.

Each step of the algorithm assigns one unit of cost, so

|C| =
∑

x∈X

cx

(1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so

∑

S∈C∗

∑

x∈S

cx ≥
∑

x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑

x∈S

cx

≤
∑

S∈C∗
H(|S|) ≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)| .
Definition of cost

Proof.
Each step of the algorithm assigns one unit of cost, so

|C| =
∑

x∈X

cx

(1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so

∑

S∈C∗

∑

x∈S

cx ≥
∑

x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑

x∈S

cx

≤
∑

S∈C∗
H(|S|) ≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)| .
Definition of cost

Proof.
Each step of the algorithm assigns one unit of cost, so

|C| =
∑

x∈X

cx (1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so

∑

S∈C∗

∑

x∈S

cx ≥
∑

x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑

x∈S

cx

≤
∑

S∈C∗
H(|S|) ≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)| .
Definition of cost

Proof.
Each step of the algorithm assigns one unit of cost, so

|C| =
∑

x∈X

cx (1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so

∑

S∈C∗

∑

x∈S

cx ≥
∑

x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑

x∈S

cx

≤
∑

S∈C∗
H(|S|) ≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)| .
Definition of cost

Proof.
Each step of the algorithm assigns one unit of cost, so

|C| =
∑

x∈X

cx (1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so
∑

S∈C∗

∑

x∈S

cx ≥
∑

x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑

x∈S

cx

≤
∑

S∈C∗
H(|S|) ≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)| .
Definition of cost

Proof.
Each step of the algorithm assigns one unit of cost, so

|C| =
∑

x∈X

cx (1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so
∑

S∈C∗

∑

x∈S

cx ≥
∑

x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑

x∈S

cx

≤
∑

S∈C∗
H(|S|) ≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)| .
Definition of cost

Proof.
Each step of the algorithm assigns one unit of cost, so

|C| =
∑

x∈X

cx (1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so
∑

S∈C∗

∑

x∈S

cx ≥
∑

x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑

x∈S

cx

≤
∑

S∈C∗
H(|S|) ≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)| .
Definition of cost

Proof.
Each step of the algorithm assigns one unit of cost, so

|C| =
∑

x∈X

cx (1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so
∑

S∈C∗

∑

x∈S

cx ≥
∑

x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑

x∈S

cx

≤
∑

S∈C∗
H(|S|) ≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)| .
Definition of cost

Proof.
Each step of the algorithm assigns one unit of cost, so

|C| =
∑

x∈X

cx (1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so
∑

S∈C∗

∑

x∈S

cx ≥
∑

x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑

x∈S

cx ≤
∑

S∈C∗
H(|S|)

≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)| .
Definition of cost

Proof.
Each step of the algorithm assigns one unit of cost, so

|C| =
∑

x∈X

cx (1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so
∑

S∈C∗

∑

x∈S

cx ≥
∑

x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑

x∈S

cx ≤
∑

S∈C∗
H(|S|) ≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let

ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|

⇒ |X | = u0 ≥ u1 ≥ · · · ≥ u|C| = 0 and ui−1 − ui counts the items in S covered first
time by Si .

⇒
∑

x∈S

cx

=
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑

x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑

i=1

ui−1∑

j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑

j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let

ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ |X | = u0 ≥ u1 ≥ · · · ≥ u|C| = 0 and ui−1 − ui counts the items in S covered first

time by Si .
⇒

∑

x∈S

cx

=
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑

x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑

i=1

ui−1∑

j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑

j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|

⇒ |X | = u0 ≥ u1 ≥ · · · ≥ u|C| = 0 and ui−1 − ui counts the items in S covered first
time by Si .

⇒
∑

x∈S

cx

=
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑

x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑

i=1

ui−1∑

j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑

j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|

⇒ |X | = u0 ≥ u1 ≥ · · · ≥ u|C| = 0 and ui−1 − ui counts the items in S covered first
time by Si .

⇒
∑

x∈S

cx

=
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑

x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑

i=1

ui−1∑

j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑

j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S

Sets chosen by the algorithm

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|

⇒ |X | = u0 ≥ u1 ≥ · · · ≥ u|C| = 0 and ui−1 − ui counts the items in S covered first
time by Si .

⇒
∑

x∈S

cx

=
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑

x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑

i=1

ui−1∑

j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑

j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S

Sets chosen by the algorithm

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ |X | = u0 ≥ u1 ≥ · · · ≥ u|C| = 0 and ui−1 − ui counts the items in S covered first

time by Si .

⇒
∑

x∈S

cx

=
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑

x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑

i=1

ui−1∑

j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑

j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ |X | = u0 ≥ u1 ≥ · · · ≥ u|C| = 0 and ui−1 − ui counts the items in S covered first

time by Si .
⇒

∑

x∈S

cx

=
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑

x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑

i=1

ui−1∑

j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑

j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ |X | = u0 ≥ u1 ≥ · · · ≥ u|C| = 0 and ui−1 − ui counts the items in S covered first

time by Si .
⇒

∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑

x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑

i=1

ui−1∑

j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑

j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ |X | = u0 ≥ u1 ≥ · · · ≥ u|C| = 0 and ui−1 − ui counts the items in S covered first

time by Si .
⇒

∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑

x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑

i=1

ui−1∑

j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑

j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ |X | = u0 ≥ u1 ≥ · · · ≥ u|C| = 0 and ui−1 − ui counts the items in S covered first

time by Si .
⇒

∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑

x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑

i=1

ui−1∑

j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑

j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ |X | = u0 ≥ u1 ≥ · · · ≥ u|C| = 0 and ui−1 − ui counts the items in S covered first

time by Si .
⇒

∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

= ui−1.

Combining the last inequalities gives:

∑

x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑

i=1

ui−1∑

j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑

j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ |X | = u0 ≥ u1 ≥ · · · ≥ u|C| = 0 and ui−1 − ui counts the items in S covered first

time by Si .
⇒

∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑

x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑

i=1

ui−1∑

j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑

j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ |X | = u0 ≥ u1 ≥ · · · ≥ u|C| = 0 and ui−1 − ui counts the items in S covered first

time by Si .
⇒

∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑

x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑

i=1

ui−1∑

j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑

j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ |X | = u0 ≥ u1 ≥ · · · ≥ u|C| = 0 and ui−1 − ui counts the items in S covered first

time by Si .
⇒

∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑

x∈S

cx ≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1

=
k∑

i=1

ui−1∑

j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑

j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ |X | = u0 ≥ u1 ≥ · · · ≥ u|C| = 0 and ui−1 − ui counts the items in S covered first

time by Si .
⇒

∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑

x∈S

cx ≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑

i=1

ui−1∑

j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑

j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ |X | = u0 ≥ u1 ≥ · · · ≥ u|C| = 0 and ui−1 − ui counts the items in S covered first

time by Si .
⇒

∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑

x∈S

cx ≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑

i=1

ui−1∑

j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑

j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ |X | = u0 ≥ u1 ≥ · · · ≥ u|C| = 0 and ui−1 − ui counts the items in S covered first

time by Si .
⇒

∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑

x∈S

cx ≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑

i=1

ui−1∑

j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑

j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui))

= H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ |X | = u0 ≥ u1 ≥ · · · ≥ u|C| = 0 and ui−1 − ui counts the items in S covered first

time by Si .
⇒

∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑

x∈S

cx ≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑

i=1

ui−1∑

j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑

j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk)

= H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ |X | = u0 ≥ u1 ≥ · · · ≥ u|C| = 0 and ui−1 − ui counts the items in S covered first

time by Si .
⇒

∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑

x∈S

cx ≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑

i=1

ui−1∑

j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑

j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

IV. Covering Problems The Set-Covering Problem 22

Set-Covering Problem (Summary)

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F}) ≤ ln(n) + 1.

Theorem 35.4

The same approach also gives an approximation ratio
of O(ln(n)) if there exists a cost function c : S → Z+

Can be applied to the Vertex Cover Problem for Graphs with
maximum degree 3 to obtain approximation ratio of 1 + 1

2 + 1
3 < 2.

Is the bound on the approximation ratio in Theorem 35.4 tight?

Is there a better algorithm?

Unless P=NP, there is no c ·ln(n) polynomial-time approximation algorithm
for some constant 0 < c < 1.

Lower Bound

IV. Covering Problems The Set-Covering Problem 23

Set-Covering Problem (Summary)

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F}) ≤ ln(n) + 1.

Theorem 35.4

The same approach also gives an approximation ratio
of O(ln(n)) if there exists a cost function c : S → Z+

Can be applied to the Vertex Cover Problem for Graphs with
maximum degree 3 to obtain approximation ratio of 1 + 1

2 + 1
3 < 2.

Is the bound on the approximation ratio in Theorem 35.4 tight?

Is there a better algorithm?

Unless P=NP, there is no c ·ln(n) polynomial-time approximation algorithm
for some constant 0 < c < 1.

Lower Bound

IV. Covering Problems The Set-Covering Problem 23

Set-Covering Problem (Summary)

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F}) ≤ ln(n) + 1.

Theorem 35.4

The same approach also gives an approximation ratio
of O(ln(n)) if there exists a cost function c : S → Z+

Can be applied to the Vertex Cover Problem for Graphs with
maximum degree 3 to obtain approximation ratio of 1 + 1

2 + 1
3 < 2.

Is the bound on the approximation ratio in Theorem 35.4 tight?

Is there a better algorithm?

Unless P=NP, there is no c ·ln(n) polynomial-time approximation algorithm
for some constant 0 < c < 1.

Lower Bound

IV. Covering Problems The Set-Covering Problem 23

Set-Covering Problem (Summary)

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F}) ≤ ln(n) + 1.

Theorem 35.4

The same approach also gives an approximation ratio
of O(ln(n)) if there exists a cost function c : S → Z+

Can be applied to the Vertex Cover Problem for Graphs with
maximum degree 3 to obtain approximation ratio of 1 + 1

2 + 1
3 < 2.

Is the bound on the approximation ratio in Theorem 35.4 tight?

Is there a better algorithm?

Unless P=NP, there is no c ·ln(n) polynomial-time approximation algorithm
for some constant 0 < c < 1.

Lower Bound

IV. Covering Problems The Set-Covering Problem 23

Set-Covering Problem (Summary)

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F}) ≤ ln(n) + 1.

Theorem 35.4

The same approach also gives an approximation ratio
of O(ln(n)) if there exists a cost function c : S → Z+

Can be applied to the Vertex Cover Problem for Graphs with
maximum degree 3 to obtain approximation ratio of 1 + 1

2 + 1
3 < 2.

Is the bound on the approximation ratio in Theorem 35.4 tight?

Is there a better algorithm?

Unless P=NP, there is no c ·ln(n) polynomial-time approximation algorithm
for some constant 0 < c < 1.

Lower Bound

IV. Covering Problems The Set-Covering Problem 23

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1

S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1 S2

S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1 S2 S3

S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3

S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2

S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1

S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1 S2 S3 S4

Solution of Greedy consists of k sets.

Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1 S2 S3 S4

Solution of Greedy consists of k sets.

Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1 S2 S3 S4

Solution of Greedy consists of k sets.

Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1 S2 S3 S4

Solution of Greedy consists of k sets.

Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall (so k ≈ log2 n)

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4, n = 30:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

V. Approximation Algorithms via Exact
Algorithms
Thomas Sauerwald

Easter 2018

Outline

The Subset-Sum Problem

Parallel Machine Scheduling

V. Approximation via Exact Algorithms The Subset-Sum Problem 2

The Subset-Sum Problem

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

This problem is NP-hard

x1 = 10

x2 = 4

x3 = 5

x4 = 6

x5 = 1

t = 13 tons

x1 + x5 = 11x3 + x4 + x5 = 12

V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

This problem is NP-hard

x1 = 10

x2 = 4

x3 = 5

x4 = 6

x5 = 1

t = 13 tons

x1 + x5 = 11x3 + x4 + x5 = 12

V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

This problem is NP-hard

x1 = 10

x2 = 4

x3 = 5

x4 = 6

x5 = 1

t = 13 tons

x1 + x5 = 11x3 + x4 + x5 = 12

V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

This problem is NP-hard

x1 = 10

x2 = 4

x3 = 5

x4 = 6

x5 = 1

t = 13 tons

x1 + x5 = 11x3 + x4 + x5 = 12

V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

This problem is NP-hard

x1 = 10

x2 = 4

x3 = 5

x4 = 6

x5 = 1

t = 13 tons

x1 + x5 = 11x3 + x4 + x5 = 12

V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

This problem is NP-hard

x1 = 10

x2 = 4

x3 = 5

x4 = 6

x5 = 1

t = 13 tons

x1 + x5 = 11

x3 + x4 + x5 = 12

V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

This problem is NP-hard

x1 = 10

x2 = 4

x3 = 5

x4 = 6

x5 = 1

t = 13 tons

x1 + x5 = 11x3 + x4 + x5 = 12

V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

This problem is NP-hard

x1 = 10

x2 = 4

x3 = 5

x4 = 6

x5 = 1

t = 13 tons

x1 + x5 = 11

x3 + x4 + x5 = 12

V. Approximation via Exact Algorithms The Subset-Sum Problem 3

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:

S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:

S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:

S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:

S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:

S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:

S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10

L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉

L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉

L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉

L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}

Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}

Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}.

Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Given a trimming parameter 0 < δ < 1

Trimming L yields minimal sublist L′ so that for every y ∈ L : ∃z ∈ L′ :

y
1 + δ

≤ z ≤ y .

Trimming a List

L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉
δ = 0.1
L′ = 〈10, 12, 15, 20, 23, 29〉

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

TRIM works in time Θ(m), if L is given in sorted order.

V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Given a trimming parameter 0 < δ < 1

Trimming L yields minimal sublist L′ so that for every y ∈ L : ∃z ∈ L′ :

y
1 + δ

≤ z ≤ y .

Trimming a List

L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉
δ = 0.1
L′ = 〈10, 12, 15, 20, 23, 29〉

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

TRIM works in time Θ(m), if L is given in sorted order.

V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Given a trimming parameter 0 < δ < 1

Trimming L yields minimal sublist L′ so that for every y ∈ L : ∃z ∈ L′ :

y
1 + δ

≤ z ≤ y .

Trimming a List

L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉
δ = 0.1
L′ = 〈10, 12, 15, 20, 23, 29〉

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

TRIM works in time Θ(m), if L is given in sorted order.

V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Given a trimming parameter 0 < δ < 1

Trimming L yields minimal sublist L′ so that for every y ∈ L : ∃z ∈ L′ :

y
1 + δ

≤ z ≤ y .

Trimming a List

L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉

δ = 0.1
L′ = 〈10, 12, 15, 20, 23, 29〉

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

TRIM works in time Θ(m), if L is given in sorted order.

V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Given a trimming parameter 0 < δ < 1

Trimming L yields minimal sublist L′ so that for every y ∈ L : ∃z ∈ L′ :

y
1 + δ

≤ z ≤ y .

Trimming a List

L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉
δ = 0.1

L′ = 〈10, 12, 15, 20, 23, 29〉

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

TRIM works in time Θ(m), if L is given in sorted order.

V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Given a trimming parameter 0 < δ < 1

Trimming L yields minimal sublist L′ so that for every y ∈ L : ∃z ∈ L′ :

y
1 + δ

≤ z ≤ y .

Trimming a List

L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉
δ = 0.1
L′ = 〈10, 12, 15, 20, 23, 29〉

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

TRIM works in time Θ(m), if L is given in sorted order.

V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Given a trimming parameter 0 < δ < 1

Trimming L yields minimal sublist L′ so that for every y ∈ L : ∃z ∈ L′ :

y
1 + δ

≤ z ≤ y .

Trimming a List

L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉
δ = 0.1
L′ = 〈10, 12, 15, 20, 23, 29〉

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

TRIM works in time Θ(m), if L is given in sorted order.

V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Given a trimming parameter 0 < δ < 1

Trimming L yields minimal sublist L′ so that for every y ∈ L : ∃z ∈ L′ :

y
1 + δ

≤ z ≤ y .

Trimming a List

L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉
δ = 0.1
L′ = 〈10, 12, 15, 20, 23, 29〉

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

TRIM works in time Θ(m), if L is given in sorted order.

V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

last last last last last last

i i i i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈〉

last last last last last last

i i i i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10〉

last last last last last last

i i i i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10〉

last

last last last last last

i i i i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10〉

last

last last last last last

i

i i i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10〉

last

last last last last last

i

i

i i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12〉

last

last last last last last

i

i

i i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12〉

last

last

last last last last

i

i

i i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12〉

last

last

last last last last

i i

i

i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15〉

last

last

last last last last

i i

i

i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15〉

last last

last

last last last

i i

i

i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15〉

last last

last

last last last

i i i

i

i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20〉

last last

last

last last last

i i i

i

i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20〉

last last last

last

last last

i i i

i

i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20〉

last last last

last

last last

i i i i

i

i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20〉

last last last

last

last last

i i i i i

i

i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20〉

last last last

last

last last

i i i i i i

i

i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20,23〉

last last last

last

last last

i i i i i i

i

i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20,23〉

last last last last

last

last

i i i i i i

i

i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20,23〉

last last last last

last

last

i i i i i i i

i

i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20,23〉

last last last last

last

last

i i i i i i i i

i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20,23,29〉

last last last last

last

last

i i i i i i i i

i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20,23,29〉

last last last last last

last

i i i i i i i i

i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

The FPTAS35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Repeated application of TRIM
to make sure Li ’s remain short.

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

We must bound the inaccuracy introduced by repeated trimming

We must show that the algorithm is polynomial time

Solution is a careful choice of δ!

V. Approximation via Exact Algorithms The Subset-Sum Problem 7

The FPTAS35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Repeated application of TRIM
to make sure Li ’s remain short.

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

We must bound the inaccuracy introduced by repeated trimming

We must show that the algorithm is polynomial time

Solution is a careful choice of δ!

V. Approximation via Exact Algorithms The Subset-Sum Problem 7

The FPTAS35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Repeated application of TRIM
to make sure Li ’s remain short.

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

We must bound the inaccuracy introduced by repeated trimming

We must show that the algorithm is polynomial time

Solution is a careful choice of δ!

V. Approximation via Exact Algorithms The Subset-Sum Problem 7

The FPTAS35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Repeated application of TRIM
to make sure Li ’s remain short.

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

We must bound the inaccuracy introduced by repeated trimming

We must show that the algorithm is polynomial time

Solution is a careful choice of δ!

V. Approximation via Exact Algorithms The Subset-Sum Problem 7

The FPTAS35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Repeated application of TRIM
to make sure Li ’s remain short.

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

We must bound the inaccuracy introduced by repeated trimming

We must show that the algorithm is polynomial time

Solution is a careful choice of δ!

V. Approximation via Exact Algorithms The Subset-Sum Problem 7

The FPTAS35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Repeated application of TRIM
to make sure Li ’s remain short.

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

We must bound the inaccuracy introduced by repeated trimming

We must show that the algorithm is polynomial time

Solution is a careful choice of δ!

V. Approximation via Exact Algorithms The Subset-Sum Problem 7

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4

⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05
line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉

line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉

line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉

line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉

line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉

line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉

line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉

line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉

line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉

line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉

line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉

line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉

line 6: L4 = 〈0, 101, 201, 302〉
Returned solution z∗ = 302, which is 2%

within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X
Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X

Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X
Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X
Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X
Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X
Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X
Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒

y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X
Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X
Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X
Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X
Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X
Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X
Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2

≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X
Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.

Hence,

log1+ε/(2n) t + 2 =

ln t
ln(1 + ε/(2n))

+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)

After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.

Hence,

log1+ε/(2n) t + 2 =

ln t
ln(1 + ε/(2n))

+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.

Hence,

log1+ε/(2n) t + 2 =

ln t
ln(1 + ε/(2n))

+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.

Hence,

log1+ε/(2n) t + 2 =

ln t
ln(1 + ε/(2n))

+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.
Hence,

log1+ε/(2n) t + 2 =

ln t
ln(1 + ε/(2n))

+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.
Hence,

log1+ε/(2n) t + 2 =
ln t

ln(1 + ε/(2n))
+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.
Hence,

log1+ε/(2n) t + 2 =
ln t

ln(1 + ε/(2n))
+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.
Hence,

log1+ε/(2n) t + 2 =
ln t

ln(1 + ε/(2n))
+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.
Hence,

log1+ε/(2n) t + 2 =
ln t

ln(1 + ε/(2n))
+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.
Hence,

log1+ε/(2n) t + 2 =
ln t

ln(1 + ε/(2n))
+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.
Hence,

log1+ε/(2n) t + 2 =
ln t

ln(1 + ε/(2n))
+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Concluding Remarks

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Given: Items i = 1, 2, . . . , n with weights wi and values vi , and integer t
Goal: Find a subset S′ ⊆ S which

1. maximizes
∑

i∈S′ vi
2. satisfies

∑
i∈S′ wi ≤ t

The Knapsack Problem
A more general problem than Subset-Sum

There is a FPTAS for the Knapsack problem.
Theorem

Algorithm very similar to APPROX-SUBSET-SUM

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Given: Items i = 1, 2, . . . , n with weights wi and values vi , and integer t
Goal: Find a subset S′ ⊆ S which

1. maximizes
∑

i∈S′ vi
2. satisfies

∑
i∈S′ wi ≤ t

The Knapsack Problem
A more general problem than Subset-Sum

There is a FPTAS for the Knapsack problem.
Theorem

Algorithm very similar to APPROX-SUBSET-SUM

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Given: Items i = 1, 2, . . . , n with weights wi and values vi , and integer t

Goal: Find a subset S′ ⊆ S which

1. maximizes
∑

i∈S′ vi
2. satisfies

∑
i∈S′ wi ≤ t

The Knapsack Problem

A more general problem than Subset-Sum

There is a FPTAS for the Knapsack problem.
Theorem

Algorithm very similar to APPROX-SUBSET-SUM

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Given: Items i = 1, 2, . . . , n with weights wi and values vi , and integer t
Goal: Find a subset S′ ⊆ S which

1. maximizes
∑

i∈S′ vi
2. satisfies

∑
i∈S′ wi ≤ t

The Knapsack Problem

A more general problem than Subset-Sum

There is a FPTAS for the Knapsack problem.
Theorem

Algorithm very similar to APPROX-SUBSET-SUM

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Given: Items i = 1, 2, . . . , n with weights wi and values vi , and integer t
Goal: Find a subset S′ ⊆ S which

1. maximizes
∑

i∈S′ vi
2. satisfies

∑
i∈S′ wi ≤ t

The Knapsack Problem

A more general problem than Subset-Sum

There is a FPTAS for the Knapsack problem.
Theorem

Algorithm very similar to APPROX-SUBSET-SUM

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Given: Items i = 1, 2, . . . , n with weights wi and values vi , and integer t
Goal: Find a subset S′ ⊆ S which

1. maximizes
∑

i∈S′ vi
2. satisfies

∑
i∈S′ wi ≤ t

The Knapsack Problem
A more general problem than Subset-Sum

There is a FPTAS for the Knapsack problem.
Theorem

Algorithm very similar to APPROX-SUBSET-SUM

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Given: Items i = 1, 2, . . . , n with weights wi and values vi , and integer t
Goal: Find a subset S′ ⊆ S which

1. maximizes
∑

i∈S′ vi
2. satisfies

∑
i∈S′ wi ≤ t

The Knapsack Problem
A more general problem than Subset-Sum

There is a FPTAS for the Knapsack problem.
Theorem

Algorithm very similar to APPROX-SUBSET-SUM

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Given: Items i = 1, 2, . . . , n with weights wi and values vi , and integer t
Goal: Find a subset S′ ⊆ S which

1. maximizes
∑

i∈S′ vi
2. satisfies

∑
i∈S′ wi ≤ t

The Knapsack Problem
A more general problem than Subset-Sum

There is a FPTAS for the Knapsack problem.
Theorem

Algorithm very similar to APPROX-SUBSET-SUM

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Outline

The Subset-Sum Problem

Parallel Machine Scheduling

V. Approximation via Exact Algorithms Parallel Machine Scheduling 11

Parallel Machine Scheduling

Given: n jobs J1, J2, . . . , Jn with processing times p1, p2, . . . , pn, and
m identical machines M1,M2, . . . ,Mm

Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = max1≤j≤n Cj , where Ck is the completion time of job Jk .

Machine Scheduling Problem

J1: p1 = 2

J2: p2 = 12

J3: p3 = 6

J4: p4 = 4

For the analysis, it will be convenient to denote
by Ci the completion time of a machine i .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3

J1 J2M1

M2 J4 J3 J1

J2

V. Approximation via Exact Algorithms Parallel Machine Scheduling 12

Parallel Machine Scheduling

Given: n jobs J1, J2, . . . , Jn with processing times p1, p2, . . . , pn, and
m identical machines M1,M2, . . . ,Mm

Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = max1≤j≤n Cj , where Ck is the completion time of job Jk .

Machine Scheduling Problem

J1: p1 = 2

J2: p2 = 12

J3: p3 = 6

J4: p4 = 4

For the analysis, it will be convenient to denote
by Ci the completion time of a machine i .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3

J1 J2M1

M2 J4 J3 J1

J2

V. Approximation via Exact Algorithms Parallel Machine Scheduling 12

Parallel Machine Scheduling

Given: n jobs J1, J2, . . . , Jn with processing times p1, p2, . . . , pn, and
m identical machines M1,M2, . . . ,Mm

Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = max1≤j≤n Cj , where Ck is the completion time of job Jk .

Machine Scheduling Problem

J1: p1 = 2

J2: p2 = 12

J3: p3 = 6

J4: p4 = 4

For the analysis, it will be convenient to denote
by Ci the completion time of a machine i .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3

J1 J2M1

M2 J4 J3 J1

J2

V. Approximation via Exact Algorithms Parallel Machine Scheduling 12

Parallel Machine Scheduling

Given: n jobs J1, J2, . . . , Jn with processing times p1, p2, . . . , pn, and
m identical machines M1,M2, . . . ,Mm

Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = max1≤j≤n Cj , where Ck is the completion time of job Jk .

Machine Scheduling Problem

J1: p1 = 2

J2: p2 = 12

J3: p3 = 6

J4: p4 = 4

For the analysis, it will be convenient to denote
by Ci the completion time of a machine i .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3

J1 J2

M1

M2 J4 J3 J1

J2

V. Approximation via Exact Algorithms Parallel Machine Scheduling 12

Parallel Machine Scheduling

Given: n jobs J1, J2, . . . , Jn with processing times p1, p2, . . . , pn, and
m identical machines M1,M2, . . . ,Mm

Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = max1≤j≤n Cj , where Ck is the completion time of job Jk .

Machine Scheduling Problem

J1: p1 = 2

J2: p2 = 12

J3: p3 = 6

J4: p4 = 4

For the analysis, it will be convenient to denote
by Ci the completion time of a machine i .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3

J1 J2

M1

M2 J4 J3 J1

J2

V. Approximation via Exact Algorithms Parallel Machine Scheduling 12

Parallel Machine Scheduling

Given: n jobs J1, J2, . . . , Jn with processing times p1, p2, . . . , pn, and
m identical machines M1,M2, . . . ,Mm

Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = max1≤j≤n Cj , where Ck is the completion time of job Jk .

Machine Scheduling Problem

J1: p1 = 2

J2: p2 = 12

J3: p3 = 6

J4: p4 = 4

For the analysis, it will be convenient to denote
by Ci the completion time of a machine i .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3

J1 J2

M1

M2 J4 J3 J1

J2

V. Approximation via Exact Algorithms Parallel Machine Scheduling 12

NP-Completeness of Parallel Machine Scheduling

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Lemma

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3 J1

J2

LIST SCHEDULING(J1, J2, . . . , Jn,m)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load

How good is this most basic Greedy Approach?

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 13

NP-Completeness of Parallel Machine Scheduling

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Lemma

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3 J1

J2

LIST SCHEDULING(J1, J2, . . . , Jn,m)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load

How good is this most basic Greedy Approach?

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 13

NP-Completeness of Parallel Machine Scheduling

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Lemma

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3 J1

J2

LIST SCHEDULING(J1, J2, . . . , Jn,m)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load

How good is this most basic Greedy Approach?

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 13

NP-Completeness of Parallel Machine Scheduling

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Lemma

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3 J1

J2

LIST SCHEDULING(J1, J2, . . . , Jn,m)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load

How good is this most basic Greedy Approach?

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 13

NP-Completeness of Parallel Machine Scheduling

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Lemma

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3 J1

J2

LIST SCHEDULING(J1, J2, . . . , Jn,m)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load

How good is this most basic Greedy Approach?

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 13

List Scheduling Analysis (Observations)

a. The optimal makespan is at least as large as the greatest
processing time, that is,

C∗max ≥ max
1≤k≤n

pk .

b. The optimal makespan is at least as large as the average machine
load, that is,

C∗max ≥
1
m

n∑

k=1

pk .

Ex 35-5 a.&b.

Proof:

b. The total processing times of all n jobs equals
∑n

k=1 pk

⇒ One machine must have a load of at least 1
m ·

∑n
k=1 pk

V. Approximation via Exact Algorithms Parallel Machine Scheduling 14

List Scheduling Analysis (Observations)

a. The optimal makespan is at least as large as the greatest
processing time, that is,

C∗max ≥ max
1≤k≤n

pk .

b. The optimal makespan is at least as large as the average machine
load, that is,

C∗max ≥
1
m

n∑

k=1

pk .

Ex 35-5 a.&b.

Proof:

b. The total processing times of all n jobs equals
∑n

k=1 pk

⇒ One machine must have a load of at least 1
m ·

∑n
k=1 pk

V. Approximation via Exact Algorithms Parallel Machine Scheduling 14

List Scheduling Analysis (Observations)

a. The optimal makespan is at least as large as the greatest
processing time, that is,

C∗max ≥ max
1≤k≤n

pk .

b. The optimal makespan is at least as large as the average machine
load, that is,

C∗max ≥
1
m

n∑

k=1

pk .

Ex 35-5 a.&b.

Proof:

b. The total processing times of all n jobs equals
∑n

k=1 pk

⇒ One machine must have a load of at least 1
m ·

∑n
k=1 pk

V. Approximation via Exact Algorithms Parallel Machine Scheduling 14

List Scheduling Analysis (Observations)

a. The optimal makespan is at least as large as the greatest
processing time, that is,

C∗max ≥ max
1≤k≤n

pk .

b. The optimal makespan is at least as large as the average machine
load, that is,

C∗max ≥
1
m

n∑

k=1

pk .

Ex 35-5 a.&b.

Proof:

b. The total processing times of all n jobs equals
∑n

k=1 pk

⇒ One machine must have a load of at least 1
m ·

∑n
k=1 pk

V. Approximation via Exact Algorithms Parallel Machine Scheduling 14

List Scheduling Analysis (Observations)

a. The optimal makespan is at least as large as the greatest
processing time, that is,

C∗max ≥ max
1≤k≤n

pk .

b. The optimal makespan is at least as large as the average machine
load, that is,

C∗max ≥
1
m

n∑

k=1

pk .

Ex 35-5 a.&b.

Proof:

b. The total processing times of all n jobs equals
∑n

k=1 pk

⇒ One machine must have a load of at least 1
m ·

∑n
k=1 pk

V. Approximation via Exact Algorithms Parallel Machine Scheduling 14

List Scheduling Analysis (Observations)

a. The optimal makespan is at least as large as the greatest
processing time, that is,

C∗max ≥ max
1≤k≤n

pk .

b. The optimal makespan is at least as large as the average machine
load, that is,

C∗max ≥
1
m

n∑

k=1

pk .

Ex 35-5 a.&b.

Proof:

b. The total processing times of all n jobs equals
∑n

k=1 pk

⇒ One machine must have a load of at least 1
m ·

∑n
k=1 pk

V. Approximation via Exact Algorithms Parallel Machine Scheduling 14

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤ 1
m

n∑

k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:

Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑

k=1

Ck =
1
m

n∑

k=1

pk ⇒ Cj ≤
1
m

n∑

k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤ 1
m

n∑

k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:

Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑

k=1

Ck =
1
m

n∑

k=1

pk ⇒ Cj ≤
1
m

n∑

k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤ 1
m

n∑

k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑

k=1

Ck =
1
m

n∑

k=1

pk ⇒ Cj ≤
1
m

n∑

k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤ 1
m

n∑

k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑

k=1

Ck =
1
m

n∑

k=1

pk ⇒ Cj ≤
1
m

n∑

k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤ 1
m

n∑

k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m

Averaging over k yields:

Cj − pi ≤
1
m

m∑

k=1

Ck =
1
m

n∑

k=1

pk ⇒ Cj ≤
1
m

n∑

k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤ 1
m

n∑

k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m

Averaging over k yields:

Cj − pi ≤
1
m

m∑

k=1

Ck =
1
m

n∑

k=1

pk ⇒ Cj ≤
1
m

n∑

k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤ 1
m

n∑

k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑

k=1

Ck =
1
m

n∑

k=1

pk ⇒ Cj ≤
1
m

n∑

k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤ 1
m

n∑

k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑

k=1

Ck

=
1
m

n∑

k=1

pk ⇒ Cj ≤
1
m

n∑

k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤ 1
m

n∑

k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑

k=1

Ck =
1
m

n∑

k=1

pk

⇒ Cj ≤
1
m

n∑

k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤ 1
m

n∑

k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑

k=1

Ck =
1
m

n∑

k=1

pk ⇒ Cj ≤
1
m

n∑

k=1

pk + max
1≤k≤n

pk

≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤ 1
m

n∑

k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑

k=1

Ck =
1
m

n∑

k=1

pk ⇒ Cj ≤
1
m

n∑

k=1

pk + max
1≤k≤n

pk

≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤ 1
m

n∑

k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑

k=1

Ck =
1
m

n∑

k=1

pk ⇒ Cj ≤
1
m

n∑

k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

Improving Greedy

Analysis can be shown to be almost tight. Is there a better algorithm?

The problem of the List-Scheduling Approach were the large jobs

LEAST PROCESSING TIME(J1, J2, . . . , Jn,m)
1: Sort jobs decreasingly in their processing times
2: for i = 1 to m
3: Ci = 0
4: Si = ∅
5: end for
6: for j = 1 to n
7: i = argmin1≤k≤m Ck

8: Si = Si ∪ {j}, Ci = Ci + pj

9: end for
10: return S1, . . . ,Sm

Runtime:

O(n log n) for sorting

O(n log m) for extracting (and re-inserting) the minimum (use priority queue).

V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

Analysis can be shown to be almost tight. Is there a better algorithm?

The problem of the List-Scheduling Approach were the large jobs

LEAST PROCESSING TIME(J1, J2, . . . , Jn,m)
1: Sort jobs decreasingly in their processing times
2: for i = 1 to m
3: Ci = 0
4: Si = ∅
5: end for
6: for j = 1 to n
7: i = argmin1≤k≤m Ck

8: Si = Si ∪ {j}, Ci = Ci + pj

9: end for
10: return S1, . . . ,Sm

Runtime:

O(n log n) for sorting

O(n log m) for extracting (and re-inserting) the minimum (use priority queue).

V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

Analysis can be shown to be almost tight. Is there a better algorithm?

The problem of the List-Scheduling Approach were the large jobs

LEAST PROCESSING TIME(J1, J2, . . . , Jn,m)
1: Sort jobs decreasingly in their processing times
2: for i = 1 to m
3: Ci = 0
4: Si = ∅
5: end for
6: for j = 1 to n
7: i = argmin1≤k≤m Ck

8: Si = Si ∪ {j}, Ci = Ci + pj

9: end for
10: return S1, . . . ,Sm

Runtime:

O(n log n) for sorting

O(n log m) for extracting (and re-inserting) the minimum (use priority queue).

V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

Analysis can be shown to be almost tight. Is there a better algorithm?

The problem of the List-Scheduling Approach were the large jobs

LEAST PROCESSING TIME(J1, J2, . . . , Jn,m)
1: Sort jobs decreasingly in their processing times
2: for i = 1 to m
3: Ci = 0
4: Si = ∅
5: end for
6: for j = 1 to n
7: i = argmin1≤k≤m Ck

8: Si = Si ∪ {j}, Ci = Ci + pj

9: end for
10: return S1, . . . ,Sm

Runtime:

O(n log n) for sorting

O(n log m) for extracting (and re-inserting) the minimum (use priority queue).

V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

Analysis can be shown to be almost tight. Is there a better algorithm?

The problem of the List-Scheduling Approach were the large jobs

LEAST PROCESSING TIME(J1, J2, . . . , Jn,m)
1: Sort jobs decreasingly in their processing times
2: for i = 1 to m
3: Ci = 0
4: Si = ∅
5: end for
6: for j = 1 to n
7: i = argmin1≤k≤m Ck

8: Si = Si ∪ {j}, Ci = Ci + pj

9: end for
10: return S1, . . . ,Sm

Runtime:

O(n log n) for sorting

O(n log m) for extracting (and re-inserting) the minimum (use priority queue).

V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

Analysis can be shown to be almost tight. Is there a better algorithm?

The problem of the List-Scheduling Approach were the large jobs

LEAST PROCESSING TIME(J1, J2, . . . , Jn,m)
1: Sort jobs decreasingly in their processing times
2: for i = 1 to m
3: Ci = 0
4: Si = ∅
5: end for
6: for j = 1 to n
7: i = argmin1≤k≤m Ck

8: Si = Si ∪ {j}, Ci = Ci + pj

9: end for
10: return S1, . . . ,Sm

Runtime:

O(n log n) for sorting

O(n log m) for extracting (and re-inserting) the minimum (use priority queue).

V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Analysis of Improved Greedy

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

This can be shown to be tight (see next slide).

Proof (of approximation ratio 3/2).

Observation 1: If there are at most m jobs, then the solution is optimal.
Observation 2: If there are more than m jobs, then C∗max ≥ 2 · pm+1.
As in the analysis for list scheduling

, we have

Cmax = Cj = (Cj − pi) + pi

≤ C∗max +
1
2

C∗max =
3
2

Cmax.

This is for the case i ≥ m + 1 (otherwise, an even stronger inequality holds)

0 Cmax

Mj Ji

Cj − pi

V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

This can be shown to be tight (see next slide).

Proof (of approximation ratio 3/2).

Observation 1: If there are at most m jobs, then the solution is optimal.
Observation 2: If there are more than m jobs, then C∗max ≥ 2 · pm+1.
As in the analysis for list scheduling

, we have

Cmax = Cj = (Cj − pi) + pi

≤ C∗max +
1
2

C∗max =
3
2

Cmax.

This is for the case i ≥ m + 1 (otherwise, an even stronger inequality holds)

0 Cmax

Mj Ji

Cj − pi

V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

This can be shown to be tight (see next slide).

Proof (of approximation ratio 3/2).
Observation 1: If there are at most m jobs, then the solution is optimal.

Observation 2: If there are more than m jobs, then C∗max ≥ 2 · pm+1.
As in the analysis for list scheduling

, we have

Cmax = Cj = (Cj − pi) + pi

≤ C∗max +
1
2

C∗max =
3
2

Cmax.

This is for the case i ≥ m + 1 (otherwise, an even stronger inequality holds)

0 Cmax

Mj Ji

Cj − pi

V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

This can be shown to be tight (see next slide).

Proof (of approximation ratio 3/2).
Observation 1: If there are at most m jobs, then the solution is optimal.
Observation 2: If there are more than m jobs, then C∗max ≥ 2 · pm+1.

As in the analysis for list scheduling

, we have

Cmax = Cj = (Cj − pi) + pi

≤ C∗max +
1
2

C∗max =
3
2

Cmax.

This is for the case i ≥ m + 1 (otherwise, an even stronger inequality holds)

0 Cmax

Mj Ji

Cj − pi

V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

This can be shown to be tight (see next slide).

Proof (of approximation ratio 3/2).
Observation 1: If there are at most m jobs, then the solution is optimal.
Observation 2: If there are more than m jobs, then C∗max ≥ 2 · pm+1.
As in the analysis for list scheduling

, we have

Cmax = Cj = (Cj − pi) + pi

≤ C∗max +
1
2

C∗max =
3
2

Cmax.

This is for the case i ≥ m + 1 (otherwise, an even stronger inequality holds)

0 Cmax

Mj Ji

Cj − pi

V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

This can be shown to be tight (see next slide).

Proof (of approximation ratio 3/2).
Observation 1: If there are at most m jobs, then the solution is optimal.
Observation 2: If there are more than m jobs, then C∗max ≥ 2 · pm+1.
As in the analysis for list scheduling, we have

Cmax = Cj = (Cj − pi) + pi

≤ C∗max +
1
2

C∗max =
3
2

Cmax.

This is for the case i ≥ m + 1 (otherwise, an even stronger inequality holds)

0 Cmax

Mj Ji

Cj − pi

V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

This can be shown to be tight (see next slide).

Proof (of approximation ratio 3/2).
Observation 1: If there are at most m jobs, then the solution is optimal.
Observation 2: If there are more than m jobs, then C∗max ≥ 2 · pm+1.
As in the analysis for list scheduling, we have

Cmax = Cj = (Cj − pi) + pi ≤ C∗max +
1
2

C∗max

=
3
2

Cmax.

This is for the case i ≥ m + 1 (otherwise, an even stronger inequality holds)

0 Cmax

Mj Ji

Cj − pi

V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

This can be shown to be tight (see next slide).

Proof (of approximation ratio 3/2).
Observation 1: If there are at most m jobs, then the solution is optimal.
Observation 2: If there are more than m jobs, then C∗max ≥ 2 · pm+1.
As in the analysis for list scheduling, we have

Cmax = Cj = (Cj − pi) + pi ≤ C∗max +
1
2

C∗max =
3
2

Cmax.

This is for the case i ≥ m + 1 (otherwise, an even stronger inequality holds)

0 Cmax

Mj Ji

Cj − pi

V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15Proof of an instance which shows tightness:

m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5
9 9

8 8
7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:

m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5
9 9

8 8
7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines

n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5
9 9

8 8
7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5
9 9

8 8
7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5
9 9

8 8
7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9

9
8 8

7 7
6 6

5 5 5

9

9
8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9

8 8
7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8

8
7 7

6 6
5 5 5

9
9

8

8
7 7

6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7

7
6 6

5 5 5

9
9

8
8

7

7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7

6 6
5 5 5

9
9

8
8

7 7

6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6

6
5 5 5

9
9

8
8

7 7
6

6
5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5

5 5

9
9

8
8

7 7
6
6

5

5 59
9

8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5

5

9
9

8
8

7 7
6
6

5
5

59
9

8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5 5

C∗max = 15

Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5
9 9

8 8
7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9

9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9

8 8
7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8

8
7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8

8 7
7

6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8

7
7

6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7

7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7

6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6

6
5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6

6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5

5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5

5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5

5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5

5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5 5

C∗max = 15

Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5 5

C∗max = 15

Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 − 1
15Proof of an instance which shows tightness:

m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5 5

C∗max = 15

Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + ε)-approximation, don’t have to work with exact pk ’s.

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

SUBROUTINE can be implemented in time nO(1/ε2).

Key Lemma We will prove this on the next slides.

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) ·), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Proof (using Key Lemma):
PTAS(J1, J2, . . . , Jn,m)

1: Do binary search to find smallest T s.t. Cmax ≤ (1 + ε) ·max{T ,C∗max}.
2: Return solution computed by SUBROUTINE(J1, J2, . . . , Jn,m,T)

Since 0 ≤ C∗max ≤ P and C∗max is integral,
binary search terminates after O(log P) steps.

polynomial in the size of the input

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + ε)-approximation, don’t have to work with exact pk ’s.

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

SUBROUTINE can be implemented in time nO(1/ε2).

Key Lemma We will prove this on the next slides.

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) ·), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Proof (using Key Lemma):
PTAS(J1, J2, . . . , Jn,m)

1: Do binary search to find smallest T s.t. Cmax ≤ (1 + ε) ·max{T ,C∗max}.
2: Return solution computed by SUBROUTINE(J1, J2, . . . , Jn,m,T)

Since 0 ≤ C∗max ≤ P and C∗max is integral,
binary search terminates after O(log P) steps.

polynomial in the size of the input

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + ε)-approximation, don’t have to work with exact pk ’s.

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

SUBROUTINE can be implemented in time nO(1/ε2).

Key Lemma

We will prove this on the next slides.

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) ·), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Proof (using Key Lemma):
PTAS(J1, J2, . . . , Jn,m)

1: Do binary search to find smallest T s.t. Cmax ≤ (1 + ε) ·max{T ,C∗max}.
2: Return solution computed by SUBROUTINE(J1, J2, . . . , Jn,m,T)

Since 0 ≤ C∗max ≤ P and C∗max is integral,
binary search terminates after O(log P) steps.

polynomial in the size of the input

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + ε)-approximation, don’t have to work with exact pk ’s.

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

SUBROUTINE can be implemented in time nO(1/ε2).

Key Lemma We will prove this on the next slides.

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) ·), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Proof (using Key Lemma):
PTAS(J1, J2, . . . , Jn,m)

1: Do binary search to find smallest T s.t. Cmax ≤ (1 + ε) ·max{T ,C∗max}.
2: Return solution computed by SUBROUTINE(J1, J2, . . . , Jn,m,T)

Since 0 ≤ C∗max ≤ P and C∗max is integral,
binary search terminates after O(log P) steps.

polynomial in the size of the input

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + ε)-approximation, don’t have to work with exact pk ’s.

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

SUBROUTINE can be implemented in time nO(1/ε2).

Key Lemma We will prove this on the next slides.

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Proof (using Key Lemma):
PTAS(J1, J2, . . . , Jn,m)

1: Do binary search to find smallest T s.t. Cmax ≤ (1 + ε) ·max{T ,C∗max}.
2: Return solution computed by SUBROUTINE(J1, J2, . . . , Jn,m,T)

Since 0 ≤ C∗max ≤ P and C∗max is integral,
binary search terminates after O(log P) steps.

polynomial in the size of the input

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + ε)-approximation, don’t have to work with exact pk ’s.

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

SUBROUTINE can be implemented in time nO(1/ε2).

Key Lemma We will prove this on the next slides.

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Proof (using Key Lemma):
PTAS(J1, J2, . . . , Jn,m)

1: Do binary search to find smallest T s.t. Cmax ≤ (1 + ε) ·max{T ,C∗max}.
2: Return solution computed by SUBROUTINE(J1, J2, . . . , Jn,m,T)

Since 0 ≤ C∗max ≤ P and C∗max is integral,
binary search terminates after O(log P) steps.

polynomial in the size of the input

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + ε)-approximation, don’t have to work with exact pk ’s.

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

SUBROUTINE can be implemented in time nO(1/ε2).

Key Lemma We will prove this on the next slides.

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Proof (using Key Lemma):
PTAS(J1, J2, . . . , Jn,m)

1: Do binary search to find smallest T s.t. Cmax ≤ (1 + ε) ·max{T ,C∗max}.
2: Return solution computed by SUBROUTINE(J1, J2, . . . , Jn,m,T)

Since 0 ≤ C∗max ≤ P and C∗max is integral,
binary search terminates after O(log P) steps.

polynomial in the size of the input

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + ε)-approximation, don’t have to work with exact pk ’s.

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

SUBROUTINE can be implemented in time nO(1/ε2).

Key Lemma We will prove this on the next slides.

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Proof (using Key Lemma):
PTAS(J1, J2, . . . , Jn,m)

1: Do binary search to find smallest T s.t. Cmax ≤ (1 + ε) ·max{T ,C∗max}.
2: Return solution computed by SUBROUTINE(J1, J2, . . . , Jn,m,T)

Since 0 ≤ C∗max ≤ P and C∗max is integral,
binary search terminates after O(log P) steps.

polynomial in the size of the input

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + ε)-approximation, don’t have to work with exact pk ’s.

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

SUBROUTINE can be implemented in time nO(1/ε2).

Key Lemma We will prove this on the next slides.

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Proof (using Key Lemma):
PTAS(J1, J2, . . . , Jn,m)

1: Do binary search to find smallest T s.t. Cmax ≤ (1 + ε) ·max{T ,C∗max}.
2: Return solution computed by SUBROUTINE(J1, J2, . . . , Jn,m,T)

Since 0 ≤ C∗max ≤ P and C∗max is integral,
binary search terminates after O(log P) steps.

polynomial in the size of the input

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:

Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑

k=1

pk

⇒ Cj ≤ pi +
1
m

n∑

k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:

Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑

k=1

pk

⇒ Cj ≤ pi +
1
m

n∑

k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:

Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑

k=1

pk

⇒ Cj ≤ pi +
1
m

n∑

k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:
Let Mj be the machine with largest load

If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑

k=1

pk

⇒ Cj ≤ pi +
1
m

n∑

k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:
Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .

Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑

k=1

pk

⇒ Cj ≤ pi +
1
m

n∑

k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:
Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑

k=1

pk

⇒ Cj ≤ pi +
1
m

n∑

k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:
Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑

k=1

pk

⇒ Cj ≤ pi +
1
m

n∑

k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:
Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑

k=1

pk ⇒

Cj ≤ pi +
1
m

n∑

k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:
Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑

k=1

pk ⇒ Cj ≤ pi +
1
m

n∑

k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:
Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑

k=1

pk ⇒ Cj ≤ pi +
1
m

n∑

k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:
Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑

k=1

pk ⇒ Cj ≤ pi +
1
m

n∑

k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}
the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:
Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑

k=1

pk ⇒ Cj ≤ pi +
1
m

n∑

k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}
the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine

with makespan ≤ T .

Assign some jobs to one machine, and then

use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε.

Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0

f (nb, nb+1, . . . , nb2) = 1 + min
(sb,sb+1,...,sb2)∈C

f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.

As every machine is assigned at most b jobs (p′i ≥ T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2

≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥ T

b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b · T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Final Remarks

List scheduling has an approximation ratio of 2.
Graham 1966

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Can we find a FPTAS (for polynomially bounded processing times)?

No!

Because for sufficiently small approximation ratio
1 + ε, the computed solution has to be optimal, and

Parallel Machine Scheduling is strongly NP-hard.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 22

Final Remarks

List scheduling has an approximation ratio of 2.
Graham 1966

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Can we find a FPTAS (for polynomially bounded processing times)?

No!

Because for sufficiently small approximation ratio
1 + ε, the computed solution has to be optimal, and

Parallel Machine Scheduling is strongly NP-hard.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 22

Final Remarks

List scheduling has an approximation ratio of 2.
Graham 1966

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Can we find a FPTAS (for polynomially bounded processing times)?

No!
Because for sufficiently small approximation ratio

1 + ε, the computed solution has to be optimal, and
Parallel Machine Scheduling is strongly NP-hard.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 22

Final Remarks

List scheduling has an approximation ratio of 2.
Graham 1966

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Can we find a FPTAS (for polynomially bounded processing times)?
No!

Because for sufficiently small approximation ratio
1 + ε, the computed solution has to be optimal, and

Parallel Machine Scheduling is strongly NP-hard.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 22

Final Remarks

List scheduling has an approximation ratio of 2.
Graham 1966

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Can we find a FPTAS (for polynomially bounded processing times)?
No!

Because for sufficiently small approximation ratio
1 + ε, the computed solution has to be optimal, and

Parallel Machine Scheduling is strongly NP-hard.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 22

VI. Approximation Algorithms: Travelling
Salesman Problem
Thomas Sauerwald

Easter 2018

Outline

Introduction

General TSP

Metric TSP

VI. Travelling Salesman Problem Introduction 2

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 92 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

VI. Travelling Salesman Problem Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 92 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

VI. Travelling Salesman Problem Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 92 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

VI. Travelling Salesman Problem Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 92 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

VI. Travelling Salesman Problem Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 92 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

VI. Travelling Salesman Problem Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 9

2 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

VI. Travelling Salesman Problem Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 9

2 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

VI. Travelling Salesman Problem Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 9

2 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

VI. Travelling Salesman Problem Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 9

2 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

VI. Travelling Salesman Problem Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 9

2 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances

Even this version is
NP hard (Ex. 35.2-2)

VI. Travelling Salesman Problem Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 9

2 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances

Even this version is
NP hard (Ex. 35.2-2)

VI. Travelling Salesman Problem Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 9

2 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances

Even this version is
NP hard (Ex. 35.2-2)

VI. Travelling Salesman Problem Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 9

2 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

VI. Travelling Salesman Problem Introduction 3

History of the TSP problem (1954)

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html

VI. Travelling Salesman Problem Introduction 4

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)

2. Solve the linear program. If the solution is integral and forms a tour, stop.
Otherwise find a new constraint to add (cutting plane)

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

max 1
3 x + y

4x1 + 9x2 ≤ 36

2x1 − 9x2 ≤ −27

x1

x2

x2 ≤ 3

Additional constraint to cut
the solution space of the LP

(3.3, 1.5)
(2.25, 3)

(2, 3)

More cuts are needed to find integral solution

VI. Travelling Salesman Problem Introduction 5

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.

Otherwise find a new constraint to add (cutting plane)

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

max 1
3 x + y

4x1 + 9x2 ≤ 36

2x1 − 9x2 ≤ −27

x1

x2

x2 ≤ 3

Additional constraint to cut
the solution space of the LP

(3.3, 1.5)
(2.25, 3)

(2, 3)

More cuts are needed to find integral solution

VI. Travelling Salesman Problem Introduction 5

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.

Otherwise find a new constraint to add (cutting plane)

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

max 1
3 x + y

4x1 + 9x2 ≤ 36

2x1 − 9x2 ≤ −27

x1

x2

x2 ≤ 3

Additional constraint to cut
the solution space of the LP

(3.3, 1.5)
(2.25, 3)

(2, 3)

More cuts are needed to find integral solution

VI. Travelling Salesman Problem Introduction 5

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.

Otherwise find a new constraint to add (cutting plane)

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

max 1
3 x + y

4x1 + 9x2 ≤ 36

2x1 − 9x2 ≤ −27

x1

x2

x2 ≤ 3

Additional constraint to cut
the solution space of the LP

(3.3, 1.5)
(2.25, 3)

(2, 3)

More cuts are needed to find integral solution

VI. Travelling Salesman Problem Introduction 5

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.

Otherwise find a new constraint to add (cutting plane)

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

max 1
3 x + y

4x1 + 9x2 ≤ 36

2x1 − 9x2 ≤ −27

x1

x2

x2 ≤ 3

Additional constraint to cut
the solution space of the LP

(3.3, 1.5)

(2.25, 3)

(2, 3)

More cuts are needed to find integral solution

VI. Travelling Salesman Problem Introduction 5

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.

Otherwise find a new constraint to add (cutting plane)

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

max 1
3 x + y

4x1 + 9x2 ≤ 36

2x1 − 9x2 ≤ −27

x1

x2

x2 ≤ 3

Additional constraint to cut
the solution space of the LP

(3.3, 1.5)

(2.25, 3)

(2, 3)

More cuts are needed to find integral solution

VI. Travelling Salesman Problem Introduction 5

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.

Otherwise find a new constraint to add (cutting plane)

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

max 1
3 x + y

4x1 + 9x2 ≤ 36

2x1 − 9x2 ≤ −27

x1

x2

x2 ≤ 3

Additional constraint to cut
the solution space of the LP

(3.3, 1.5)

(2.25, 3)

(2, 3)

More cuts are needed to find integral solution

VI. Travelling Salesman Problem Introduction 5

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.

Otherwise find a new constraint to add (cutting plane)

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

max 1
3 x + y

4x1 + 9x2 ≤ 36

2x1 − 9x2 ≤ −27

x1

x2

x2 ≤ 3

Additional constraint to cut
the solution space of the LP

(3.3, 1.5)

(2.25, 3)

(2, 3)

More cuts are needed to find integral solution

VI. Travelling Salesman Problem Introduction 5

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.

Otherwise find a new constraint to add (cutting plane)

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

max 1
3 x + y

4x1 + 9x2 ≤ 36

2x1 − 9x2 ≤ −27

x1

x2

x2 ≤ 3

Additional constraint to cut
the solution space of the LP

(3.3, 1.5)

(2.25, 3)

(2, 3)

More cuts are needed to find integral solution

VI. Travelling Salesman Problem Introduction 5

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.

Otherwise find a new constraint to add (cutting plane)

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

max 1
3 x + y

4x1 + 9x2 ≤ 36

2x1 − 9x2 ≤ −27

x1

x2

x2 ≤ 3

Additional constraint to cut
the solution space of the LP

(3.3, 1.5)
(2.25, 3)

(2, 3)

More cuts are needed to find integral solution

VI. Travelling Salesman Problem Introduction 5

Outline

Introduction

General TSP

Metric TSP

VI. Travelling Salesman Problem General TSP 6

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem

Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem

Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |

If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |

If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |

If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |

If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1

�1

ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1

ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1

ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1

ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1

ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1)

= (ρ+ 1)|V |.
Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1

ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1) = (ρ+ 1)|V |.

Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1

ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1) = (ρ+ 1)|V |.
Gap of ρ+ 1 between tours which are using only edges in G and those which don’t

ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1

ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1) = (ρ+ 1)|V |.
Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1

ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Hardness of Approximation

If P 6= NP, then for any constant ρ ≥ 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3

Proof:
Idea: Reduction from the hamiltonian-cycle problem.

Let G = (V ,E) be an instance of the hamiltonian-cycle problem
Let G′ = (V ,E ′) be a complete graph with costs for each (u, v) ∈ E ′:

c(u, v) =

{
1 if (u, v) ∈ E ,
ρ|V |+ 1 otherwise.

If G has a hamiltonian cycle H, then (G′, c) contains a tour of cost |V |
If G does not have a hamiltonian cycle, then any tour T must use some edge 6∈ E ,

⇒ c(T) ≥ (ρ|V |+ 1) + (|V | − 1) = (ρ+ 1)|V |.
Gap of ρ+ 1 between tours which are using only edges in G and those which don’t
ρ-Approximation of TSP in G′ computes hamiltonian cycle in G (if one exists)

Large weight will render
this edge useless!

Can create representations of G′ and
c in time polynomial in |V | and |E |!

G = (V ,E)

Reduction

G′ = (V ,E ′)

1

1

1

1
ρ · 4 + 1

1�1

ρ · 4 + 1

VI. Travelling Salesman Problem General TSP 7

Proof of Theorem 35.3 from a higher perspective

x

y

f (x)

f (y)

f

f

instances of Hamilton instances of TSP

All instances with a
hamiltonian cycle

All instances
with cost ≤ k

All instances
with cost > ρ · k

General Method to prove inapproximability results!

VI. Travelling Salesman Problem General TSP 8

Proof of Theorem 35.3 from a higher perspective

x

y

f (x)

f (y)

f

f

instances of Hamilton instances of TSP

All instances with a
hamiltonian cycle

All instances
with cost ≤ k

All instances
with cost > ρ · k

General Method to prove inapproximability results!

VI. Travelling Salesman Problem General TSP 8

Proof of Theorem 35.3 from a higher perspective

x

y

f (x)

f (y)

f

f

instances of Hamilton instances of TSP

All instances with a
hamiltonian cycle

All instances
with cost ≤ k

All instances
with cost > ρ · k

General Method to prove inapproximability results!

VI. Travelling Salesman Problem General TSP 8

Proof of Theorem 35.3 from a higher perspective

x

y

f (x)

f (y)

f

f

instances of Hamilton instances of TSP

All instances with a
hamiltonian cycle

All instances
with cost ≤ k

All instances
with cost > ρ · k

General Method to prove inapproximability results!

VI. Travelling Salesman Problem General TSP 8

Proof of Theorem 35.3 from a higher perspective

x

y

f (x)

f (y)

f

f

instances of Hamilton instances of TSP

All instances with a
hamiltonian cycle

All instances
with cost ≤ k

All instances
with cost > ρ · k

General Method to prove inapproximability results!

VI. Travelling Salesman Problem General TSP 8

Proof of Theorem 35.3 from a higher perspective

x

y

f (x)

f (y)

f

f

instances of Hamilton instances of TSP

All instances with a
hamiltonian cycle

All instances
with cost ≤ k

All instances
with cost > ρ · k

General Method to prove inapproximability results!

VI. Travelling Salesman Problem General TSP 8

Proof of Theorem 35.3 from a higher perspective

x

y

f (x)

f (y)

f

f

instances of Hamilton instances of TSP

All instances with a
hamiltonian cycle

All instances
with cost ≤ k

All instances
with cost > ρ · k

General Method to prove inapproximability results!

VI. Travelling Salesman Problem General TSP 8

Outline

Introduction

General TSP

Metric TSP

VI. Travelling Salesman Problem Metric TSP 9

Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

APPROX-TSP-TOUR(G, c)
1: select a vertex r ∈ G.V to be a “root” vertex
2: compute a minimum spanning tree Tmin for G from root r
3: using MST-PRIM(G, c, r)
4: let H be a list of vertices, ordered according to when they are first visited
5: in a preorder walk of Tmin

6: return the hamiltonian cycle H

Runtime is dominated by MST-PRIM, which is Θ(V 2).

Remember: In the Metric-TSP problem, G is a complete graph.

VI. Travelling Salesman Problem Metric TSP 10

Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

APPROX-TSP-TOUR(G, c)
1: select a vertex r ∈ G.V to be a “root” vertex
2: compute a minimum spanning tree Tmin for G from root r
3: using MST-PRIM(G, c, r)
4: let H be a list of vertices, ordered according to when they are first visited
5: in a preorder walk of Tmin

6: return the hamiltonian cycle H

Runtime is dominated by MST-PRIM, which is Θ(V 2).

Remember: In the Metric-TSP problem, G is a complete graph.

VI. Travelling Salesman Problem Metric TSP 10

Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

APPROX-TSP-TOUR(G, c)
1: select a vertex r ∈ G.V to be a “root” vertex
2: compute a minimum spanning tree Tmin for G from root r
3: using MST-PRIM(G, c, r)
4: let H be a list of vertices, ordered according to when they are first visited
5: in a preorder walk of Tmin

6: return the hamiltonian cycle H

Runtime is dominated by MST-PRIM, which is Θ(V 2).

Remember: In the Metric-TSP problem, G is a complete graph.

VI. Travelling Salesman Problem Metric TSP 10

Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

APPROX-TSP-TOUR(G, c)
1: select a vertex r ∈ G.V to be a “root” vertex
2: compute a minimum spanning tree Tmin for G from root r
3: using MST-PRIM(G, c, r)
4: let H be a list of vertices, ordered according to when they are first visited
5: in a preorder walk of Tmin

6: return the hamiltonian cycle H

Runtime is dominated by MST-PRIM, which is Θ(V 2).

Remember: In the Metric-TSP problem, G is a complete graph.

VI. Travelling Salesman Problem Metric TSP 10

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin

X

2. Perform preorder walk on MST Tmin

X

3. Return list of vertices according to the preorder tree walk

X

VI. Travelling Salesman Problem Metric TSP 11

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin

X
2. Perform preorder walk on MST Tmin

X

3. Return list of vertices according to the preorder tree walk

X

VI. Travelling Salesman Problem Metric TSP 11

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin

X
2. Perform preorder walk on MST Tmin

X

3. Return list of vertices according to the preorder tree walk

X

VI. Travelling Salesman Problem Metric TSP 11

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin X

2. Perform preorder walk on MST Tmin

X

3. Return list of vertices according to the preorder tree walk

X

VI. Travelling Salesman Problem Metric TSP 11

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin X
2. Perform preorder walk on MST Tmin

X
3. Return list of vertices according to the preorder tree walk

X

VI. Travelling Salesman Problem Metric TSP 11

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin X
2. Perform preorder walk on MST Tmin X

3. Return list of vertices according to the preorder tree walk

X

VI. Travelling Salesman Problem Metric TSP 11

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin X
2. Perform preorder walk on MST Tmin X
3. Return list of vertices according to the preorder tree walk

X

VI. Travelling Salesman Problem Metric TSP 11

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin X
2. Perform preorder walk on MST Tmin X
3. Return list of vertices according to the preorder tree walk

X

VI. Travelling Salesman Problem Metric TSP 11

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin X
2. Perform preorder walk on MST Tmin X
3. Return list of vertices according to the preorder tree walk

X

VI. Travelling Salesman Problem Metric TSP 11

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin X
2. Perform preorder walk on MST Tmin X
3. Return list of vertices according to the preorder tree walk

X

VI. Travelling Salesman Problem Metric TSP 11

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin X
2. Perform preorder walk on MST Tmin X
3. Return list of vertices according to the preorder tree walk

X

VI. Travelling Salesman Problem Metric TSP 11

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin X
2. Perform preorder walk on MST Tmin X
3. Return list of vertices according to the preorder tree walk

X

VI. Travelling Salesman Problem Metric TSP 11

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin X
2. Perform preorder walk on MST Tmin X
3. Return list of vertices according to the preorder tree walk

X

VI. Travelling Salesman Problem Metric TSP 11

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin X
2. Perform preorder walk on MST Tmin X
3. Return list of vertices according to the preorder tree walk

X

VI. Travelling Salesman Problem Metric TSP 11

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin X
2. Perform preorder walk on MST Tmin X
3. Return list of vertices according to the preorder tree walk X

VI. Travelling Salesman Problem Metric TSP 11

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!

Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin X
2. Perform preorder walk on MST Tmin X
3. Return list of vertices according to the preorder tree walk X

VI. Travelling Salesman Problem Metric TSP 11

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin X
2. Perform preorder walk on MST Tmin X
3. Return list of vertices according to the preorder tree walk X

VI. Travelling Salesman Problem Metric TSP 11

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!

Better solution, yet still not optimal!

This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin X
2. Perform preorder walk on MST Tmin X
3. Return list of vertices according to the preorder tree walk X

VI. Travelling Salesman Problem Metric TSP 11

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin X
2. Perform preorder walk on MST Tmin X
3. Return list of vertices according to the preorder tree walk X

VI. Travelling Salesman Problem Metric TSP 11

Run of APPROX-TSP-TOUR

a d

b f

e

g

c

h

Solution has cost ≈ 19.704 - not optimal!Better solution, yet still not optimal!

This is the optimal solution (cost ≈ 14.715).

1. Compute MST Tmin X
2. Perform preorder walk on MST Tmin X
3. Return list of vertices according to the preorder tree walk X

VI. Travelling Salesman Problem Metric TSP 11

Approximate Solution: Objective 921

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1
1

1

1

1

11

1

1

1

1

11
1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

VI. Travelling Salesman Problem Metric TSP 12

Optimal Solution: Objective 699

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1 1

1

1

1 1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

VI. Travelling Salesman Problem Metric TSP 13

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:

Consider the optimal tour H∗ and remove an arbitrary edge
⇒ yields a spanning tree T and

Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)
⇒ Full walk traverses every edge exactly twice, so

c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSPminimum spanning tree TminWalk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:

Consider the optimal tour H∗ and remove an arbitrary edge
⇒ yields a spanning tree T and

Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)
⇒ Full walk traverses every edge exactly twice, so

c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSPminimum spanning tree TminWalk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:

Consider the optimal tour H∗ and remove an arbitrary edge
⇒ yields a spanning tree T and

Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)
⇒ Full walk traverses every edge exactly twice, so

c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSP

minimum spanning tree TminWalk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:

Consider the optimal tour H∗ and remove an arbitrary edge
⇒ yields a spanning tree T and

Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)
⇒ Full walk traverses every edge exactly twice, so

c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSP

minimum spanning tree TminWalk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and
Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)

⇒ Full walk traverses every edge exactly twice, so

c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSP

minimum spanning tree TminWalk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and
Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)

⇒ Full walk traverses every edge exactly twice, so

c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSP

minimum spanning tree TminWalk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and

Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)
⇒ Full walk traverses every edge exactly twice, so

c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSP

minimum spanning tree TminWalk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and c(T) ≤ c(H∗)

Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)
⇒ Full walk traverses every edge exactly twice, so

c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSP

minimum spanning tree TminWalk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and c(T) ≤ c(H∗)

Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)
⇒ Full walk traverses every edge exactly twice, so

c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSP

minimum spanning tree TminWalk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and c(T) ≤ c(H∗)
Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)

⇒ Full walk traverses every edge exactly twice, so

c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSP

minimum spanning tree TminWalk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and c(T) ≤ c(H∗)
Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)

⇒ Full walk traverses every edge exactly twice, so

c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSP

minimum spanning tree Tmin

Walk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and c(T) ≤ c(H∗)
Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)

⇒ Full walk traverses every edge exactly twice, so

c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSPminimum spanning tree Tmin

Walk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)

Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and c(T) ≤ c(H∗)
Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)

⇒ Full walk traverses every edge exactly twice, so

c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSPminimum spanning tree Tmin

Walk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)

Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and c(T) ≤ c(H∗)
Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)

⇒ Full walk traverses every edge exactly twice, so
c(W) = 2c(Tmin)

≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSPminimum spanning tree Tmin

Walk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)

Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and c(T) ≤ c(H∗)
Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)

⇒ Full walk traverses every edge exactly twice, so
c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSPminimum spanning tree Tmin

Walk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)

Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and c(T) ≤ c(H∗)
Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)

⇒ Full walk traverses every edge exactly twice, so
c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSPminimum spanning tree Tmin

Walk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)

Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and c(T) ≤ c(H∗)
Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)

⇒ Full walk traverses every edge exactly twice, so
c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSPminimum spanning tree Tmin

Walk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)

Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and c(T) ≤ c(H∗)
Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)

⇒ Full walk traverses every edge exactly twice, so
c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSPminimum spanning tree TminWalk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)

Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)

Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and c(T) ≤ c(H∗)
Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)

⇒ Full walk traverses every edge exactly twice, so
c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSPminimum spanning tree TminWalk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)

Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and c(T) ≤ c(H∗)
Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)

⇒ Full walk traverses every edge exactly twice, so
c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H with smaller cost:

c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSPminimum spanning tree TminWalk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)

Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and c(T) ≤ c(H∗)
Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)

⇒ Full walk traverses every edge exactly twice, so
c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H with smaller cost:
c(H) ≤ c(W)

≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSPminimum spanning tree TminWalk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)

Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and c(T) ≤ c(H∗)
Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)

⇒ Full walk traverses every edge exactly twice, so
c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H with smaller cost:
c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSPminimum spanning tree TminWalk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)

Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and c(T) ≤ c(H∗)
Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)

⇒ Full walk traverses every edge exactly twice, so
c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H with smaller cost:
c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSPminimum spanning tree TminWalk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)

Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Proof of the Approximation Ratio

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Proof:
Consider the optimal tour H∗ and remove an arbitrary edge

⇒ yields a spanning tree T and c(T) ≤ c(H∗)
Let W be the full walk of the minimum spanning tree Tmin (including repeated visits)

⇒ Full walk traverses every edge exactly twice, so
c(W) = 2c(Tmin) ≤ 2c(T) ≤ 2c(H∗)

Deleting duplicate vertices from W yields a tour H with smaller cost:
c(H) ≤ c(W) ≤ 2c(H∗)

exploiting that all edge
costs are non-negative!

exploiting triangle inequality!

a d

b f

e

g

c

h

solution H of APPROX-TSPminimum spanning tree TminWalk W = (a, b, c, b, h, b, a, d, e, f , e, g, e, d, a)Walk W = (a, b, c,�b, h,�b, �a, d, e, f ,�e, g,�e,�d, a)

Tour H = (a, b, c, h, d, e, f , g, a)

a d

b f

e

g

c

h

optimal solution H∗

spanning tree T as a subset of H∗

VI. Travelling Salesman Problem Metric TSP 14

Christofides Algorithm

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Can we get a better approximation ratio?

CHRISTOFIDES(G, c)
1: select a vertex r ∈ G.V to be a “root” vertex
2: compute a minimum spanning tree Tmin for G from root r
3: using MST-PRIM(G, c, r)
4: compute a perfect matching Mmin with minimum weight in the complete graph
5: over the odd-degree vertices in Tmin
6: let H be a list of vertices, ordered according to when they are first visited
7: in a Eulearian circuit of Tmin ∪Mmin
8: return the hamiltonian cycle H

There is a polynomial-time 3
2 -approximation algorithm for the travelling salesman

problem with the triangle inequality.

Theorem (Christofides’76)

VI. Travelling Salesman Problem Metric TSP 15

Christofides Algorithm

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Can we get a better approximation ratio?

CHRISTOFIDES(G, c)
1: select a vertex r ∈ G.V to be a “root” vertex
2: compute a minimum spanning tree Tmin for G from root r
3: using MST-PRIM(G, c, r)
4: compute a perfect matching Mmin with minimum weight in the complete graph
5: over the odd-degree vertices in Tmin
6: let H be a list of vertices, ordered according to when they are first visited
7: in a Eulearian circuit of Tmin ∪Mmin
8: return the hamiltonian cycle H

There is a polynomial-time 3
2 -approximation algorithm for the travelling salesman

problem with the triangle inequality.

Theorem (Christofides’76)

VI. Travelling Salesman Problem Metric TSP 15

Christofides Algorithm

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Can we get a better approximation ratio?

CHRISTOFIDES(G, c)
1: select a vertex r ∈ G.V to be a “root” vertex
2: compute a minimum spanning tree Tmin for G from root r
3: using MST-PRIM(G, c, r)
4: compute a perfect matching Mmin with minimum weight in the complete graph
5: over the odd-degree vertices in Tmin
6: let H be a list of vertices, ordered according to when they are first visited
7: in a Eulearian circuit of Tmin ∪Mmin
8: return the hamiltonian cycle H

There is a polynomial-time 3
2 -approximation algorithm for the travelling salesman

problem with the triangle inequality.

Theorem (Christofides’76)

VI. Travelling Salesman Problem Metric TSP 15

Christofides Algorithm

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Theorem 35.2

Can we get a better approximation ratio?

CHRISTOFIDES(G, c)
1: select a vertex r ∈ G.V to be a “root” vertex
2: compute a minimum spanning tree Tmin for G from root r
3: using MST-PRIM(G, c, r)
4: compute a perfect matching Mmin with minimum weight in the complete graph
5: over the odd-degree vertices in Tmin
6: let H be a list of vertices, ordered according to when they are first visited
7: in a Eulearian circuit of Tmin ∪Mmin
8: return the hamiltonian cycle H

There is a polynomial-time 3
2 -approximation algorithm for the travelling salesman

problem with the triangle inequality.

Theorem (Christofides’76)

VI. Travelling Salesman Problem Metric TSP 15

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin

X

2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin

X

3. Find an Eulerian Circuit in Tmin ∪Mmin

X

4. Transform the Circuit into a Hamiltonian Cycle

X

All vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin

X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin

X

3. Find an Eulerian Circuit in Tmin ∪Mmin

X

4. Transform the Circuit into a Hamiltonian Cycle

X

All vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin

X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin

X

3. Find an Eulerian Circuit in Tmin ∪Mmin

X

4. Transform the Circuit into a Hamiltonian Cycle

X

All vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X

2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin

X

3. Find an Eulerian Circuit in Tmin ∪Mmin

X

4. Transform the Circuit into a Hamiltonian Cycle

X

All vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin

X
3. Find an Eulerian Circuit in Tmin ∪Mmin

X

4. Transform the Circuit into a Hamiltonian Cycle

X

All vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin

X
3. Find an Eulerian Circuit in Tmin ∪Mmin

X

4. Transform the Circuit into a Hamiltonian Cycle

X

All vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin

X
3. Find an Eulerian Circuit in Tmin ∪Mmin

X

4. Transform the Circuit into a Hamiltonian Cycle

X

All vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin

X
3. Find an Eulerian Circuit in Tmin ∪Mmin

X

4. Transform the Circuit into a Hamiltonian Cycle

X

All vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin X

3. Find an Eulerian Circuit in Tmin ∪Mmin

X

4. Transform the Circuit into a Hamiltonian Cycle

X

All vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin X
3. Find an Eulerian Circuit in Tmin ∪Mmin

X
4. Transform the Circuit into a Hamiltonian Cycle

X

All vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin X
3. Find an Eulerian Circuit in Tmin ∪Mmin X

4. Transform the Circuit into a Hamiltonian Cycle

X

All vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin X
3. Find an Eulerian Circuit in Tmin ∪Mmin X
4. Transform the Circuit into a Hamiltonian Cycle

XAll vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin X
3. Find an Eulerian Circuit in Tmin ∪Mmin X
4. Transform the Circuit into a Hamiltonian Cycle

XAll vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin X
3. Find an Eulerian Circuit in Tmin ∪Mmin X
4. Transform the Circuit into a Hamiltonian Cycle

XAll vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin X
3. Find an Eulerian Circuit in Tmin ∪Mmin X
4. Transform the Circuit into a Hamiltonian Cycle

XAll vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin X
3. Find an Eulerian Circuit in Tmin ∪Mmin X
4. Transform the Circuit into a Hamiltonian Cycle

XAll vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin X
3. Find an Eulerian Circuit in Tmin ∪Mmin X
4. Transform the Circuit into a Hamiltonian Cycle

XAll vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin X
3. Find an Eulerian Circuit in Tmin ∪Mmin X
4. Transform the Circuit into a Hamiltonian Cycle

XAll vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin X
3. Find an Eulerian Circuit in Tmin ∪Mmin X
4. Transform the Circuit into a Hamiltonian Cycle

XAll vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin X
3. Find an Eulerian Circuit in Tmin ∪Mmin X
4. Transform the Circuit into a Hamiltonian Cycle

XAll vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin X
3. Find an Eulerian Circuit in Tmin ∪Mmin X
4. Transform the Circuit into a Hamiltonian Cycle

XAll vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin X
3. Find an Eulerian Circuit in Tmin ∪Mmin X
4. Transform the Circuit into a Hamiltonian Cycle X

All vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Run of CHRISTOFIDES

a d

b f

e

g

c

h

b f

e

g

c

h

Solution has cost ≈ 15.54 - within 10% of the optimum!

1. Compute MST Tmin X
2. Add a minimum-weight perfect matching Mmin of the odd vertices in Tmin X
3. Find an Eulerian Circuit in Tmin ∪Mmin X
4. Transform the Circuit into a Hamiltonian Cycle X

All vertices in Tmin ∪Mmin have even degree!

VI. Travelling Salesman Problem Metric TSP 16

Proof of the Approximation Ratio

There is a polynomial-time 3
2 -approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Christofides’76)

Proof is quite similar to the previous analysis
Proof (Approximation Ratio):

As before, let H∗ denote the optimal tour
The Eulerian Circuit W uses each edge of the minimum spanning tree
Tmin and the minimum-weight matching Mmin exactly once:

c(W) = c(Tmin) + c(Mmin) ≤ c(H∗) + c(Mmin)

(1)

Let H∗odd be an optimal tour on the odd-degree vertices in Tmin

Taking edges alternately, we obtain two matchings M1 and M2 such that
c(M1) + c(M2) = c(H∗odd)
By shortcutting and the triangle inequality,

c(Mmin) ≤ 1
2

c(Hodd
∗) ≤ 1

2
c(H∗).

(2)

Combining 1 with 2 yields

c(W) ≤ c(H∗) + c(Mmin) ≤ c(H∗) +
1
2

c(H∗) =
3
2

c(H∗).

VI. Travelling Salesman Problem Metric TSP 17

Proof of the Approximation Ratio

There is a polynomial-time 3
2 -approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Christofides’76)

Proof is quite similar to the previous analysis

Proof (Approximation Ratio):

As before, let H∗ denote the optimal tour
The Eulerian Circuit W uses each edge of the minimum spanning tree
Tmin and the minimum-weight matching Mmin exactly once:

c(W) = c(Tmin) + c(Mmin) ≤ c(H∗) + c(Mmin)

(1)

Let H∗odd be an optimal tour on the odd-degree vertices in Tmin

Taking edges alternately, we obtain two matchings M1 and M2 such that
c(M1) + c(M2) = c(H∗odd)
By shortcutting and the triangle inequality,

c(Mmin) ≤ 1
2

c(Hodd
∗) ≤ 1

2
c(H∗).

(2)

Combining 1 with 2 yields

c(W) ≤ c(H∗) + c(Mmin) ≤ c(H∗) +
1
2

c(H∗) =
3
2

c(H∗).

VI. Travelling Salesman Problem Metric TSP 17

Proof of the Approximation Ratio

There is a polynomial-time 3
2 -approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Christofides’76)

Proof is quite similar to the previous analysis
Proof (Approximation Ratio):

As before, let H∗ denote the optimal tour

The Eulerian Circuit W uses each edge of the minimum spanning tree
Tmin and the minimum-weight matching Mmin exactly once:

c(W) = c(Tmin) + c(Mmin) ≤ c(H∗) + c(Mmin)

(1)

Let H∗odd be an optimal tour on the odd-degree vertices in Tmin

Taking edges alternately, we obtain two matchings M1 and M2 such that
c(M1) + c(M2) = c(H∗odd)
By shortcutting and the triangle inequality,

c(Mmin) ≤ 1
2

c(Hodd
∗) ≤ 1

2
c(H∗).

(2)

Combining 1 with 2 yields

c(W) ≤ c(H∗) + c(Mmin) ≤ c(H∗) +
1
2

c(H∗) =
3
2

c(H∗).

VI. Travelling Salesman Problem Metric TSP 17

Proof of the Approximation Ratio

There is a polynomial-time 3
2 -approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Christofides’76)

Proof is quite similar to the previous analysis
Proof (Approximation Ratio):

As before, let H∗ denote the optimal tour
The Eulerian Circuit W uses each edge of the minimum spanning tree
Tmin and the minimum-weight matching Mmin exactly once:

c(W) = c(Tmin) + c(Mmin) ≤ c(H∗) + c(Mmin)

(1)

Let H∗odd be an optimal tour on the odd-degree vertices in Tmin

Taking edges alternately, we obtain two matchings M1 and M2 such that
c(M1) + c(M2) = c(H∗odd)
By shortcutting and the triangle inequality,

c(Mmin) ≤ 1
2

c(Hodd
∗) ≤ 1

2
c(H∗).

(2)

Combining 1 with 2 yields

c(W) ≤ c(H∗) + c(Mmin) ≤ c(H∗) +
1
2

c(H∗) =
3
2

c(H∗).

VI. Travelling Salesman Problem Metric TSP 17

Proof of the Approximation Ratio

There is a polynomial-time 3
2 -approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Christofides’76)

Proof is quite similar to the previous analysis
Proof (Approximation Ratio):

As before, let H∗ denote the optimal tour
The Eulerian Circuit W uses each edge of the minimum spanning tree
Tmin and the minimum-weight matching Mmin exactly once:

c(W) = c(Tmin) + c(Mmin) ≤ c(H∗) + c(Mmin) (1)

Let H∗odd be an optimal tour on the odd-degree vertices in Tmin

Taking edges alternately, we obtain two matchings M1 and M2 such that
c(M1) + c(M2) = c(H∗odd)
By shortcutting and the triangle inequality,

c(Mmin) ≤ 1
2

c(Hodd
∗) ≤ 1

2
c(H∗).

(2)

Combining 1 with 2 yields

c(W) ≤ c(H∗) + c(Mmin) ≤ c(H∗) +
1
2

c(H∗) =
3
2

c(H∗).

VI. Travelling Salesman Problem Metric TSP 17

Proof of the Approximation Ratio

There is a polynomial-time 3
2 -approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Christofides’76)

Proof is quite similar to the previous analysis
Proof (Approximation Ratio):

As before, let H∗ denote the optimal tour
The Eulerian Circuit W uses each edge of the minimum spanning tree
Tmin and the minimum-weight matching Mmin exactly once:

c(W) = c(Tmin) + c(Mmin) ≤ c(H∗) + c(Mmin) (1)

Let H∗odd be an optimal tour on the odd-degree vertices in Tmin

Taking edges alternately, we obtain two matchings M1 and M2 such that
c(M1) + c(M2) = c(H∗odd)
By shortcutting and the triangle inequality,

c(Mmin) ≤ 1
2

c(Hodd
∗) ≤ 1

2
c(H∗).

(2)

Combining 1 with 2 yields

c(W) ≤ c(H∗) + c(Mmin) ≤ c(H∗) +
1
2

c(H∗) =
3
2

c(H∗).

VI. Travelling Salesman Problem Metric TSP 17

Proof of the Approximation Ratio

There is a polynomial-time 3
2 -approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Christofides’76)

Proof is quite similar to the previous analysis
Proof (Approximation Ratio):

As before, let H∗ denote the optimal tour
The Eulerian Circuit W uses each edge of the minimum spanning tree
Tmin and the minimum-weight matching Mmin exactly once:

c(W) = c(Tmin) + c(Mmin) ≤ c(H∗) + c(Mmin) (1)

Let H∗odd be an optimal tour on the odd-degree vertices in Tmin

Taking edges alternately, we obtain two matchings M1 and M2 such that
c(M1) + c(M2) = c(H∗odd)

By shortcutting and the triangle inequality,

c(Mmin) ≤ 1
2

c(Hodd
∗) ≤ 1

2
c(H∗).

(2)

Combining 1 with 2 yields

c(W) ≤ c(H∗) + c(Mmin) ≤ c(H∗) +
1
2

c(H∗) =
3
2

c(H∗).

VI. Travelling Salesman Problem Metric TSP 17

Proof of the Approximation Ratio

There is a polynomial-time 3
2 -approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Christofides’76)

Proof is quite similar to the previous analysis
Proof (Approximation Ratio):

As before, let H∗ denote the optimal tour
The Eulerian Circuit W uses each edge of the minimum spanning tree
Tmin and the minimum-weight matching Mmin exactly once:

c(W) = c(Tmin) + c(Mmin) ≤ c(H∗) + c(Mmin) (1)

Let H∗odd be an optimal tour on the odd-degree vertices in Tmin

Taking edges alternately, we obtain two matchings M1 and M2 such that
c(M1) + c(M2) = c(H∗odd)
By shortcutting and the triangle inequality,

c(Mmin) ≤ 1
2

c(Hodd
∗) ≤ 1

2
c(H∗).

(2)

Combining 1 with 2 yields

c(W) ≤ c(H∗) + c(Mmin) ≤ c(H∗) +
1
2

c(H∗) =
3
2

c(H∗).

VI. Travelling Salesman Problem Metric TSP 17

Proof of the Approximation Ratio

There is a polynomial-time 3
2 -approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Christofides’76)

Proof is quite similar to the previous analysis
Proof (Approximation Ratio):

As before, let H∗ denote the optimal tour
The Eulerian Circuit W uses each edge of the minimum spanning tree
Tmin and the minimum-weight matching Mmin exactly once:

c(W) = c(Tmin) + c(Mmin) ≤ c(H∗) + c(Mmin) (1)

Let H∗odd be an optimal tour on the odd-degree vertices in Tmin

Taking edges alternately, we obtain two matchings M1 and M2 such that
c(M1) + c(M2) = c(H∗odd)
By shortcutting and the triangle inequality,

c(Mmin) ≤ 1
2

c(Hodd
∗) ≤ 1

2
c(H∗). (2)

Combining 1 with 2 yields

c(W) ≤ c(H∗) + c(Mmin) ≤ c(H∗) +
1
2

c(H∗) =
3
2

c(H∗).

VI. Travelling Salesman Problem Metric TSP 17

Proof of the Approximation Ratio

There is a polynomial-time 3
2 -approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Christofides’76)

Proof is quite similar to the previous analysis
Proof (Approximation Ratio):

As before, let H∗ denote the optimal tour
The Eulerian Circuit W uses each edge of the minimum spanning tree
Tmin and the minimum-weight matching Mmin exactly once:

c(W) = c(Tmin) + c(Mmin) ≤ c(H∗) + c(Mmin) (1)

Let H∗odd be an optimal tour on the odd-degree vertices in Tmin

Taking edges alternately, we obtain two matchings M1 and M2 such that
c(M1) + c(M2) = c(H∗odd)
By shortcutting and the triangle inequality,

c(Mmin) ≤ 1
2

c(Hodd
∗) ≤ 1

2
c(H∗). (2)

Combining 1 with 2 yields

c(W) ≤ c(H∗) + c(Mmin) ≤ c(H∗) +
1
2

c(H∗) =
3
2

c(H∗).

VI. Travelling Salesman Problem Metric TSP 17

Proof of the Approximation Ratio

There is a polynomial-time 3
2 -approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Christofides’76)

Proof is quite similar to the previous analysis
Proof (Approximation Ratio):

As before, let H∗ denote the optimal tour
The Eulerian Circuit W uses each edge of the minimum spanning tree
Tmin and the minimum-weight matching Mmin exactly once:

c(W) = c(Tmin) + c(Mmin) ≤ c(H∗) + c(Mmin) (1)

Let H∗odd be an optimal tour on the odd-degree vertices in Tmin

Taking edges alternately, we obtain two matchings M1 and M2 such that
c(M1) + c(M2) = c(H∗odd)
By shortcutting and the triangle inequality,

c(Mmin) ≤ 1
2

c(Hodd
∗) ≤ 1

2
c(H∗). (2)

Combining 1 with 2 yields

c(W) ≤ c(H∗) + c(Mmin) ≤ c(H∗) +
1
2

c(H∗) =
3
2

c(H∗).

VI. Travelling Salesman Problem Metric TSP 17

Concluding Remarks

There is a polynomial-time 3
2 -approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Christofides’76)

There is a PTAS for the Euclidean TSP Problem.
Theorem (Arora’96, Mitchell’96)

Both received the Gödel Award 2010

“Christos Papadimitriou told me that the traveling
salesman problem is not a problem. It’s an addiction.”

Jon Bentley 1991

VI. Travelling Salesman Problem Metric TSP 18

Concluding Remarks

There is a polynomial-time 3
2 -approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Christofides’76)

There is a PTAS for the Euclidean TSP Problem.
Theorem (Arora’96, Mitchell’96)

Both received the Gödel Award 2010

“Christos Papadimitriou told me that the traveling
salesman problem is not a problem. It’s an addiction.”

Jon Bentley 1991

VI. Travelling Salesman Problem Metric TSP 18

Concluding Remarks

There is a polynomial-time 3
2 -approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Christofides’76)

There is a PTAS for the Euclidean TSP Problem.
Theorem (Arora’96, Mitchell’96)

Both received the Gödel Award 2010

“Christos Papadimitriou told me that the traveling
salesman problem is not a problem. It’s an addiction.”

Jon Bentley 1991

VI. Travelling Salesman Problem Metric TSP 18

Concluding Remarks

There is a polynomial-time 3
2 -approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Christofides’76)

There is a PTAS for the Euclidean TSP Problem.
Theorem (Arora’96, Mitchell’96)

Both received the Gödel Award 2010

“Christos Papadimitriou told me that the traveling
salesman problem is not a problem. It’s an addiction.”

Jon Bentley 1991

VI. Travelling Salesman Problem Metric TSP 18

Concluding Remarks

There is a polynomial-time 3
2 -approximation algorithm for the travelling

salesman problem with the triangle inequality.

Theorem (Christofides’76)

There is a PTAS for the Euclidean TSP Problem.
Theorem (Arora’96, Mitchell’96)

Both received the Gödel Award 2010

“Christos Papadimitriou told me that the traveling
salesman problem is not a problem. It’s an addiction.”

Jon Bentley 1991

VI. Travelling Salesman Problem Metric TSP 18

VII. Approximation Algorithms:
Randomisation and Rounding
Thomas Sauerwald

Easter 2018

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

VII. Randomisation and Rounding Randomised Approximation 2

Performance Ratios for Randomised Approximation Algorithms

A randomised algorithm for a problem has approximation ratio ρ(n), if
for any input of size n, the expected cost C of the returned solution and
optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

Call such an algorithm randomised ρ(n)-approximation algorithm.

Maximization problem: C∗
C ≥ 1

Minimization problem: C
C∗ ≥ 1

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes
extends in the natural way to randomised algorithms

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

VII. Randomisation and Rounding Randomised Approximation 3

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

VII. Randomisation and Rounding MAX-3-CNF 4

MAX-3-CNF Satisfiability

Given: 3-CNF formula, e.g.: (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ · · ·
Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-3-CNF Satisfiability

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Assume that no literal (including its negation)
appears more than once in the same clause.

Example:

(x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x3)

x1 = 1, x2 = 0, x3 = 1, x4 = 0 and x5 = 1 satisfies 3 (out of 4 clauses)

Idea: What about assigning each variable independently at random?

VII. Randomisation and Rounding MAX-3-CNF 5

Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:
For every clause i = 1, 2, . . . ,m, define a random variable:

Yi = 1{clause i is satisfied}
Since each literal (including its negation) appears at most once in clause i ,

Pr [clause i is not satisfied] =
1
2
· 1

2
· 1

2
=

1
8

⇒ Pr [clause i is satisfied] = 1− 1
8

=
7
8

⇒ E [Yi] = Pr [Yi = 1] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y] = E

[m∑

i=1

Yi

]
=

m∑

i=1

E [Yi] =
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations maximum number of satisfiable clauses is m

VII. Randomisation and Rounding MAX-3-CNF 6

Interesting Implications

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least 7

8 of all clauses.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Corollary

There is ω ∈ Ω such that Y (ω) ≥ E [Y]
Probabilistic Method: powerful tool to

show existence of a non-obvious property.

Follows from the previous Corollary.

VII. Randomisation and Rounding MAX-3-CNF 7

Expected Approximation Ratio

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

One could prove that the probability to satisfy (7/8) ·m clauses is at least 1/(8m)

E [Y] =
1
2
· E [Y | x1 = 1] +

1
2
· E [Y | x1 = 0] .

Y is defined as in
the previous proof. One of the two conditional expectations is at least E [Y]!

Algorithm: Assign x1 so that the conditional
expectation is maximized and recurse.

GREEDY-3-CNF(φ, n,m)
1: for j = 1, 2, . . . , n
2: Compute E [Y | x1 = v1 . . . , xj−1 = vj−1, xj = 1]
3: Compute E [Y | x1 = v1, . . . , xj−1 = vj−1, xj = 0]
4: Let xj = vj so that the conditional expectation is maximized
5: return the assignment v1, v2, . . . , vn

VII. Randomisation and Rounding MAX-3-CNF 8

Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:
Step 1: polynomial-time algorithm

X

In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]
=

m∑

i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses

X

Due to the greedy choice in each iteration j = 1, 2, . . . , n,
E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]

≥ E
[

Y | x1 = v1, . . . , xj−2 = vj−2
]

...

≥ E [Y] =
7
8
·m.

computable in O(1)

VII. Randomisation and Rounding MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x4)∧ (x1 ∨ x2 ∨ x4)∧ (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x4)∧
(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

.1VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF(ϕ,n,m)

1∧1∧1∧ (x3 ∨ x4)∧1∧ (x2 ∨ x3)∧ (x2 ∨ x3)∧ (x2 ∨ x3)∧1∧ (x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

.2VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ (x3 ∨ x4) ∧ 1 ∧ 1 ∧ (x3) ∧ 1 ∧ 1 ∧ (x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

.3VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∧ 1 ∧ 1 ∧ 1

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

.4VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∧ 1 ∧ 1 ∧ 1

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

.5VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF(ϕ,n,m)

(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x4)∧ (x1 ∨ x2 ∨ x4)∧ (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x4)∧
(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

.6VII. Randomisation and Rounding MAX-3-CNF 10

MAX-3-CNF: Concluding Remarks

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.

Theorem

For any ε > 0, there is no polynomial time 8/7 − ε approximation algo-
rithm of MAX3-SAT unless P=NP.

Theorem (Hastad’97)

Essentially there is nothing smarter than just guessing!

VII. Randomisation and Rounding MAX-3-CNF 11

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

VII. Randomisation and Rounding Weighted Vertex Cover 12

The Weighted Vertex-Cover Problem

Given: Undirected, vertex-weighted graph G = (V ,E)

Goal: Find a minimum-weight subset V ′ ⊆ V such that
if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

This is (still) an NP-hard problem.

a

4
b

3

c

3

d

1

e

2

c

e

b

a

d

e

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Weight of a vertex could be salary of a person

Perform all tasks with the minimal amount of resources

VII. Randomisation and Rounding Weighted Vertex Cover 13

The Greedy Approach from (Unweighted) Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

100

b

1

c

1

d

1

e

1

a

b

b c d e

Computed solution has weight 101

Optimal solution has weight 4

.1VII. Randomisation and Rounding Weighted Vertex Cover 14

The Greedy Approach from (Unweighted) Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

100

b

1

c

1

d

1

e

1

a

b

b c d e

Computed solution has weight 101

Optimal solution has weight 4

.2VII. Randomisation and Rounding Weighted Vertex Cover 14

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

minimize
∑

v∈V

w(v)x(v)

subject to x(u) + x(v) ≥ 1 for each (u, v) ∈ E

x(v) ∈ {0, 1} for each v ∈ V

0-1 Integer Program

minimize
∑

v∈V

w(v)x(v)

subject to x(u) + x(v) ≥ 1 for each (u, v) ∈ E

x(v) ∈ [0, 1] for each v ∈ V

Linear Program

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Rounding Rule: if x(v) ≥ 1/2 then round up, otherwise round down.

VII. Randomisation and Rounding Weighted Vertex Cover 15

The Algorithm

1126 Chapter 35 Approximation Algorithms

APPROX-MIN-WEIGHT-VC.G; w/

1 C D ;
2 compute Nx, an optimal solution to the linear program in lines (35.17)–(35.20)
3 for each ! 2 V
4 if Nx.!/ ! 1=2
5 C D C [f!g
6 return C

The APPROX-MIN-WEIGHT-VC procedure works as follows. Line 1 initial-
izes the vertex cover to be empty. Line 2 formulates the linear program in
lines (35.17)–(35.20) and then solves this linear program. An optimal solution
gives each vertex ! an associated value Nx.!/, where 0 " Nx.!/ " 1. We use this
value to guide the choice of which vertices to add to the vertex cover C in lines 3–5.
If Nx.!/ ! 1=2, we add ! to C ; otherwise we do not. In effect, we are “rounding”
each fractional variable in the solution to the linear program to 0 or 1 in order to
obtain a solution to the 0-1 integer program in lines (35.14)–(35.16). Finally, line 6
returns the vertex cover C .

Theorem 35.7
Algorithm APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

Proof Because there is a polynomial-time algorithm to solve the linear program
in line 2, and because the for loop of lines 3–5 runs in polynomial time, APPROX-
MIN-WEIGHT-VC is a polynomial-time algorithm.

Now we show that APPROX-MIN-WEIGHT-VC is a 2-approximation algo-
rithm. Let C ! be an optimal solution to the minimum-weight vertex-cover prob-
lem, and let ´! be the value of an optimal solution to the linear program in
lines (35.17)–(35.20). Since an optimal vertex cover is a feasible solution to the
linear program, ´! must be a lower bound on w.C !/, that is,
´! " w.C !/ : (35.21)
Next, we claim that by rounding the fractional values of the variables Nx.!/, we
produce a set C that is a vertex cover and satisfies w.C / " 2´!. To see that C is
a vertex cover, consider any edge .u; !/ 2 E. By constraint (35.18), we know that
x.u/C x.!/ ! 1, which implies that at least one of Nx.u/ and Nx.!/ is at least 1=2.
Therefore, at least one of u and ! is included in the vertex cover, and so every edge
is covered.

Now, we consider the weight of the cover. We have

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algo-
rithm for the minimum-weight vertex-cover problem.

Theorem 35.7

is polynomial-time because we can solve the linear program in polynomial time

VII. Randomisation and Rounding Weighted Vertex Cover 16

Example of APPROX-MIN-WEIGHT-VC

x(a) = x(b) = x(e) = 1
2 , x(d) = 1, x(c) = 0

4

3

c

3

d

2

a

b

e

d

1

fractional solution of LP
with weight = 5.5

x(a) = x(b) = x(e) = 1, x(d) = 1, x(c) = 0

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

rounded solution of LP
with weight = 10

a

4
b

3

c

3

d

1

e

2

b

d

e

optimal solution
with weight = 6

VII. Randomisation and Rounding Weighted Vertex Cover 17

Approximation Ratio

Proof (Approximation Ratio is 2):
Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:
Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1

⇒ at least one of x(u) and x(v) is at least 1/2⇒ C covers edge (u, v)
Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥ z∗ =
∑

v∈V

w(v)x(v) ≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).

4

3

c

3

d

2

a

b

e

d

1

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

a

4
b

3

c

3

d

1

e

2

b

d

e

VII. Randomisation and Rounding Weighted Vertex Cover 18

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

VII. Randomisation and Rounding Weighted Set Cover 19

The Weighted Set-Covering Problem

Given: set X and a family of subsets F ,
and a cost function c : F → R+

Goal: Find a minimum-cost subset C ⊆ F

s.t. X =
⋃

S∈C
S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Sum over the costs
of all sets in C

S1

S2

S3 S4 S5

S6

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2Remarks:

generalisation of the weighted vertex-cover problem

models resource allocation problems

VII. Randomisation and Rounding Weighted Set Cover 20

Setting up an Integer Program

minimize
∑

S∈F
c(S)y(S)

subject to
∑

S∈F : x∈S

y(S) ≥ 1 for each x ∈ X

y(S) ∈ {0, 1} for each S ∈ F

0-1 Integer Program

minimize
∑

S∈F
c(S)y(S)

subject to
∑

S∈F : x∈S

y(S) ≥ 1 for each x ∈ X

y(S) ∈ [0, 1] for each S ∈ F

Linear Program

VII. Randomisation and Rounding Weighted Set Cover 21

Back to the Example

S1

S2

S3 S4 S5

S6

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2
y(.): 1/2 1/2 1/2 1/2 1 1/2 Cost equals 8.5

The strategy employed for Vertex-Cover would take all 6 sets!

Even worse: If all y ’s were below 1/2, we would not even return a valid cover!

VII. Randomisation and Rounding Weighted Set Cover 22

Randomised Rounding

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2
y(.): 1/2 1/2 1/2 1/2 1 1/2

Idea: Interpret the y -values as probabilities for picking the respective set.

Let C ⊆ F be a random set with each set S being included
independently with probability y(S).

More precisely, if y denotes the optimal solution of the LP, then we
compute an integral solution ȳ by:

ȳ(S) =

{
1 with probability y(S)

0 otherwise.
for all S ∈ F .

Therefore, E [ȳ(S)] = y(S).

Randomised Rounding

The expected cost satisfies

E [c(C)] =
∑

S∈F
c(S) · y(S)

The probability that an element x ∈ X is covered satisfies

Pr

[
x ∈

⋃

S∈C
S

]
≥ 1− 1

e
.

Lemma

.1VII. Randomisation and Rounding Weighted Set Cover 23

Randomised Rounding

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2
y(.): 1/2 1/2 1/2 1/2 1 1/2

Idea: Interpret the y -values as probabilities for picking the respective set.

The expected cost satisfies

E [c(C)] =
∑

S∈F
c(S) · y(S)

The probability that an element x ∈ X is covered satisfies

Pr

[
x ∈

⋃

S∈C
S

]
≥ 1− 1

e
.

Lemma

.2VII. Randomisation and Rounding Weighted Set Cover 23

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included indepen-
dently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies Pr [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:
Step 1: The expected cost of the random set C

X

E [c(C)] = E


∑

S∈C
c(S)


 = E


 ∑

S∈F
1S∈C · c(S)




=
∑

S∈F
Pr [S ∈ C] · c(S) =

∑

S∈F
y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X

Pr [x 6∈ ∪S∈CS] =
∏

S∈F : x∈S

Pr [S 6∈ C] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1
1 + x ≤ ex for any x ∈ R

y solves the LP!

VII. Randomisation and Rounding Weighted Set Cover 24

The Final Step

Let C ⊆ F be a random subset with each set S being included indepen-
dently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies Pr [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of Ω(log n) random sets C.

WEIGHTED SET COVER-LP(X ,F , c)
1: compute y , an optimal solution to the linear program
2: C = ∅
3: repeat 2 ln n times
4: for each S ∈ F
5: let C = C ∪ {S} with probability y(S)
6: return C clearly runs in polynomial-time!

VII. Randomisation and Rounding Weighted Set Cover 25

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, Pr [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1 − 1
n − 1

2 > 1
3 ,

solution is within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover

X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

Pr [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1

n2
.

This implies for the event that all elements are covered:

Pr [X = ∪S∈CS] = 1− Pr


 ⋃

x∈X

{x 6∈ ∪S∈CS}




≥ 1−
∑

x∈X

Pr [x 6∈ ∪S∈CS] ≥ 1− n · 1

n2
= 1− 1

n
.

Step 2: The expected approximation ratio

X

By previous lemma, the expected cost of one iteration is
∑

S∈F c(S) · y(S).
Linearity⇒ E [c(C)] ≤ 2 ln(n) ·∑S∈F c(S) · y(S) ≤ 2 ln(n) · c(C∗)

Pr [A ∪ B] ≤ Pr [A] + Pr [B]

.1VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, Pr [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1 − 1
n − 1

2 > 1
3 ,

solution is within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover

X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

Pr [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1

n2
.

This implies for the event that all elements are covered:

Pr [X = ∪S∈CS] = 1− Pr


 ⋃

x∈X

{x 6∈ ∪S∈CS}




≥ 1−
∑

x∈X

Pr [x 6∈ ∪S∈CS] ≥ 1− n · 1

n2
= 1− 1

n
.

Step 2: The expected approximation ratio

X

By previous lemma, the expected cost of one iteration is
∑

S∈F c(S) · y(S).
Linearity⇒ E [c(C)] ≤ 2 ln(n) ·∑S∈F c(S) · y(S) ≤ 2 ln(n) · c(C∗)

Pr [A ∪ B] ≤ Pr [A] + Pr [B]

.2VII. Randomisation and Rounding Weighted Set Cover 26

Spectrum of Approximations

KNAPSACK
SUBSET-SUM

SCHEDULING,
EUCLIDEAN-

TSP

VERTEX-COVER,
MAX-3-CNF, MAX-CUT

METRIC-TSP

SET-COVER

MAX-CLIQUE

FPTAS PTAS APX log-APX poly-APX

Thank you and Best Wishes for the Exam!

VII. Randomisation and Rounding Weighted Set Cover 27

