Il. Matrix Multiplication
Thomas Sauerwald

Easter 2018

I UNIVERSITY OF
¥ CAMBRIDGE

Outline

Introduction

n
5,

Il. Matrix Multiplication Introduction

Matrix Multiplication

Remember: If A= (a;) and B = (bj;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
c,-,-:Za,-k-bk,- Vi, j=1,2,...,n.
k=1

Il. Matrix Multiplication Introduction

Matrix Multiplication

Remember: If A= (a;) and B = (bj;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
c,-,-:Za,-k-bk,- Vi, j=1,2,...,n.
k=1

SQUARE-MATRIX-MULTIPLY (A4, B)

1 n = A.rows

2 let C be anew n X n matrix
3 fori =1ton

4 for j = 1ton

5 C,'j =0

6 fork = 1ton

7 Cij = Cij +ajk -bk/-
8 return C

bl - e

;-,,Ir, II. Matrix Multiplication Introduction

Matrix Multiplication

Remember: If A= (a;) and B = (bj;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
c,-,-:Za,-k-bk,- Vi, j=1,2,...,n.
k=1

SQUARE-MATRIX-MULTIPLY (A4, B)

1 n = A.rows
2 let C be anew n X n matrix
3 fori =1ton

4 for j = 1ton

5 C,'j =0

6 fork = 1ton

7 Cij = Cij +ajk -bk,-
8 return C

SQUARE-MATRIX-MULTIPLY (A, B) takes time ©(n®).

n i
;-,,I;, Il. Matrix Multiplication Introduction

Matrix Multiplication

Remember: If A= (a;) and B = (bj;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
c,-,-:Za,-k-bk,- Vi, j=1,2,...,n.
k=1

\

SQUARE-MATRIX-MULTIPLY (4, B) | This definition suggests that n? - n = n®
arithmetic operations are necessary.

1 n = A.rows

2 let C be anew n X n matrix

3 fori =1ton

4 for j = 1ton

5 C,'j =0

6 fork = 1ton

7 Cij = Cij +ajk -bk/-
8 return C

SQUARE-MATRIX-MULTIPLY(A, B) takes time ©(n?).

-

;-,,Ir, II. Matrix Multiplication Introduction

Outline

Serial Matrix Multiplication

ﬁl;

-,,B;, Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Sl

i II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

-

. Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A A Bi1 By Ci1
A: B: =
<A21 Azz)’ (Bz1 1322)’ ¢ <Cz1

Sl

i II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A A Bi1 By Ci1
A: B: =
<A21 Azz)’ (Bz1 1322)’ ¢ <Cz1

Hence the equation C = A - B becomes:

Sl

i II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A1 Az By B2 Ci1 G2
<A21 Azz)’ (Bz1 Bzz)’ c <Cz1 sz)
Hence the equation C = A - B becomes:

Ci1 Cr2) _ (A1 A\ (B B
Cx Cx Azt Az By B

Red
SR Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A A Bi1 Bz Ci
A = B = =
<A21 Azz) : (Bz1 Bzz) » C (Cm
Hence the equation C = A - B becomes:
Ci1 Cr2) _ (A1 A\ (B B
CZ1 C22 A21 A22 321 BZZ
This corresponds to the four equations:
Ci1 = A1t - Bi1 + Asz2 - By
Ci2 = A1 - Biz + A2 - Bz

Cot = A2t - By + Az - Bay
Coz = A2t - Biz + Az - Ba

Red
SR Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

a=(a az) o=(an a2) o= (& &)
Hence the equation C = A - B becomes:
(Cﬂ C12> _ (An A12) . <B11 B12>
CZ1 C22 A21 A22 B21 822
This corresponds to the four equations:

Cit = A B+ Az By Each equation specifies
Ci2 = A1 - Big+ A1z - B two multiplications of
Cot = Aot - Byy + Ao - Boy) 1/2xn/2 matrices and the
Coo = Aot - Bio + Aop - Bao addition of their products.

o
SR Il. Matrix Multiplication Serial Matrix Multiplication 5

Divide & Conquer: First Approach (Pseudocode)

Ci1 = A1 - Bit + A2 - By
Ci2 = A1 - Biz + A2 - Bao
Co1 = Azt - Bi1 + Az - Bay
Ci1 = Az1 - Bia + Az - B

Sl

g Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==1

4 ¢y = ay by

5 else partition A, B, and C as in equations (4.9)

6 Ci; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B;1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2, By;)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B}»)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bss)

8 C,1 = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2,, By;)

9 C5, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A22, By,)

10 return C

Ci1 = A1 - Bit + A2 - By
Ci2 = A1 - Biz + A2 - Bao
Co1 = Azt - Bi1 + Az - Bay
Ci1 = Az1 - Bia + Az - B

el bt

g Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE(A4, B)

bon = A.rows Line 5: Handle submatrices implicitly through

2 let C be anew n X n matrix X 3 N i
3 ifn==1 index calculations instead of creating them.
4 ¢y = ay by
5 else partition A, B, and C as in equations (4.9) /
6 Ci; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B;1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bsy)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B}»)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bss)
8 C,1 = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2,, By;)
9 C5, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, B2s)
10 return C

Ci1 = A1 - Bit + A2 - By
Ci2 = A1 - Biz + A2 - Bao
Co1 = Azt - Bi1 + Az - Bay
Ci1 = Az1 - Bia + Az - B

Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==1

4 ¢y = ay by

5 else partition A, B, and C as in equations (4.9)

6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2, By;)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B}»)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bss)

8 C,1 = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2,, By;)

9 C5, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A22, By,)

10 return C

Let T(n) be the runtime of this procedure.

el b

g Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==1

4 ¢y = ay by

5 else partition A, B, and C as in equations (4.9)

6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2, By;)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B}»)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bss)

8 C,1 = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2,, By;)

9 C5, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A22, By,)

10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T(n) =
(n) ifn>1.

el bt

g Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==1

4 ¢y = ay by

5 else partition A, B, and C as in equations (4.9)

6 Ci; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B;1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2, By;)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B}»)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bss)

8 C,1 = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2,, By;)

9 C5, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A22, By,)

10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T(n) =
(n) ifn>1.

8 Multiplications

g Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n= A.rows
let C be a new n X n matrix
ifn==1
¢y = ay by
else partition A, B, and C as in equations (4.9)
Ci; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B;1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2, By;)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B}»)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bss)
8 C,1 = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2,, By;)
9 C5, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A22, By,)
10 return C

[o NV, NSOV)

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,
8-T(n/2) ifn>1.

8 Multiplications

T(n) =

g Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==1

4 ¢y = ay by

5 else partition A, B, and C as in equations (4.9)

6 Ci; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B;1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bsy)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B}»)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bss)

8 C,1 = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2,, By;)

9 C5, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B12)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, B2s)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

"M =18 7(n2) itn>1.

/1 N
(8 Multiplicationsj (4 Additions and Partitioning)

el bt

g Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==1

4 ¢y = ay by

5 else partition A, B, and C as in equations (4.9)

6 Ci; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B;1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bsy)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B}»)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bss)

8 C,1 = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2,, By;)

9 C5, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B12)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, B2s)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,
8. T(n/2)+0©(r) ifn>1.
/1 N
(8 Multiplicationsj (4 Additions and Partitioning)

T(n) =

el bt

g Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n= A.rows
let C be a new n X n matrix
ifn==1
¢y = ay by
else partition A, B, and C as in equations (4.9)
C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2, By;)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B}»)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bss)
8 C,1 = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2,, By;)
9 C5, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A22, By,)
10 return C

[o NV, NSOV)

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =\8. T(nj2)+ 0(?) itn>1.

Solution: T(n) =

el bt

g Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n= A.rows
let C be a new n X n matrix
ifn==1
¢y = ay by
else partition A, B, and C as in equations (4.9)
Ci; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B;1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2, By;)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B}»)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bss)
8 C,1 = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2,, By;)
9 C5, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A22, By,)
10 return C

[o NV, NSOV)

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =\8. T(nj2)+ 0(?) itn>1.

Solution: T(n) = ©(8"%%")

el b

g Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==1

4 ¢y = ay by

5 else partition A, B, and C as in equations (4.9)

6 Ci; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B;1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bsy)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B}»)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bss)

8 C,1 = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2,, By;)

9 C5, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, B2s)

10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =\8. T(nj2)+ 0(?) itn>1.

Solution: T(n) = ©(8%%2") = ©(n®) {No improvement over the naive algorithm!]

el bt

g Il. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n= A.rows
let C be a new n X n matrix
ifn==1
¢y = ay by
else partition A, B, and C as in equations (4.9)
Ci; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B;1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2, By;)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B}»)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bss)
8 C,1 = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2,, By;)
9 C5, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A22, By,)
10 return C

[o NV, NSOV)

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =\8. T(nj2)+ 0(?) itn>1.

Solution: T(n) = ©(8%%2") = ©(n®)

el bt

g Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==1

4 ¢y = ay by

5 else partition A, B, and C as in equations (4.9)

6 Ci; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B;1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bsy)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B}»)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bss)

8 C,1 = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2,, By;)

9 C5, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, B2s)

10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =8 T(nj2)+ () itn>1.

Solution: T(n) = ©(8°%") = ©(n®) (Goal: Reduce the number of muItipIicationsj

el bt

g Il. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only 7 recursive

multiplications of n/2 x n/2 matrices.

ila

v,,l, Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only 7 recursive

multiplications of n/2 x n/2 matrices.

~——— Strassen’s Algorithm (1969)
1.
2.

Partition each of the matrices into four n/2 x n/2 submatrices

Create 10 matrices Si, S, ..., Sio. Eachis n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

. Recursively compute 7 matrix products Py, P, ..., Pz, each n/2 x n/2
. Compute n/2 x n/2 submatrices of C by adding and subtracting

various combinations of the P;.

Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only 7 recursive

multiplications of n/2 x n/2 matrices.

~——— Strassen’s Algorithm (1969) <\
1. Partition each of the matrices into four n/2 x n/2 submatrices
2. Create 10 matrices Sy, Ss, ..., S1o. Eachis n/2 x n/2 and is the sum

or difference of two matrices created in the previous step.
3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

\L N J

[Time for steps 1,2,4: ©(n?), hence T(n) =7 - T(n/2) + ©(n?) = T(n) = @(n'°g7).J

Sl

G Il. Matrix Multiplication Serial Matrix Multiplication 7

Solving the Recursion

T(n)=7-T(n/2)+c-r?

el b

g Il. Matrix Multiplication Serial Matrix Multiplication

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 = S+ Bop = (A11 + At2) - B
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 = Sg - S10 = (A11 — A21) - (By1 + Bi2)

aﬂ;

v,,l,‘ Il. Matrix Multiplication Serial Matrix Multiplication

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = A1 - S = Ay1 - (Bi2 — Bo2)
P2 = Sy - Bop = (A1 + A2) - B2
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Sl

g Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = A1 - S = Ay1 - (Bi2 — Bo2)
P2 = Sy - Bop = (A1 + A2) - B2
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:

S

g Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = A1 - S = Ay1 - (Bi2 — Bo2)
P2 = Sy - Bop = (A1 + A2) - B2
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:
Ps + Py — P> + Pg =

Sl

i Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 =83 - Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:
Ps + P4 — P + Pg = A11By1 + A11B2a + A2 Bi1 + A2 Boo + A2 Bot — Az By
— A11Bo2 — A12Bo2 + A12B21 + A12Bop — Ao Boy — AxeBoo

Sl

g Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 =83 - Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:

Ps + Py — Po + Pg = A11By1 + ArBzz + AeeBiT + AeaBas + AeaBat — AeeBiT
— AuBrz — AwaBsa + A12B21 + AweBsz — AeeBai — AeaBrs

Sl

g Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 =83 - Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:

Ps + Py — Po + Pg = A11By1 + ArBzz + AeeBiT + AeaBas + AeaBat — AeeBiT
— AuBrz — AwaBsa + A12B21 + AweBsz — AeeBai — AeaBrs
= A11B11 + A12B24

Sl

g Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 =83 - Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 = Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps Py + P
A21Bi1 + A22Bat A21Bi2 + AaBoo P3 + P4 Ps+ Py — P3 — P
N d:
[Other three blocks can be verified similarly.]
Proof:

Ps + Py — Po + Pg = A11By1 + ArBzz + AeeBiT + AeaBas + AeaBat — AeeBiT
— AuBrz — AwaBsa + A12B21 + AweBsz — AeeBai — AeaBrs
= A11B11 + A12B24

Sl

g Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 =83 - Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 = Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps Py + P
A21Bi1 + A22Bat A21Bi2 + AaBoo P3 + P4 Ps+ Py — P3 — P
N d:
[Other three blocks can be verified similarly.]
Proof:

Ps + Py — Po + Pg = A11By1 + ArBzz + AeeBiT + AeaBas + AeaBat — AeeBiT
— AuBrz — AwaBsa + A12B21 + AweBsz — AeeBai — AeaBrs
= A11B11 + A12B24 |

Sl

g Il. Matrix Multiplication Serial Matrix Multiplication 9

Current State-of-the-Art

' Open Problem: Is there an algorithm with quadratic complexity? '

ﬂla

v,a 5 Il. Matrix Multiplication Serial Matrix Multiplication

Current State-of-the-Art

' Open Problem: Is there an algorithm with quadratic complexity? '

Asymptotic Complexities:
= O(r®), naive approach

ﬂla

v,a 5 Il. Matrix Multiplication Serial Matrix Multiplication

Current State-of-the-Art

' Open Problem: Is there an algorithm with quadratic complexity? '

Asymptotic Complexities:
= O(r®), naive approach
= O(n?®%,), Strassen (1969)

ﬂla

v,,l_ Il. Matrix Multiplication Serial Matrix Multiplication

Current State-of-the-Art

' Open Problem: Is there an algorithm with quadratic complexity? '

Asymptotic Complexities:
= O(n®), naive approach
= O(n?®%,), Strassen (1969)
= O(n?7%), Pan (1978)
= O(n?%22), Schénhage (1981)
= O(n*®'"), Romani (1982)
= O(n?*%%), Coppersmith and Winograd (1982)
= O(n?**"), Strassen (1986)
= O(n?*"%), Coppersmith and Winograd (1989)

ﬁl;

-,,B;‘ Il. Matrix Multiplication Serial Matrix Multiplication

Current State-of-the-Art

' Open Problem: Is there an algorithm with quadratic complexity? '

Asymptotic Complexities:
= O(n®), naive approach
= O(n?®%,), Strassen (1969)
= O(n?7%), Pan (1978)
= O(n?%22), Schénhage (1981)
= O(n*®'"), Romani (1982)
= O(n?*%%), Coppersmith and Winograd (1982)
= O(n?**"), Strassen (1986)
= O(n?*"%), Coppersmith and Winograd (1989)
= O(n*¥"*), Stothers (2010)
= O(n?3728842) "y Williams (2011)
= O(n?37286%9) | ¢ Gall (2014)

-,,I,, Il. Matrix Multiplication Serial Matrix Multiplication

Outline

Digression: Multithreading

Sl

.;,I.. Il. Matrix Multiplication

Digression: Multithreading

Memory Models

Distributed Memory

= Each processor has its private memory
= Access to memory of another processor via messages

Sl

.;,i,, 1. Matrix Multiplication Digression: Multithreading

Memory Models

Distributed Memory
= Each processor has its private memory

= Access to memory of another processor via messages

5-8-8-8-8

N

o

&

.;,',, II. Matrix Multiplication Digression: Multithreading

Memory Models

Distributed Memory
= Each processor has its private memory
= Access to memory of another processor via messages

OO —D—O—O
Shared Memory

= Central location of memory
= Each processor has direct access

.;,i & Il. Matrix Multiplication Digression: Multithreading

Memory Models

Distributed Memory

= Each processor has its private memory
= Access to memory of another processor via messages

5-8-8-8-8-8

N

Shared Memory
= Central location of memory
= Each processor has direct access

Shared Memory

T & oo

.;,I,, II. Matrix Multiplication Digression: Multithreading 12

Dynamic Multithreading

= Programming shared-memory parallel computer difficult

i
II. Matrix Multiplication Digression: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

i
E:‘,,‘ II. Matrix Multiplication Digression: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult

= Use concurrency platform which coordinates all resources
AN

[Scheduling jobs, communication protocols, load balancing etc.]

o
E:E Il. Matrix Multiplication Digression: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:

i
II. Matrix Multiplication Digression: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn

i
II. Matrix Multiplication Digression: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn
= (optional) prefix to a procedure call statement
= procedure is executed in a separate thread

» sync

Sl
E:E Il. Matrix Multiplication Digression: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn
= (optional) prefix to a procedure call statement
= procedure is executed in a separate thread

* sync
= wait until all spawned threads are done
= parallel

o
E:E Il. Matrix Multiplication Digression: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn
= (optional) prefix to a procedure call statement
= procedure is executed in a separate thread
* sync
= wait until all spawned threads are done
= parallel

= (optinal) prefix to the standard loop for
= each iteration is called in its own thread

o
E:E Il. Matrix Multiplication Digression: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn
= (optional) prefix to a procedure call statement
= procedure is executed in a separate thread
= sync
= wait until all spawned threads are done
= parallel

= (optinal) prefix to the standard loop for
= each iteration is called in its own thread

AN

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

B

SR Il. Matrix Multiplication Digression: Multithreading 13

Computing Fibonacci Numbers Recursively (Fig. 27.1)

0: FIB(n)

1 if n<=1] return n
2: else x=FIB(n-1)

3 y=FIB (n-2)

4 return x+y

Al
E:E 1. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers Recursively (Fig. 27.1)

0: FIB(n)

1 if n<=1] return n
2: else x=FIB(n-1)

3 y=FIB (n-2)

4 return x+y

i
II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers Recursively (Fig. 27.1)

o

=

FIB (n)
if n<=1 return n
else x=FIB(n-1)
y=FIB (n-2)
return x+y

Very inefficient — exponential time!

1. Matrix Multiplication

Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync
return x+y

oo W N KE O

Sl
E:E Il. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

e Without spawn and sync same pseudocode as before
e spawn does not imply parallel execution (depends on scheduler)

]

4

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync
return x+y

oo W N KE O

el e
E:E II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Computation Dag G = (V, E)

4

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync
return x+y

oo W N KE O

ke
0 II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Computation Dag G = (V, E)
e V set of threads (instructions/strands without parallel control)

4

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync
return x+y

oo W N KE O

o
ﬂf II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Computation Dag G = (V, E)
e V set of threads (instructions/strands without parallel control)
e E set of dependencies

4

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync
return x+y

oo W N KE O

ke
0 II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Computation Dag G = (V, E)
e V set of threads (instructions/strands without parallel control)
e E set of dependencies

i

P-FIB (n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

S W N B O

Sl
E:E II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

return x+y

]
WFEM II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

S W N B O

i
II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

S W N B O

i
II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

S W N B O

i
II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Q
P-FIB(4)
P-FIB(3)

o O

P-FIB(2)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

S W N B O

Sl
E:E II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Q
P-FIB(4)
P-FIB(3)

-0 O

P-FIB(2)

P-FIB (n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

S W N B O

Sl
E:E II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

o O

P-FIB(2)

-0 O

P-FIB(2)

P-FIB(1)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

S W N B O

i
II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

S W N B O

i
II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)

s> W N P O

sync

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)

s> W N P O

sync

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)

s> W N P O

sync

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)

s> W N P O

sync

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)

s> W N P O

sync

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)

s> W N P O

sync

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)

s> W N P O

sync

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

..

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)

s> W N P O

sync

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

=50

P-FIB(4) <

v

P-FIB(1)

P-FIB(n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

s> W N P O

ol

.;,I,, II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)

s> W N P O

sync

1. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (DAG Perspective)

o

.;,I,, II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

/@

Sl

.;,i,, 1. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

Sl

.;,i,, 1. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

o

.;,I,, II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

.;,I,, II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

Sl

.;,I,, II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

Sl

.;,I,, II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

- 4

Sl

.;,I,, 1. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

Sl

.;,I,, II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

Sl

.;,I,, 1. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

Sl

.;,I,, 1. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

> 4
. N

r
1
|]
1
|]
|]
» 2
1

Sl

.;,I,, 1. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

Sl

.;,I,, 1. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

_RON »
e
®
\./5
N

Sl

E:‘,,' 1. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

i;\-/”
\ o/

Sl

.;,I,, 1. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

i;\-/”
N\ e/

1. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

- _ L~
g ¥’

1. Matrix Multiplication Digression: Multithreading 16

Performance Measures

Work

Total time to execute everything on a single processor.

ﬁla

.v,i s Il. Matrix Multiplication Digression: Multithreading 17

Performance Measures

Work

Total time to execute everything on a single processor.

Sl

.;,I,, Il. Matrix Multiplication Digression: Multithreading 17

Performance Measures

Work Z =30

Total time to execute everything on a single processor.

Sl

.;,I,, Il. Matrix Multiplication Digression: Multithreading 17

Performance Measures

Work

Total time to execute everything on a single processor.

Span
Longest time to execute the threads along any path.

.;,i, Il. Matrix Multiplication Digression: Multithreading

Performance Measures

Work

Total time to execute everything on a single processor.

Span
Longest time to execute the threads along any path.

.;,i, Il. Matrix Multiplication Digression: Multithreading

Performance Measures

Work

Total time to execute everything on a single processor.

Span

Longest time to execute the threads along any path.

Sl

.;,i;, Il. Matrix Multiplication Digression: Multithreading

Performance Measures

Work

Total time to execute everything on a single processor.

Span
Longest time to execute the threads along any path.

.;,i, Il. Matrix Multiplication Digression: Multithreading

Performance Measures

Work

Total time to execute everything on a single processor.

Span

Longest time to execute the threads along any path.

AN
[If each thread takes unit time, span is }

the length of the critical path.

II. Matrix Multiplication Digression: Multithreading

Performance Measures

Work

Total time to execute everything on a single processor.

Span

Longest time to execute the threads along any path.

AN
[If each thread takes unit time, span is }

the length of the critical path.

II. Matrix Multiplication Digression: Multithreading

Performance Measures

Work

Total time to execute everything on a single processor.

Span

Longest time to execute the threads along any path.

AN
[If each thread takes unit time, span is }

the length of the critical path.

#nodes =5

II. Matrix Multiplication Digression: Multithreading

Work Law and Span Law

o

.;,l,, Il. Matrix Multiplication

Digression: Multithreading

Work Law and Span Law

= Ty = work, T, = span

o

.;,,B.;, II. Matrix Multiplication

Digression: Multithreading

Work Law and Span Law

= Ty = work, T, = span
= P = number of (identical) processors
= Tp = running time on P processors

i
II. Matrix Multiplication Digression: Multithreading

Work Law and Span Law

= Ty = work, T, = span
= P = number of (identical) processors

= Tp = running time on P processors
~

(Running time actually also depends on scheduler etc.!)

o
ﬂf II. Matrix Multiplication Digression: Multithreading

Work Law and Span Law

= Ty = work, T, = span
= P = number of (identical) processors
= Tp = running time on P processors

Work Law

Tp > —

o

Sl
E:E Il. Matrix Multiplication Digression: Multithreading

Work Law and Span Law

= Ty = work, T, = span
= P = number of (identical) processors
= Tp = running time on P processors

Work Law
T
| Tr > —]
,\ P

(Time on P processors can’'t be shorter than if all work all timej

ke
SR II. Matrix Multiplication Digression: Multithreading

Work Law and Span Law

= Ty = work, T, = span
= P = number of (identical) processors
= Tp = running time on P processors

Work Law
T
| Tr > —]
,\ P

(Time on P processors can’'t be shorter than if all work all timej

o
ﬂf II. Matrix Multiplication Digression: Multithreading

Work Law and Span Law

= Ty = work, T, = span
= P = number of (identical) processors
= Tp = running time on P processors T,=8P=2

Work Law
T
| Tr > —]
,\ P

(Time on P processors can’'t be shorter than if all work all timej

O
O

O O

O
O

O
O

o
ﬂf II. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

= Ty = work, T, = span
= P = number of (identical) processors
= Tp = running time on P processors

Work Law

(Time on P processors can’'t be shorter than if all work all timej

ke
SR II. Matrix Multiplication Digression: Multithreading

Work Law and Span Law

= Ty = work, T, = span
= P = number of (identical) processors
= Tp = running time on P processors

~— Work Law

Tp > —

o

——— Span Law

Sl
SR Il. Matrix Multiplication

Digression: Multithreading

Work Law and Span Law

= Ty = work, T, = span
= P = number of (identical) processors

= Tp = running time on P processors T =5
—— Work Law \
Ty
Tp > —
F=P
——— Span Law N\
Tp > Too
S

(Time on P processors can’'t be shorter than time on co processors]

ke
SR Il. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

= Ty = work, T, = span
= P = number of (identical) processors
= Tp = running time on P processors

~— Work Law

Tp > —

o

——— Span Law

TP2 Too

= Speed-Up: %

Too =5

Sl
SR II. Matrix Multiplication

Digression: Multithreading

Work Law and Span Law

= Ty = work, T, = span

= P = number of (identical) processors
= Tp = running time on P processors

~— Work Law

Tr > —

o

——— Span Law

TPZ Too

+ Speed-Up: It {Maximum Speed-Up bounded by P!]

Too =5

o
i II. Matrix Multiplication

Digression: Multithreading

Work Law and Span Law

= Ty = work, T, = span
= P = number of (identical) processors
= Tp = running time on P processors

~— Work Law

Tp > —

o

——— Span Law

= Speed-Up: %

= Parallelism: TT—‘

Too =5

Sl
SR II. Matrix Multiplication

Digression: Multithreading

Work Law and Span Law

= Ty = work, T, = span

= P = number of (identical) processors
= Tp = running time on P processors

~— Work Law

Tp > —

o

——— Span Law

TP2 Teo

= Speed-Up: %

= Parallelism:

T
Too t[Maximum Speed-Up for co processors!]

T =5

Sl
i II. Matrix Multiplication

Digression: Multithreading

Outline

Multithreaded Matrix Multiplication

% Il. Matrix Multiplication

Multithreaded Matrix Multiplication

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n x n matrix A = (a;) and n-vector x = (x;) yields
an n-vector y = (y;) given by

n
yi=)Y apx fori=12...n
=

Il. Matrix Multiplication Multithreaded Matrix Multiplication

20

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n x n matrix A = (a;) and n-vector x = (x;) yields
an n-vector y = (y;) given by

n
yi=)Y apx fori=12...n
=

MAT-VEC(A, x)

1 n = A.rows

2 let y be a new vector of length n
3 parallel fori = 1ton

4 Vi = 0

5 parallelfori = 1ton

6 for j = 1ton

7 Yi = yitaix;

8 return y

Il. Matrix Multiplication Multithreaded Matrix Multiplication

20

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n x n matrix A = (a;) and n-vector x = (x;) yields
an n-vector y = (y;) given by

n
yi=)Y apx fori=12...n
=

MAT-VEC(A, x)

el B R R

n = A.rows
let y be a new vector of length n
parallel fori = 1ton

yi =0 { The parallel for-loops can be used since }

parallel forl = lton different entries of y can be computed concurrently.
for j = 1ton

Yi = Vit aijX;
return y

S
Il. Matrix Multiplication Multithreaded Matrix Multiplication 20

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n x n matrix A = (a;) and n-vector x = (x;) yields
an n-vector y = (y;) given by

n
y,-:E ajix; fori=1,2,...,n
j=1

MAT-VEC(A, x)

1 n = A.rows

2 let y be a new vector of length n

3 parallel fori = 1ton

g {l’ 1:f 0 1t The parallel for-loops can be used since
paralletlors = 110S different entries of y can be computed concurrently.

6 for j = 1ton

7 Yi = Yyitaix;

8 return y

How can a compiler implement the parallel for-loop?

;-,,Ir, Il. Matrix Multiplication Multithreaded Matrix Multiplication 20

Implementing parallel for based on Divide-and-Conquer

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP(A, x, y,n,i.i’) 1 n= Arows

ifi ==i' 2 let y be a new vector of length n

for j = 1ton 3 parallel fori = 1 ton

yi = yi +aijx; 4 yi=0

else mid = | (i +1')/2] 5 parallel fori = 1 ton
spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid) 6 forj = 1ton

MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 Vi = yi +a;x;

8

sync return y

1
2
3
4
5
6
7

Il. Matrix Multiplication Multithreaded Matrix Multiplication

Implementing parallel for based on Divide-and-Conquer

MAT-VEC-MAIN-LOOP(A, x, y,n,i.i’)

1 ifi==i
2 for j = 1ton
3 Yi = yi +ai;x;

4 elsemid = [(i +1i')/2]

spawn MAT-VEC-MAIN-LOOP (A, x, y,n, i, mid)
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i')
sync

<o wn

MAT-VEC(4, x)

1 n = A.rows

2 let y be a new vector of length n
3 parallelfori = 1ton

4 yi=0

5 parallelfori = I ton

6 for j = 1ton

7 Vi = yitajjx;

8 returny

ﬁmﬂ

1. Matrix Multiplication Multithreaded Matrix Multiplication

21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC-MAIN-LOOP(A, x, y,n,i.i’)

1 ifi==i
2 for j = 1ton
3 Yi = yi +ai;x;

4 elsemid = [(i +1i')/2]

spawn MAT-VEC-MAIN-LOOP (A, x, y,n, i, mid)
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i')
sync

<o wn

Ti(n) =

MAT-VEC(4, x)

1 n = A.rows

2 let y be a new vector of length n
3 parallelfori = 1ton

4 yi=0

5 parallelfori = I ton

6 for j = 1ton

7 Vi = yitajjx;

8 returny

ﬁmﬁ

,,E 5 1. Matrix Multiplication Multithreaded Matrix Multiplication

21

Implementing parallel for based on Divide-and-Conquer

@@@b

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP(A, x, y,n,i,i’)

1 n= A.rows
1 ifi==i' 2 let y be a new vector of length n
2 forj =lton 3 parallel fori = 1ton
3 Vi = Vi + ayx; 4 yi =0
4 else mid = LG +i"/2] 5 parallel fori = I ton
5 spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid) 6 forj = 1ton
6 MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 i = yi+ajx;
7 sync 8 return y
Ti(n) Work is equal to running time of its serialization; overhead
1 =

of recursive spawning does not change asymptotics.

Il. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

@@@b

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP(A, x, y,n,i,i’)

1 n = A.rows
1 ifi==i' 2 let y be a new vector of length n
2 forj =lton 3 parallel fori = 1ton
3 yi = yi+aix; 4 yi=0
4 else mid = LG +i"/2] 5 parallel fori = I ton
5 spawn MAT-VEC-MAIN-LOOP (4, x, y,n,i, mid) 6 for j = 1ton
6 MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 Vi = yi +a;x;
7 sync 8 return y

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Il. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP (4, x, y,n,i,i’") n = A.rows

1

ifi ==i' 2 let y be a new vector of length n

for j = 1ton 3 parallel fori = 1ton
Yi = yi +aix; 4 yi=0

else mid = | (i +1')/2] 5 parallel fori = I ton
spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid) 6 for j = 1ton
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 Vi = yi +a;x;
sync 8 returny

N AW —

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Too(n) = Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

Il. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP (4, x, y,n,i,i’") n = A.rows

1

ifi ==i' 2 let y be a new vector of length n

for j = 1ton 3 parallel fori = 1ton
Yi = yi +aix; 4 yi=0

else mid = | (i +1')/2] 5 parallel fori = I ton
spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid) 6 for j = 1ton
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 Vi = yi +a;x;
sync 8 returny

N AW —

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Too(n) = Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

Il. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP (4, x, y,n,i,i’") n = A.rows

1

ifi ==i' 2 let y be a new vector of length n

for j = 1ton 3 parallel fori = 1ton
Yi = yi +aix; 4 yi=0

else mid = | (i +1')/2] 5 parallel fori = I ton
spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid) 6 for j = 1ton
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 Vi = yi +a;x;
sync 8 returny

N AW —

Work is equal to running time of its serialization; overhead

_ 2
Ti(n) = ©(m) of recursive spawning does not change asymptotics.

Too(n) = ©(log n) + max iter(n) Span is the depth of recursive callings plus
1sisn the maximum span of any of the n iterations.

S

5 Il. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP (4, x, y,n,i,i’") n = A.rows

1

ifi ==i' 2 let y be a new vector of length n

for j = 1ton 3 parallel fori = 1ton
Yi = yi +aix; 4 yi=0

else mid = | (i +1')/2] 5 parallel fori = I ton
spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid) 6 for j = 1ton
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 Vi = yi +a;x;
sync 8 returny

N AW —

Work is equal to running time of its serialization; overhead

_ 2
Ti(n) = ©(m) of recursive spawning does not change asymptotics.

Too(n) = ©(log n) + max iter(n) Span is the depth of recursive callings plus
1sisn the maximum span of any of the n iterations.

= 0O(n).

5 Il. Matrix Multiplication Multithreaded Matrix Multiplication 21

Naive Algorithm in Parallel

P-SQUARE-MATRIX-MULTIPLY (A, B)

1 n = A.rows
2 let C be anew n x n matrix
3 parallel fori = 1ton

4 parallel for j = 1ton

5 Cij = 0

6 fork = 1ton

7 Cij = Cij Tk bkj
8 return C

bl - e

;-,,Ir, Il. Matrix Multiplication Multithreaded Matrix Multiplication

22

Naive Algorithm in Parallel

P-SQUARE-MATRIX-MULTIPLY (A, B)

1 n = A.rows

2 let C be anew n X n matrix

3 parallel fori = 1ton

4 parallel for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = Cij + ik - by With a more careful implementation,

8 return C To(n) = O(log n) (CLRS, Exercise 27.2-3)

~J
P-SQUARE-MATRIX-MULTIPLY (A, B) has work T;(n) = ©(n®) and span T..(n) = ©(n).

[The first two nested for-loops parallelise perfectly.]

Il. Matrix Multiplication Multithreaded Matrix Multiplication 22

The Simple Divide&Conquer Approach in Parallel

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B)

1 n = A.rows

2 ifn==

3 i = anby

4 else let 7 be a new n X n matrix

5 partition A, B, C,and 7 into n/2 x n/2 submatrices
Av1, Ara, Azr, Azzs Bua, Bia, Bay, Baz; Cir, Cra, Ca, G
and Ty, T2, Ty, T, respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cyy, Ay, Byy)
7 spawn P-MATRIX-MULTIPLY-RECURSIVE(C,, A1, Bi,)
8 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy;, Az, Byy)
9 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy,, Az, B}2)
10 spawn P-MATRIX-MULTIPLY-RECURSIVE(7T}1, A12, Ba1)
11 spawn P-MATRIX-MULTIPLY-RECURSIVE(T},, A1z, Bss)
12 spawn P-MATRIX-MULTIPLY-RECURSIVE (7%, A2z, Bay)
13 P-MATRIX-MULTIPLY-RECURSIVE (7%;, A2, B2s)
14 sync
15 parallel fori = 1ton
16 parallel for j = 1 ton
17 cij = ¢ij +ti;

Il. Matrix Multiplication Multithreaded Matrix Multiplication

23

The Simple Divide&Conquer Approach in Parallel

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B)

1 n = A.rows

2 ifn==

3 i = anby

4 else let 7 be a new n X n matrix

5 partition A, B, C,and 7 into n/2 x n/2 submatrices
Av1, Ara, Azr, Azzs Bua, Bia, Bay, Baz; Cir, Cra, Ca, G
and Ty, Tha. Ta1, Taa: respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cyy, Ay, Byy)
7 spawn P-MATRIX-MULTIPLY-RECURSIVE(C,, A1, Bi,)
8 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy;, Az, Byy)
9 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy,, Az, B}2)
10 spawn P-MATRIX-MULTIPLY-RECURSIVE(7T}1, A12, Ba1)
11 spawn P-MATRIX-MULTIPLY-RECURSIVE(T},, A1z, Bss)
12 spawn P-MATRIX-MULTIPLY-RECURSIVE (7%, A2z, Bay)
13 P-MATRIX-MULTIPLY-RECURSIVE (7%;, A2, B2s)
14 sync
15 parallel fori = 1ton
16 parallel for j = 1 ton
17 ¢y = ¢+l [The same as before.]
(74

P-MATRIX-MULTIPLY-RECURSIVE has work T;(n) = ©(n®) and span T (n) =

Il. Matrix Multiplication Multithreaded Matrix Multiplication

23

The Simple Divide&Conquer Approach in Parallel

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B)

1 n = A.rows

2 ifn==

3 i = anby

4 else let 7 be a new n X n matrix

5 partition A, B, C,and 7 into n/2 x n/2 submatrices
Av1, Ara, Azr, Azzs Bua, Bia, Bay, Baz; Cir, Cra, Ca, G
and Ty, Tha. Ta1, Taa: respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cyy, Ay, Byy)
7 spawn P-MATRIX-MULTIPLY-RECURSIVE(C,, A1, Bi,)
8 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy;, Az, Byy)
9 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy,, Az, B}2)
10 spawn P-MATRIX-MULTIPLY-RECURSIVE(7T}1, A12, Ba1)
11 spawn P-MATRIX-MULTIPLY-RECURSIVE(T},, A1z, Bss)
12 spawn P-MATRIX-MULTIPLY-RECURSIVE (7%, A2z, Bay)
13 P-MATRIX-MULTIPLY-RECURSIVE (7%;, A2, B2s)
14 sync
15 parallel fori = 1ton
16 parallel for j = 1 ton
17 ¢y = ¢+l [The same as before.]
(74

P-MATRIX-MULTIPLY-RECURSIVE has work T;(n) = ©(n®) and span T (n) =

—

[Too(n) = Too(n/2) + 6(log n)]

Il. Matrix Multiplication Multithreaded Matrix Multiplication

23

The Simple Divide&Conquer Approach in Parallel

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B)

1 n = A.rows

2 ifn==

3 i = anby

4 else let 7 be a new n X n matrix

5 partition A, B, C,and 7 into n/2 x n/2 submatrices
Av1, Ara, Azr, Azzs Bua, Bia, Bay, Baz; Cir, Cra, Ca, G
and Ty, Tha. Ta1, Taa: respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cyy, Ay, Byy)
7 spawn P-MATRIX-MULTIPLY-RECURSIVE(C,, A1, Bi,)
8 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy;, Az, Byy)
9 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy,, Az, B}2)
10 spawn P-MATRIX-MULTIPLY-RECURSIVE(7T}1, A12, Ba1)
11 spawn P-MATRIX-MULTIPLY-RECURSIVE(T},, A1z, Bss)
12 spawn P-MATRIX-MULTIPLY-RECURSIVE (7%, A2z, Bay)
13 P-MATRIX-MULTIPLY-RECURSIVE (7%;, A2, B2s)
14 sync
15 parallel fori = 1ton
16 parallel for j = 1 ton
17 ¢y = ¢+l [The same as before.]
(74

P-MATRIX-MULTIPLY-RECURSIVE has work T;(n) = ©(n®) and span T..(n) = ©(log? n).

—

[Too(n) = Too(n/2) + 6(log n)]

Il. Matrix Multiplication Multithreaded Matrix Multiplication 28

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised) N
1. Partition each of the matrices into four n/2 x n/2 submatrices

-

:-,,Ir, II. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

Il. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.}

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

\.

S
Il. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

\.

i
Il. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

\.

i
Il. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

[Recursively spawn the computation of the seven products.]

\.

Sl
Il. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

\.

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum

or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

[Recursively spawn the computation of the seven products.]

4. Compute n/2 x n/2 submatrices of C by adding and subtracting

various combinations of the P;.

Sl
Il. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

\.

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum

or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

[Recursively spawn the computation of the seven products.]

4. Compute n/2 x n/2 submatrices of C by adding and subtracting

various combinations of the P;.

[Using doubly nested parallel for }

this takes ©(n?) work and ©(log n) span.

Sl
% Il. Matrix Multiplication Multithreaded Matrix Multiplication

5|

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)
1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

[Recursively spawn the computation of the seven products.]

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

Using doubly nested parallel for Ti(n) = ©(n'97)
this takes ©(n?) work and ©(log n) span.

\. J

B

SR II. Matrix Multiplication Multithreaded Matrix Multiplication 24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)
1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

[Recursively spawn the computation of the seven products.]

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

Using doubly nested parallel for Ti(n) = ©(n'°97)
this takes ©(n?) work and ©(log n) span. To(n) = ©(log? n)

\. J

B

SR II. Matrix Multiplication Multithreaded Matrix Multiplication 24

	Introduction
	Serial Matrix Multiplication
	Digression: Multithreading
	Multithreaded Matrix Multiplication

