
Computer Systems Modelling

Dr RJ Gibbens
Computer Science Tripos, Part II
Lent Term 2017/18

Last revised: 2018-01-10 (34a98a7)

Department of Computer Science & Technology
The Computer Laboratory
University of Cambridge

CSM 2017/18 (1)

Course overview

12 lectures covering:

I Introduction to modelling:
I what is it and why is it useful?

I Simulation techniques:
I random number generation and inverse transform method
I Monte Carlo simulation techniques,
I statistical analysis of results from simulation and measurements;

I Queueing theory:
I applications of Markov Chains,
I single/multiple servers,
I queues with finite/infinite buffers,
I queueing networks.

CSM 2017/18 (2)

Recommended books

Ross, S.M.
Probability Models for Computer Science
Academic Press, 2002

Mitzenmacher, M & Upfal, E.
Probability and computing: randomized algorithms and
probabilistic analysis
Cambridge University Press, 2005

Jain, A.R.
The Art of Computer Systems Performance Analysis
Wiley, 1991

Kleinrock, L.
Queueing Systems — Volume 1: Theory
Wiley, 1975

CSM 2017/18 (3)

Introduction to modelling

CSM 2017/18 (4)

Why model?

I A manufacturer may have a range of compatible systems with
different characteristics — which configuration would be best for
a particular application?

I A system is performing poorly — what should be done to
improve it? Which problems should be tackled first?

I Fundamental design decisions may affect performance of a
system. A model can be used as part of the design process to
avoid bad decisions and to help quantify a cost/benefit analysis.

CSM 2017/18 (5)

A toy problem

system CPU time disk time total

A 4.6 4.0 8.6
B1 5.1 1.9 7.0
B2 3.1 1.9 5.0

I A database running on Type A system is too slow

I Type B1 system available immediately, and a type B2 system in
the future

I Which option is best:

I Stick with A?
I Change to B1 immediately?
I Wait and change to B2?

I What factors affect the correct choice?

CSM 2017/18 (6)

How can modelling help?

Typical performance questions we might ask include:

I How long will a database request wait before receiving CPU
service?

I What is the utilization of the resource (CPU, disk, . . .)?
(Utilization is the proportion of time that the resource is busy.)

I What is the distribution of the number of requests queued at
some time t? What is its mean, standard deviation, . . .

CSM 2017/18 (7)

Techniques

Many different approaches:

I Measurement — if the system already exists then maybe it can
be changed and the effects observed and analysed

I Simulation — construct a computer program that emulates the
system under study and study that instead

I Queueing theory — analytical models of queueing systems based
on stochastic processes

I Operational analysis — analysis based on directly measured
quantities and relationships between them: makes few
assumptions about the system (not covered in the course in
recent years)

CSM 2017/18 (8)

Techniques (2)

Choice of technique depends on . . .

I Stage of development: can only measure an existing system

I Time available: measurements or simulations can take a long time
to complete. How easily can different trade-offs be evaluated?

I Resources: systems with which to experiment, people with the
relevant skills, cost

I Desired accuracy: how do the assumptions made in analytic
techniques effect the result? Are appropriate parameters and
workloads used during experimental work?

I Credibility: will people believe (and act on) the results?

CSM 2017/18 (9)

Little’s result

Begin with a simple derivation of Little’s Result — a very general
theorem relating the number of jobs in a system with the time they
spend there.

Example

A disk server takes, on average, 10ms to satisfy an
I/O request. If the request rate is 100 per second,
then how many requests are queued at the server?

CSM 2017/18 (10)

Little’s result (2)

0

α(t)

δ(t)

t
Time

N
u

m
b

er
o
f

cu
st

om
er

s

α(t) = number of arrivals in (0, t)

δ(t) = number of departures in (0, t)

α(t)− δ(t) = number in the system at t

The area γ(t) between the curves α(t) and δ(t) during the
period (0, t) represents the total time all customers have spent in the
system in (0, t).

CSM 2017/18 (11)

Little’s result (3)

Let

λ(t) = α(t)/t

T (t) = γ(t)/α(t)

N(t) = γ(t)/t .

So that,

I λ(t) — the average arrival rate during (0, t);

I T (t) — system time per customer averaged over all customers in
(0, t);

I N(t) — average number of customers in system during (0, t).

Combining these gives that

N(t) = λ(t)T (t) .

CSM 2017/18 (12)

Little’s result (4)

Assume the following limits exist

λ = lim
t→∞

λ(t)

T = lim
t→∞

T (t) .

Then we have

N = lim
t→∞

N(t) = lim
t→∞

λ(t)T (t) = λT .

That is, the average number in the system, N , equals the average
arrival rate × average time in system.

This is Little’s result. The proof makes no assumptions about the way
that arrivals or departures are distributed, the queueing discipline or
how many servers service the queue.

First proved by John Little in 1961.

CSM 2017/18 (13)

Applications of Little’s result

We can re-state this result for any boundary of our queueing system.

Split T (average time in the system) into Tw (average time spent
waiting) and Ts (average time spent being served).

Similarly, we can split N (average number in the system) into Nw
(average number waiting in the queue) and Ns (average number being
served).

Applying Little’s result separately to the queue and to the server:

Nw = λTw

Ns = λTs

CSM 2017/18 (14)

Continuous distributions

We can typically describe the distribution of a continuous random
variable, X, in two ways using:

I either the cumulative distribution function (cdf), (or just the
distribution function)

FX(x) := P(X ≤ x)

I or the probability density function (pdf)

fX(x) :=
dFX(x)

dx
.

Note that

0 ≤ FX(x) =

∫ x

−∞
fX(y) dy

and that FX(x) increases with x up to the value

FX(∞) =

∫ ∞
−∞

fX(y) dy = 1.

CSM 2017/18 (15)

Expected value and moments

The expected value of X, written E(X), is given by

E(X) :=

∫ ∞
−∞

xfX(x) dx .

Also called the average, mean or first moment of the distribution and
sometimes written as X.

The nth moment is defined as

E(Xn) :=

∫ ∞
−∞

xnfX(x) dx .

The nth central moment is defined as

E((X − E(X))n) :=

∫ ∞
−∞

(x− E(X))nfX(x) dx .

CSM 2017/18 (16)

Variance, standard deviation & coefficient of variation

The 2nd central moment, Var(X), of a random variable X is known as
the variance,

Var(X) = E((X − E(X))2) = E(X2)− (E(X))2 .

From this, we define the standard deviation by
√

Var(X) and the
coefficient of variation by the dimensionless quantity

CX :=
standard deviation

mean
=

√
Var(X)

E(X)
.

Numerically larger values of CX signify “more variable” data. For
example, a coefficient of variation of 5 might be considered large,
while 0.2 might be considered small.

CSM 2017/18 (17)

Exponential distribution Exp(λ)

Given a scale parameter, λ > 0, the (positive) random variable X has
the exponential distribution Exp(λ) defined by the density and
distribution function

fX(x) =

{
λ e−λx if x > 0

0 otherwise

FX(x) =

{
1− e−λx if x > 0

0 otherwise
.

Exercise: show that the mean of X is 1
λ and the variance is 1

λ2 .

Hence for this distribution the mean and standard deviation are equal
and so

CX =

√
Var(X)

E(X)
=

√
1
λ2

1
λ

= 1 .

CSM 2017/18 (18)

Memoryless property

The exponential distribution is the only continuous distribution with
the Memoryless Property, namely, that

P(X > t+ s |X > t) = P(X > s)

Intuitively, it may be used to model the distribution of inter-event
times in which the time until the next event does not depend on the
time that has already elapsed.

If the inter-event times are independent, identically distributed
random variables with the Exp(λ) distribution then λ is viewed as the
mean event rate.

CSM 2017/18 (19)

Memoryless property (2)

To show that a random variable X ∼ Exp(λ) satisfies the memoryless
property first write (for x > 0)

FX(x) = P(X > x) = 1− FX(x) = e−λx

for the tail distribution function. Then the memoryless property

P(X > t+ s |X > t) = P(X > s)

becomes

FX(t+ s) = FX(t)FX(s)

which is clearly satisfied by FX(x) = e−λx since

FX(t+ s) = e−λ(t+s) = e−λte−λs = FX(t)FX(s) .

CSM 2017/18 (20)

Memoryless property (3)

To show that the exponential distribution is unique among
distribution functions that satisfy the memoryless property consider
solutions for g(x) = P(X > x) to the functional equation

g(t+ s) = g(t)g(s) .

Hence

g(2/n) = g(1/n+ 1/n) = g(1/n)g(1/n) = g(1/n)2

and thus g(m/n) = g(1/n)m. So, setting m = n, g(1) = g(1/n)n.
Therefore,

g(m/n) = g(1/n)m = (g(1/n)n)m/n = g(1)m/n

and using the continuity of g we have that g(x) = g(1)x for real x > 0.
Finally, the function g is (uniquely) determined to be

g(x) = e−λx = FX(x)

where λ = − log(g(1)) which exists since g(1) = g(1/2)2 ≥ 0.

CSM 2017/18 (21)

Erlang distribution

A random variable, X, with pdf

fX(x) =

{
λe−λx (λx)n−1

(n−1)! if x > 0

0 otherwise

where n = 1, 2, . . . and λ > 0 has an Erlang distribution with
parameters n and λ. The distribution function can computed from

FX(x) =

∫ x

0

fX(y) dy .

The mean and variance of X can be shown to be n/λ and n/λ2,
respectively.
It is the case that the sum of n independent Exp(λ) random variables
has an Erlang distribution with parameters n and λ — see more on
this latter.
In fact, it is possible to generalize this distribution to where the
parameter n is any positive real number. This more general case is
known as the Gamma distribution.

CSM 2017/18 (22)

Normal distribution N(µ, σ2)

A random variable, X, has a normal distribution, written N(µ, σ2), if
its pdf is given by

fX(x) =
1√
2πσ

e−(x−µ)
2/2σ2

−∞ < x <∞

where µ is any real number and σ > 0. Recall that the mean of X is µ
and the variance is σ2.
Thus the standardized random variable

Z =
X − µ
σ

has a normal distribution with mean 0 and variance 1. The
distribution function of Z is usually written

FZ(x) = Φ(x) .

Notice that then

FX(x) = Φ

(
x− µ
σ

)
.

CSM 2017/18 (23)

Central Limit Theorem (CLT)

Suppose that X1, X2, . . . is a sequence of independent, identically
distributed (IID) random variables (each with finite mean µ and finite
variance σ2) then the CLT says that

lim
n→∞

P
(
Sn − nµ√

nσ
≤ x

)
= Φ(x)

where Sn = X1 +X2 + · · ·+Xn so that the mean is E(Sn) = nµ and

the standard deviation is
√

Var(Sn) =
√
nσ2 =

√
nσ.

Notice that the individual random variables X1, X2, . . . are not
assumed to have normal distributions.

CSM 2017/18 (24)

Discrete distributions

The previous examples have concerned continuous random variables
whose distributions have been defined by their density or,
equivalently, their distribution functions.

Similar definitions apply to the case of discrete random variables, X,
taking values xi (i ∈ I), where the distribution is specified by the
probability distribution function (pdf)

0 ≤ P(X = xi) ≤ 1 ∀i ∈ I

and where∑
i∈I

P(X = xi) = 1 .

CSM 2017/18 (25)

Expected value and variance

The expected value of X is

E(X) :=
∑
i∈I

xiP(X = xi) .

Similarly, for the other moments, where the integration for continuous
random variables becomes a summation over the set of possible values.

So, for example, we have that

E(X2) =
∑
i∈I

x2iP(X = xi)

and

Var(X) := E((X − E(X))2) = E(X2)− (E(X))2

just as with continuous random variables.

CSM 2017/18 (26)

Bernoulli(p) distribution

The random variable X has a Bernoulli distribution if it takes just
two values either X = 0 or X = 1 with probabilities

P(X = x) =

{
p if x = 1

1− p if x = 0 .

We say that p = P(X = 1) is the probability of success (0 ≤ p ≤ 1) in
a Bernoulii trial and 1− p = P(X = 0) is the probability of failure.

The mean and variance of X are p and p(1− p), respectively.

CSM 2017/18 (27)

Binomial(n, p) distribution

The (random) number of successes in a fixed length sequence of
independent Bernoulli trials has a distribution known as the Binomial
distribution. The pdf is given by

P(X = x) =

(
n

x

)
px(1− p)n−x x = 0, 1, . . . , n

where p is the probability of success of an individual Bernoulli trial
and n is the fixed number of trials. Thus the parameters
satisfy 0 ≤ p ≤ 1 and n = 1, 2, 3,

The mean and variance of X are np and np(1− p), respectively.

Note that P(X = x) is the product of the number of ways that x
successes can occur in n trials and the probability that exactly that
pattern of successes and failures occurs.

CSM 2017/18 (28)

Poisson(λ) distribution

The random variable X has a Poisson distribution if it takes
values 0, 1, 2, . . . with probabilities

P(X = i) = e−λ
λi

i!
i = 0, 1, 2, . . .

where λ > 0 is a scale parameter.

Exercise: show that both the mean and variance of X are both equal
to λ.

The Poisson(λ) distribution is a good approximation to a
Binomial(n, p) distribution when λ = np and when the number of
trials, n, is large and the probability of success, p, is small.

CSM 2017/18 (29)

Geometric(p) distribution

Given a sequence of independent Bernoulli trials, each with
probability of success p how long do we wait till the first successful
trial?

The number of trials, X, up to and including the first successful trial
has a distribution called the Geometric distribution given by

P(X = n) = p(1− p)n−1 n = 1, 2,

The mean of X is given by 1/p and the variance by (1− p)/p2.

CSM 2017/18 (30)

The Poisson process

Consider a process of events occuring at random points of time and
let N(t) be the number of events that occur in the interval [0, t]. A
Poisson process at rate λ (λ > 0) is defined by the following
conditions:

I N(0) = 0;

I The numbers of events in disjoint time intervals are independent
and the distribution of the number of events in a interval
depends only on its length (and not its location);

I

P(N(h) = i) =


1− λh+ o(h) i = 0

λh+ o(h) i = 1

o(h) otherwise .

A quantity g(h) = o(h) if limh→0 g(h)/h = 0.

CSM 2017/18 (31)

The Poisson process (2)

Consider the number of events, N(t), occuring in an interval of
length t. Divide the interval into n nonoverlapping subintervals each
of length h = t/n.

A subinterval contains a single event with probability
approximately λ(t/n) and so it follows that the number of such
subintervals is approximately a Binomial random variable with
parameters n and p = λt/n.

Letting n→∞, shows that N(t), the number of
events in [0, t], is a Poisson random variable with
parameter λt.

Details given on next two slides.

CSM 2017/18 (32)

Lemma

lim
n→∞

(
1 +

x

n

)n
= ex (= exp(x))

Proof.
If x = 0 then the result clearly holds and if x 6= 0 then using h = x/n

lim
n→∞

(
1 +

x

n

)n

= lim
n→∞

exp
(
n ln

(
1 +

x

n

))
= lim

n→∞
exp

(
x

(
ln (1 + x/n)

x/n

))
= lim

h→0
exp

(
x

(
ln (1 + h)

h

))
= exp

(
x

(
lim
h→0

ln (1 + h)

h

))
= exp(x)

using the continuity of the exp() function and since e0 = 1 so ln(1) = 0 and

lim
h→0

ln (1 + h)

h
= lim

h→0

ln (1 + h)− ln (1)

h
=

d (ln (x))

dx

∣∣∣∣
x=1

=

(
1

x

)∣∣∣∣
x=1

= 1 .

CSM 2017/18 (33)

Now varying n and p while keeping the mean np = λt constant we
have that for each fixed j = 0, 1, . . . , n

lim
n→∞

P(N(t) = j)

= lim
n→∞

(
n

j

)(
λt

n

)j (
1− λt

n

)n−j
= lim
n→∞

n(n− 1) · · · (n− j + 1)

j!

(
λt

n

)j (
1− λt

n

)n−j
=

(λt)j

j!
lim
n→∞

n(n− 1) · · · (n− j + 1)

nj

(
1− λt

n

)n(
1− λt

n

)−j
=

(λt)j

j!
e−λt lim

n→∞

n(n− 1) · · · (n− j + 1)

nj

(
1− λt

n

)−j
=

(λt)j

j!
e−λt .

Hence, as claimed N(t) ∼ Pois(λt).

CSM 2017/18 (34)

The Poisson process (3)

Given a Poisson process of rate λ let X1 be the time of the first event
and for n > 1 let Xn denote the time between the (n− 1)st and nth

events.

The sequence X1, X2, . . . gives us the sequence of inter-event times
between the events in a Poisson process.

CSM 2017/18 (35)

The Poisson process (4)

To determine the distribution of X1 note that

P(X1 > t) = P(N(t) = 0) = e−λt

since N(t) is a Poisson random variable with parameter λt. Thus, X1

has an Exp(λ) distribution.

Now consider, X2 then

P(X2 > t |X1 = s) = P(0 events in (s, s+ t] |X1 = s)

= P(0 events in (s, s+ t])

= e−λt

and more generally it may be shown that:

The inter-event times X1, X2, . . . are independent,
identically distributed random variables each with
distribution Exp (λ).

CSM 2017/18 (36)

Time for first n events

Let Sn =
∑n
i=1Xi be the (random) time for the first n events in a

Poisson process. Then

FSn(t) = P(Sn ≤ t) = P(N(t) ≥ n) =

∞∑
j=n

e−λt
(λt)j

j!
.

So, the pdf of Sn is given by differentiating FSn(t) wrt t

fSn(t) =

∞∑
j=n

jλe−λt
(λt)j−1

j!
−
∞∑
j=n

λe−λt
(λt)j

j!

=

∞∑
j=n

λe−λt
(λt)j−1

(j − 1)!
−
∞∑
j=n

λe−λt
(λt)j

j!

= λe−λt
(λt)n−1

(n− 1)!
.

Thus, Sn =
∑n
j=1Xi has an Erlang distribution with parameters n

and λ.

CSM 2017/18 (37)

Further properties of the Poisson process

Consider a fixed time interval (0, t) and suppose that exactly one
event of the Poisson process is known to have occurred by time t. We
will now show that the time of the event is uniformly distributed in
the interval (0, t).

Again writing X1 for the time of the first event then for s ≤ t

P(X1 < s |N(t) = 1) =
P(X1 < s,N(t) = 1)

P(N(t) = 1)

=
P(1 event in (0, s), 0 events in [s, t))

P(N(t) = 1)

=
P(1 event in (0, s))P(0 events in [s, t))

P(N(t) = 1)

=
λse−λse−λ(t−s)

λte−λt
=
s

t
.

So that, conditional on N(t) = 1, X ∼ Unif(0, t).

More generally it can be shown that, given N(t) = n, the n events
occur at independently chosen uniformly distributed times in (0, t).

CSM 2017/18 (38)

Further properties of the Poisson process (2)
Superposition

Consider the superposition of two Poisson processes with rates λ1
and λ2, respectively.

The probability that an event of process 1 occurs in a short interval of
length h is λ1h (to first order) independent of other events. Similarly,
for process 2 an event occurs in the interval with probability λ2h.
Hence, an event from the superposition of both Poisson processes
occurs in the interval with probability (λ1 + λ2)h.

Accordingly, the superposition of the two processes is itself a Poisson
process with rate λ1 + λ2.

CSM 2017/18 (39)

Further properties of the Poisson process (3)
Random selection and splitting

Consider a Poisson process with rate λ and suppose that events are
selected randomly and independently with probability p.

Then again for a short interval of length h an event of the thinned
process will occur with probability pλh (to first order).

Thus random thinning of a Poisson process of rate λ and selection
probability p yields a new Poisson process of thinned events with
rate pλ.

Moreover, a Poisson process of rate λ can be randomly split into K
independent processes by selection probabilities pk
where

∑K
k=1 pk = 1. The kth process is then a Poisson process with

rate pkλ.

CSM 2017/18 (40)

Non-homogeneous Poisson processes

The Poisson process has a constant rate of events, λ, but we can relax
this assumption to use a time-dependent rate function λ(t) to produce
a non-homogeneous Poisson process as follows:

I N(0) = 0;

I The numbers of events in disjoint time intervals are independent;

I

P(exactly i events occur in (t, t+ h])

=


1− λ(t)h+ o(h) i = 0

λ(t)h+ o(h) i = 1

o(h) otherwise .

CSM 2017/18 (41)

Simulation techniques

CSM 2017/18 (42)

Introduction

The main building block of a simulation study is a source of random
variables.

We will begin by looking at the generation of sources of U(0, 1)
continuous random variables and then show how this leads to the
generation of random variables with arbitrary distributions, both
continuous and discrete.

CSM 2017/18 (43)

Random number generation

It is important not to generate random numbers with an ad hoc
method — complex algorithms do not necessarily generate random
outputs.

Some operating systems include support for generating random
numbers based on (e.g.) key strokes or network inter-arrival times —
however, these mechanisms are not usually suited to generating large
volumes of random data.

How can we algorithmically generate a long random sequence?

The answer is that the sequence is not random, but appears random
as far as can be determined from statistical tests. Such a sequence is
termed pseudo-random.

CSM 2017/18 (44)

Random number generation (2)

Important requirements include:

I the algorithm should be fast;

I the storage requirements should be low;

I the random sequence should only repeat after a very long period;

I the sequence generated should possess two important statistical
properties: uniformity and independence.

For ease of implementation and speed most random number
generators use an integer representation over an interval [0,m).

Given a value in [0,m) a value in the range [0, 1), say, can be obtained
by dividing by m

CSM 2017/18 (45)

Linear congruential method

The linear congruential method starts with a seed value, X0, and then
constructs the successive values Xn (n = 1, 2, . . .) by the equation

Xn = (aXn−1 + c) modulo m

where a, c and m are suitably chosen non-negative integers. The
values Xn lie in the range 0, 1, 2, . . . ,m− 1.

The sequence of values Xn has period at most m and so we should
wish to choose a, c and m such that the period remains large
whatever the seed value X0. Note that you should avoid a seed
value X0 = 0 if you take c = 0.

Several such examples are given by the randu() and drand48()

routines. A common choice is m = 231 − 1 and a = 75 = 16, 807
and c = 0.

The linear congruential method has now been largely replaced by
more modern methods such as the Mersenne Twister method. This is
due to flaws found in the serial correlation of successive values.

CSM 2017/18 (46)

Random variable generation

We will not investigate such random number generation methods
further here. Instead we will assume that we have an efficiently
generated supply of random numbers distributed as
independent U(0, 1) random variables.

How do we now generate variables from other distributions?

We will find that with a suitable transformation the resulting random
variables will appear to have been drawn from any desired probability
distribution.

CSM 2017/18 (47)

Discrete distributions

Suppose we are given a distribution pi with 0 ≤ pi ≤ 1
for i ∈ I = {0, 1, . . .} and

∑
i∈I pi = 1 and that we wish to generate a

discrete random variable, X, whose probability distribution function is

P(X = xi) = pi ∀i ∈ I .

This may be done by generating a (pseudo-)random variable U with
distribution U(0, 1) and setting

X =



x0 if U < p0

x1 if p0 ≤ U < p0 + p1

x2 if p0 + p1 ≤ U < p0 + p1 + p2
...

xi if
∑i−1
j=0 pj ≤ U <

∑i
j=0 pj

...

CSM 2017/18 (48)

The inverse transform method

For now since U is U(0, 1)

P(X = xi) = P

i−1∑
j=0

pj ≤ U <

i∑
j=0

pj

 = pi

If we write F (xk) =
∑k
i=0 pi then the process of generating X is given

by

I Generate a random number U

I If U < F (x0) set X = x0 and stop

I If U < F (x1) set X = x1 and stop

I
...

If the xi are ordered so that x0 < x1 < · · · then this is equivalent to
choosing X = xi if F (xi−1) ≤ U < F (xi) and for this reason the
method is known as the inverse transform method.

CSM 2017/18 (49)

Geometric random variables

Here

pi = P(X = i) = p(1− p)i−1 i = 1, 2, . . .

and so

i−1∑
j=1

pj = 1− P(X > i− 1)

= 1− (1− p)i−1 .

Thus, we can use the inverse transform method by setting X to the
value of i such that

1− (1− p)i−1 ≤ U < 1− (1− p)i .

A little algebra shows that we can write this as

X =

⌊
log(U)

log(1− p)

⌋
+ 1 .

CSM 2017/18 (50)

Poisson random variables

Here we have for λ > 0

pi = P(X = i) = e−λ
λi

i!
i = 0, 1,

Hence, it follows that

pi+1 =
λ

i+ 1
pi i = 0, 1, . . .

and an algorithm to generate a Poisson(λ) random variable is as
follows:

1 Generate a random number U

2 Set i = 0, p = e−λ, F = p

3 If U < F , set X = i and stop

4 Set p = λp/(i+ 1), F = F + p, i = i+ 1

5 Go to step 3

Similar algorithms can be formulated for other discrete distributions.

CSM 2017/18 (51)

Generating continuous random variables

Let U be a random variable with distribution U(0, 1) then

X = F−1X (U)

is a random variable with distribution function FX(x).
Proof:

P(X ≤ x) = P(F−1X (U) ≤ x)

= P(FX(F−1X (U)) ≤ FX(x))

= P(U ≤ FX(x))

= FX(x) .

So, the inverse transform method for continuous random variables
with distribution function FX(x) generates X = F−1X (U) where U
is U(0, 1).

CSM 2017/18 (52)

Uniform distribution (a, b)

Consider the uniform random variable on the interval (a, b) with
distribution function

FX(x) = (x− a)/(b− a)

for x in the interval (a, b).

Given a pseudo-random uniform value U in the interval (0, 1) we set

X = F−1X (U)

and so

U = FX(X) = (X − a)/(b− a)

so that

X = (b− a)U + a .

CSM 2017/18 (53)

Exponential distribution

For the exponential distribution with parameter λ we have

FX(x) =

{
1− e−λx if x > 0

0 otherwise

and so given U , a pseudo-random variable with distribution U(0, 1),
we set

X = F−1X (U) .

Thus

U = FX(X) = 1− e−λX

so that

X = − 1

λ
log(1− U) .

Note that both U and 1− U are distributed as U(0, 1) so we might as
well set

X = − 1

λ
log(U) .

CSM 2017/18 (54)

Alternative method for Poisson random variables

Recall that for a Poisson process of rate λ, the number of events
in [0, 1], N(1), is Poisson(λ). Moreover, the inter-arrival times of
events Xi are independent Exp(λ). Hence,

N(1) = max

{
n :

n∑
i=1

Xi ≤ 1

}
.

Thus N = N(1) is a Poisson(λ) random variable where
putting Xi = − log(Ui)/λ

N = max

{
n :

n∑
i=1

− 1

λ
logUi ≤ 1

}
= max {n : log(U1U2 · · ·Un) ≥ −λ}
= max

{
n : U1U2 · · ·Un ≥ e−λ

}
= min

{
n : U1U2 · · ·Un < e−λ

}
− 1 .

CSM 2017/18 (55)

Simulating a Poisson process

Consider the problem of generating the first n event times of a
Poisson process of rate λ. One way is to generate U1, U2, . . . , Un
independent random numbers each from a U(0, 1) distribution and

set Xi = − 1
λ log(Ui). Then the first n event times are

∑j
i=1Xi

for j = 1, 2, . . . , n.

To generate the first T time units we could proceed as above and stop
when the sum first exceeds T . Algorithmically,

1 Set t = 0, I = 0

2 Generate a random number U

3 Set t = t− 1
λ log(U). If t > T stop

4 Set I = I + 1, S(I) = t

5 Go to step 2

will build the sequence of event times in S(·).

CSM 2017/18 (56)

Simulating a non-homogeneous Poisson process

Recall that using random selection with probability p a Poisson
process of rate could be thinned to one of rate pλ. This result can be
generalized to a time-dependent thinning probability p(t) and forms
the basis for a method to simulate a non-homogeneous Poisson
process.

First, it is reasonable in practice to suppose that the rate is bounded
so that the rate function of the non-homogeneous Poisson process λ(t)
satisfies

λ(t) ≤ λ∗ for all t ≥ 0 .

for some constant λ∗.

Then if we simulate a (homogeneous) Poisson process of rate λ∗ and
randomly thin it with time-dependent selection
probability p(t) = λ(t)/λ∗ we will construct a non-homogeneous
Poisson process with rate p(t)λ∗ = λ(t).

Computationally, we will try to choose as tight a bound, λ∗, as
possible so that we do not generate excessive numbers of events prior
to thinning.

CSM 2017/18 (57)

A simple queueing system

arrivals
-

queue server(s)

��
�� departures

-

We characterise queueing systems by:

I Arrival process A(t) = P(inter-arrival time ≤ t)
I Service process B(x) = P(service time ≤ x)

I Storage capacity available for waiting customers

I The number of servers/customers available

I The different classes of arriving customers (big jobs, small
jobs,. . .)

I Queueing discipline used: FIFO, FCFS, LCFS, priority, . . .

I Defections, balking, bribing, . . .

CSM 2017/18 (58)

Queueing systems notation

The Kendall notation describes a single queueing system using the
notation A/B/m/k/l where:

I A is the inter-arrival time distribution of customers

I B is the service time distribution

I m is the number of parallel servers

I k is the limit on the customers in this system

I l is the population size

If the population size or the limit on the queue length are not
specified then they are assumed to be infinite.

CSM 2017/18 (59)

Queueing systems notation (2)

I M – exponential distribution (ie, memoryless)

I Er – r-stage Erlang distribution

I D – Deterministic

I G – General

Examples:

I M/M/1: exponential inter-arrival, exponential service, single
server

I M/Er/1: exponential inter-arrival, r-stage Erlang service, single
server

I M/G/1: exponential inter-arrival, general service time, single
server

I M/M/K/K: exponential inter-arrival, exponential service, K
servers and at most K customers present

CSM 2017/18 (60)

Queueing networks

1 2 3

45

-� -� -

- -

6
?

�
��*
HH

HY

���
���

���
�:

6

More generally, consider systems comprising multiple inter-connected
servers, forming a queueing network. Consider:

I the properties of each server

— e.g. using Kendall notation

I the way in which jobs move between the servers

— e.g. the links between severs and the ways jobs move between
them

I the workload being analyzed

— e.g. disk-server workload comprises a 20 : 1 mix of small/large
requests.

CSM 2017/18 (61)

Queueing networks (2)

We can classify queueing networks as either

I closed networks in which a fixed set of jobs circulate between
servers but no new jobs are introduced and no jobs leave the
system

— e.g. a computer system with a fixed number of terminals
attached to it.

I open networks in which jobs may enter and leave the system

— e.g. the network on the previous slide: jobs arrive at 1 or 5
and leave from 1 or 3.

Open networks may be further classified as feed-forward if a single
job visits each server at most once.

CSM 2017/18 (62)

Simulation

Simulation allows arbitrarily complex systems to be evaluated.

I Able to capture the dynamic behaviour of systems.

I The dynamics of complex systems are obtained by tracking the
evolution of the system over time.

Examples include communication network design, road traffic
modelling, etc.

CSM 2017/18 (63)

Simulation (2)

Execution of a simulation model consists of a series of state space
changes.

We always follow the dynamic evolution of the system, even if we only
want a mean value.

As well as techniques for implementing simulators it is necessary to
know how to analyse their results.

Simulation is of particular use when we are studying systems that are
not in steady state.

CSM 2017/18 (64)

Types of simulation

I Discrete state/event simulation in which the state of the system
is described by discrete variables

— e.g. the number of jobs at different stages on a production line

I Continuous state/event simulation in which the state is described
by continuous variables

— e.g. the quantities of various chemical reagents

A similar distinction may be drawn between discrete time and
continuous time simulations depending on whether the system state is
defined at certain discrete times or at all times.

CSM 2017/18 (65)

Types of simulation (2)

We will be concerned with discrete event simulation because it applies
most naturally to computer systems in which state variables are
generally discrete. For example:

I the state of jobs in the system;

I the number of jobs of different kinds;

I the number or availability of resources or devices.

CSM 2017/18 (66)

Pros and cons

The principal advantage of simulation is its extreme generality.
However, . . .

I The design, coding and debugging of a simulation program are
often time consuming and difficult to understand — the task may
even approach that of implementing the system and measuring it
directly!

I Generality can lead to complexity that can obscure
understanding of the model — fine details may be irrelevant if
the workload is poorly approximated.

I Execution of the simulation can be computationally expensive.

I Statistical analysis of the output can be problematic — e.g. how
long to run the simulation before averaging the results?

CSM 2017/18 (67)

Events

Each event contains a time stamp identifying ‘when it occurs’ and
denotes some change in the state of the system to be simulated e.g.
‘IP packet arrived’

Events are ordered in time in an event list

1: Initialize the clock to 0
2: Initialize the event list
3: while termination criterion is not met do
4: remove earliest tuple (t,m) from the event list
5: update the clock to t
6: simulate the effect of transmitting m at time t
7: end while

It is crucial that the simulator always selects the event with the
earliest time stamp.

Frequently most of the simulation time is spent maintaining the
chronological order of the event list.

CSM 2017/18 (68)

Simulation variables

As we have seen, discrete event simulations involve both events and
variables and where we keep track of variables as they change during
a simulation.

There are several types of variables to consider.

I Time variable, t, to record the passage of time during the
simulation;

I Counter variables which keep count of the number of times that
certain events have occurred by time t;

I System state variables which define the state of the system at
time t.

As simulation events occur we change these variables and gather any
output of interest.

CSM 2017/18 (69)

Example

- �
�
��

B
B
BB

B
B
BB

�
�
��

-

-

-

-

CW1

CW2

cars arriving
queue

attendant
cars leaving-

A car wash which is able to service one car at a time — is it viable to
install a second car wash?

Model: attendant (att), car washes, (cw1, cw2), entrance (source)
and exit (sink).

I The inter-arrival time of cars that need to be washed is randomly
distributed.

I If both car washes are busy then an arriving car joins the queue.
I When a car wash becomes idle then the car at the head of the

queue is sent to it.
CSM 2017/18 (70)

Example (2)

Events:

I source→att: car arrives in the system

I att→cw: car sent from the queue to the car wash

I cw→att: car wash becomes idle

I cw→sink: car departs the system

Note how the departure of a car is modelled by two events: one
representing the car leaving the system and the other that signals to
the attendant that the car wash is now idle. Observe the similarity
with object-oriented styles of programming in which objects
communicate solely by method invocations.

Given that it takes cw1 8 minutes and cw2 10 minutes to wash a car,
a possible sequence of events is . . .

CSM 2017/18 (71)

Sequence of events

message event time sender receiver content

1 - 0 cw1 att idle
2 - 0 cw2 att idle
3 1 6 source att car 1
4 2 6 att cw1 car 1
5 3 11 source att car 2
6 4 11 att cw2 car 2
7 5 12 source att car 3
8 6 14 cw1 sink car 1
9 - 14 cw1 att idle

10 7 14 att cw1 car 3
11 8 17 source att car 4
12 9 19 source att car 5
13 10 21 cw2 sink car 2
14 - 21 cw2 att idle

CSM 2017/18 (72)

Simulating a single server queue

As a more detailed example consider the simulation of a single server
queue to which customers arrive according to a (homogeneous)
Poisson process of rate λ.

On arrival a customer either enters service immediately (if the server
is free) or waits in a queue of customers (if the server is busy). When
a customer departs the server the customer who has been waiting
longest (assuming FIFO discipline) enters service or, if the queue is
empty, the server remains idle until the next customer arrives.

The times taken to serve each customer are independent, identically
distributed random variables with probability distribution
function G(·).

CSM 2017/18 (73)

Simulating a single server queue (2)

Let T be a fixed time beyond which customers are no longer allowed
to enter the system.

Beyond time T the server continues to serve all remaining customers
until the system is empty.

CSM 2017/18 (74)

Simulating a single server queue (3)

Variable Description

Time t
Counter NA, the No of arrivals

ND, the No of departures
System state n, the No of customers

The event list will consist of two elements tA and tD, the times of the
next arrival and next departure, respectively. If there is no customer
in service then put tD =∞.

We will record and output A(i) and D(i), the times of arrival and
departure of customer i, respectively.

CSM 2017/18 (75)

Simulating a single server queue (4)

Within the simulation we use the random variable Ts as the time of
the next arrival after time s and Y as a random service time chosen
from the given distribution G(·).

The initialization of the variables is as follows.

I Set t = NA = ND = 0;

I Set n = 0;

I Generate T0 and set tA = T0 and tD =∞.

The simulation advances event by event updating the variables
according to one of the following cases.

CSM 2017/18 (76)

Simulating a single server queue (5)

Case I: tA ≤ tD, tA ≤ T

I Reset t = tA, NA = NA + 1, n = n+ 1;

I Generate Tt, reset tA = Tt;

I If n = 1, generate Y and reset tD = t+ Y ;

I Collect output data A(NA) = t.

Case II: tD ≤ tA, tD ≤ T

I Reset t = tD, n = n− 1, ND = ND + 1;

I If n = 0 reset tD =∞ else generate Y and reset tD = t+ Y ;

I Collect output data D(ND) = t.

CSM 2017/18 (77)

Simulating a single server queue (6)

Case III: min(tA, tD) > T , n > 0

I Reset t = tD, n = n− 1, ND = ND + 1;

I If n > 0 generate Y and reset tD = t+ Y ;

I Collect output data D(ND) = t.

Case IV: min(tA, tD) > T , n = 0

I Stop.

Each simulation run will record the quantities A(i) and D(i).

The difference D(i)−A(i) is the amount of time that the ith customer
spent in the system also called the customer’s residence time.

CSM 2017/18 (78)

Simulation performance measures

As the simulation itself is stochastic so too are the observed outputs.

It is critical to realize that a simulation can only yield estimates for
performance measures and there will always be some statistical error
in the estimates.

We can attempt to reduce the error by:

I running the simulation for longer until sufficient samples have
been taken;

I running the same simulation with a different pseudo-random
number sequence, and combining the results from multiple runs.
We will say more on this later.

CSM 2017/18 (79)

Performance metrics

I Utilization: The utilization is the proportion of time that a server
is busy.
An estimate can therefore be obtained by taking the sum of the
busy times of the server and dividing by T , the simulation length.
In the case of a k-server, the busy times can be estimated
together and divided by kT .

I Throughput: mean number of customers receiving service per
unit time

I Mean queueing time

I Mean waiting time

CSM 2017/18 (80)

Statistical analysis of results

Suppose that X1, X2, . . . , Xn are independent, identically distributed
random variables and let µ and σ2 be their common mean and
variance, respectively.

Hence,

E(Xi) = µ

and

Var(Xi) = E((Xi − E(Xi))
2) = σ2 .

Given a sample of values of the random variables X1, X2, . . . , Xn how
might we estimate the values of the true but unknown parameters µ
and σ2 and how does the sample size, n, effect the accuracy of our
estimates?

CSM 2017/18 (81)

Sample mean

The quantity

Xn :=
1

n

n∑
i=1

Xi

is called the sample mean.

Note that the sample mean is also a random variable with expected
value given by

E(Xn) = E

(
n∑
i=1

Xi

n

)

=

n∑
i=1

E(Xi)

n

=
nµ

n
= µ .

CSM 2017/18 (82)

Sample mean (2)

Similarly, the variance of Xn is given by

Var(Xn) = E((Xn − µ)2)

= Var

(
n∑
i=1

Xi

n

)

=
1

n2

n∑
i=1

Var(Xi)

=
σ2

n
.

Thus, Xn can be used to estimate µ from the sample. It is a good
estimator of µ when σ/

√
n is small.

We can view Var(Xn) as the mean squared error in our estimation
of µ by Xn.

CSM 2017/18 (83)

Sample variance

Call the random variable

S2
n :=

∑n
i=1(Xi −Xn)2

n− 1

the sample variance.

It is possible to show that

E(S2
n) = σ2

and so Sn can be used to estimate the true standard
deviation

√
Var(Xi) = σ.

It is important to have an estimator for σ since we have seen that the
accuracy of our estimator (Xn) for the true mean µ depends on the
variance σ2 as well as on the sample size, n.

CSM 2017/18 (84)

Confidence intervals

We can use the Central Limit Theorem to see that for large sample
sizes, n, the random variable

(Xn − µ)

σ/
√
n

=
√
n

(Xn − µ)

σ

is asymptotically distributed N(0, 1) for large n.

Additionally, we usually do not know the true standard deviation σ
but instead we can estimate it by Sn so that

√
n

(Xn − µ)

Sn

is approximately distributed N(0, 1).

CSM 2017/18 (85)

Confidence intervals (2)

Write zα for the value such that P(Z > zα) = α where Z is a standard
normal random variable N(0, 1) then it follows that

P
(
−zα/2 < Z < zα/2

)
= 1− α

and so by the CLT for large n

P
(
−zα/2 <

√
n

(Xn − µ)

Sn
< zα/2

)
≈ 1− α

or, equivalently,

P
(
Xn − zα/2

Sn√
n
< µ < Xn + zα/2

Sn√
n

)
≈ 1− α .

The interval[
Xn − zα/2Sn/

√
n, Xn + zα/2Sn/

√
n
]

is an (approximate) 100(1 − α) percent confidence
interval for µ.

CSM 2017/18 (86)

Student’s t-distribution

If it is known that the common distribution of the variables Xi is also
Normal then

√
n

(Xn − µ)

Sn

has (exactly) a distribution called the Student’s t-distribution
with n− 1 degrees of freedom.

Thus, in this case, an alternative confidence interval for µ is to take tα
in place of zα where tα is defined analogously as

P(T > tα) = α

where T is a random variable with the Student t-distribution
with n− 1 degrees of freedom.

Values of zα and tα are readily available in statistical tables or in
suitable numerical libraries or software packages.

CSM 2017/18 (87)

Stopping rules

How do we know when a system has been run ‘long enough’ for
performance measures to be accurate?

We can repeat the simulation several times with different random
seed values to obtain many samples. These multiple runs are called
replications.

Having repeated the experiment n times, we can construct a
confidence interval on our measure L, say.

Although large numbers of replications reduce the variance, each
replication requires re-stabilizing the simulation.

Can we avoid this?

We may be able to use a single, long run, and break up our samples
into n blocks, each of these can form a sample Li for i = 1, 2, . . . , n.

CSM 2017/18 (88)

Stopping rules (2)

What could go wrong with this?

Correlation between successive blocks could mean that we have biased
samples.

If the block size is large then the correlation should be small.

Explicit techniques exist to estimate the correlation and determine a
suitable block size.

The simulation can be stopped once the estimate of L becomes stable.
For example, once the confidence interval around L becomes
sufficiently narrow.

CSM 2017/18 (89)

Stopping rules (3)

For example, suppose we wish to run the simulation until
our 100(1− α) confidence interval for the true mean value is of at
most of width `, say.

We can guarantee this by means of the following algorithm:

I generate at least 100 data values, say;

I repeatedly, generate additional data values, stopping when the
number of values generated, n, is such that 2zα/2Sn/

√
n < `.

The initial 100 data values is for illustration, a suitable value will
depend on the precise simulation experiment under consideration.
The intention is to suppress the effects of the initial transient phase.

CSM 2017/18 (90)

Goodness of fit tests

How might we validate our simulation model?

One area of concern is the assumption of various probabilistic
distributions in the model. For example, how sure are we in the use of
a Poisson distribution for the numbers of events in a given interval or
the choice of the distribution G(·) for the service times of customers
in a queue.

Statistical procedures have been developed to help with these
questions. The hypothesis of a particular distribution can be tested
by observing the system and then asking whether the assumption of a
particular distribution is ‘consistent’ with the data. Such procedures
are known as statistical goodness of fit tests.

CSM 2017/18 (91)

Chi-Squared test for discrete data

Suppose we have n independent random variables Y1, Y2, . . . , Yn and
we wish to test the null hypothesis that they have the common
distribution

P(Yj = i) = pi i = 1, 2, . . . , k .

If we let Ni be the number of Yj equal to i then we expect under the
null hypothesis that

E(Ni) = npi i = 1, 2, . . . , k .

Thus we should consider rejecting the null hypothesis when

T :=

k∑
i=1

(Ni − npi)2

npi

is large. How large is too large?

CSM 2017/18 (92)

Chi-Squared test (2)

It can be shown that under the null hypothesis and when n is large
that the distribution of T is approximately a chi-squared random
variable with k − 1 degrees of freedom.

We should assess the value of

P(T > tobs)

where tobs is the observed value from standard tables of the
chi-squared distribution.

Typically, we would reject the null hypothesis if

P(T > tobs)

has a value less than 0.05 or, more conservatively, as low as 0.01.
Otherwise, we say that the observed data appears consistent with the
null hypothesis.

CSM 2017/18 (93)

Kolmogorov-Smirnov test for continuous data

Suppose now that we wish to test whether n independent random
variables Y1, Y2, . . . , Yn arise from a common continuous
distribution F (x).

First we observe the n random variables and construct the empirical
distribution function defined by

Fe(x) :=
No of i such that Yi ≤ x

n
.

This will measure the proportion of observed values less than or equal
to x and so should be ‘close’ to the function F (x) under the null
hypothesis.

CSM 2017/18 (94)

Kolmogorov-Smirnov test for continuous data (2)

Consequently, we would expect the quantity

D = max
x
|Fe(x)− F (x)|

under the null hypothesis to be small and we should reject the null
hypothesis if D is too large.

The quantity D is called the Kolomogorov-Smirnov test statistic.

The distribution will depend on the sample size n and has been
tabulated.

Interestingly, the distribution of D does not depend on F (x)—an
example of a distribution-free test.

CSM 2017/18 (95)

Other tests for randomness

Various statistical tests are available.

Runs tests, which examine the arrangement of numbers in a sequence
(a run) to test the hypothesis of independence.

These tests frequently check for the number of “up runs”, the number
of “down runs”, and the runs above and below the mean.

Autocorrelation tests check the correlation structure of the sequence
of observations.

CSM 2017/18 (96)

Variance reduction techniques

So far we have used the sample mean, Xn, as our estimator for µ, the
mean value of our distribution. We know that

E(Xn) = µ and Var(Xn) =
σ2

n

where n is the sample size.

Might we be able to find an alternative estimator for µ that has
smaller variance?

Such variance reduction techniques can sometimes produce significant
speed-ups in the simulation.

CSM 2017/18 (97)

Antithetic variables

Suppose that X1 and X2 are two identically distributed random
variables with common mean E(X1) = E(X2) = µ. Then

Var

(
X1 +X2

2

)
=

1

4
(Var(X1) + Var(X2) + 2Cov(X1, X2)) .

Hence, we would get a reduced variance by using (X1 +X2)/2
when X1 and X2 are negatively correlated.

Recall that in the inverse transform method we generate (pseudo)
random numbers by first generating pseudo random
numbers U1, U2, . . . with a U(0, 1) distribution. But then the
numbers 1− U1, 1− U2, . . . are also random numbers with a U(0, 1)
distribution and these two series of numbers are negatively correlated.

CSM 2017/18 (98)

Antithetic variables (2)

It often happens in practice that dividing the simulation runs into two
groups and using 1− U for the second group in place of U in the first
group yields two random variables X1 and X2 which are negatively
correlated.

In this case we say that X1 and X2 are antithetic variables.

CSM 2017/18 (99)

Example

Consider a queueing system and let Di be the delay in the queue of
the ith customer and suppose we wish to estimate

E(D1 +D2 + · · ·+Dn)

the sum of the delays of the first n customers.

We should expect to require a collection of 2n random variables Uj
(one for each arrival and departure event per customer).

Repeating the simulation using the 2n random numbers given
by 1− Uj will then give an improved estimator compared to using a
‘fresh’ set of 2n random numbers.

CSM 2017/18 (100)

Control variates

Suppose we run a simulation and gather from the output a random
variable X for estimating µ with E(X) = µ.

Now, suppose that we also gather another random variable, Y , from
the same output and where Y has known mean value E(Y) = µY .

Hence, for any number c

Z = X + c(Y − µY)

is also an estimator for µ since clearly E(Z) = µ.

What is the best choice of c?

CSM 2017/18 (101)

Control variates (2)

Note that

Var(Z) = Var(X + c(Y − µY)) = Var(X + cY)

= Var(X) + c2Var(Y) + 2cCov(X,Y)

and so, using calculus, the variance is minimized by taking c = c∗

where

c∗ = −Cov(X,Y)

Var(Y)

and then

Var(X + c∗(Y − µY)) = Var(X)− (Cov(X,Y))2

Var(Y)
≤ Var(X) .

The variable, Y , is called the control variate for X.

CSM 2017/18 (102)

Example

Suppose we are simulating a queueing system and we are interested in
estimating the total time spent in the system by all customers
arriving before time t. If Wi is the amount of time spent in the
system by the ith customer then we wish to estimate µ = E(X) where

X =

N(t)∑
i=1

Wi

where N(t) is the number of arrivals by time t.

CSM 2017/18 (103)

Example (2)

If the service time of the ith customer is Si then

Y =

N(t)∑
i=1

Si

can act as a control variate and we have from known quantities that

E(Y) = µY = E(S)E(N(t)) .

Note that in order to compute the optimal choice c∗ for c we would
have to estimate the variance Var(Y) and covariance Cov(X,Y) from
the simulated data.

CSM 2017/18 (104)

Queueing theory

CSM 2017/18 (105)

Stochastic processes

A stochastic process is a collection of random variables X(t) taking
values in a state space S indexed by times in a set T .

The values X(t) are said to denote the state of the process at time t.

An observed set of values X(t) for t ∈ T is said to be a sample path
or realization of the process.

CSM 2017/18 (106)

Discrete and continuous

A stochastic process is a discrete-state process when S is countable,
e.g integer-valued. Otherwise, the process is continuous-state.

A stochastic process is a discrete-time process when T is countable,
e.g T = {0, 1, 2, . . .}. Otherwise, the process is continuous-time.

Markov chains are discrete-state, discrete-time stochastic processes.

CSM 2017/18 (107)

Markov processes

A Markov process is a stochastic process such that for
all t1 < . . . < tn < t and for events A1, . . . , An, A

P(X(t) ∈ A|X(tn) ∈ An, . . . , X(t1) ∈ A1) =

P(X(t) ∈ A|X(tn) ∈ An)

This is known as the Markov property and it says that the choice of
next state depends only on the current state (and not on earlier
states).

Thus, more precisely, Markov chains are discrete-state, discrete-time
Markov processes.

In this case, we usually denote the time values, T , as T = {0, 1, 2, . . .}
and also use the notation Xt for X(t), t ∈ T = {0, 1, 2, . . .}.

CSM 2017/18 (108)

Markov processes (2)

Suppose that a Markov process enters state i at time 0 and does not
leave during the next s time units.

By the Markov property, the probability that the process remains in
state i for another t time units is the just the (unconditional)
probability that it stays in i for at least t time units.

So, letting τi denote the amount of time that the process stays in
state i before leaving

P(τi > s+ t | τi > s) = P(τi > t) .

By the uniqueness of the memoryless property it follows that the τi
values are exponentially distributed.

CSM 2017/18 (109)

Birth death processes

A birth death process (BDP) is a discrete-state continuous-time
Markov process with states given by the non-negative integers and for
which we allow transitions only between neighbouring states.

A jump up by one is said to be a birth event and a jump down by one
a death event.

The movement of the process around the state space can be
represented through a diagram showing the states and the possible
transitions between them labelled by the transition rates.

CSM 2017/18 (110)

State space diagram

We write:

I λi for the instantaneous birth rate in state i for i ≥ 0

I µi for the instantaneous death rate in state i for i ≥ 1.

0 1 2 · · · i i+ 1 · · ·

λ0

µ1

λ1

µ2

λ2

µ3

λi−1

µi

λi

µi+1

λi+1

µi+2

CSM 2017/18 (111)

Time dependent solution of BDP

Denote by Pi(t) the probability of being in state i at time t.

The probability of a birth in an interval ∆t when the system starts in
state i is assumed to be λi∆t+ o(∆t).

The probability of a death in ∆t when the system starts in state i is
µi∆t+ o(∆t).

The probability of more than one event in ∆t is o(∆t).

[Recall: o(∆t) denotes a quantity which becomes negligible when
compared with ∆t as ∆t→ 0.]

To solve for Pi(t) we write a set of differential equations called the
Chapman-Kolmogorov equations.

CSM 2017/18 (112)

Chapman-Kolmogorov equations

For i ≥ 1:

Pi(t+ ∆t) = Pi(t)(1− λi∆t)(1− µi∆t)
+ Pi+1(t)(µi+1∆t)(1− λi+1∆t)

+ Pi−1(t)(λi−1∆t)(1− µi−1∆t)

+ o(∆t) .

For i = 0:

P0(t+ ∆t) =P0(t)(1− λ0∆t)

+ P1(t)(µ1∆t)(1− λ1∆t)

+ o(∆t) .

CSM 2017/18 (113)

Chapman-Kolmogorov (2)

We derive differential equations by dividing through by ∆t and taking
the limit as ∆t→ 0 to get for i ≥ 1

dPi(t)

dt
= −(λi + µi)Pi(t)

+ µi+1Pi+1(t)

+ λi−1Pi−1(t)

and for i = 0

dP0(t)

dt
= −λ0P0(t) + µ1P1(t) .

The time dependent solution is complicated for many systems so we
will instead study the stationary (time-independent) solution.

CSM 2017/18 (114)

Stationary solution

We are interested in the long term probabilities after the system has
reached an equilibrium.

These probabilities are independent of the initial conditions.

System reaches equilibrium if, for all i,

lim
t→∞

Pi(t) = pi exists .

CSM 2017/18 (115)

Stationary solution (2)

The quantities pi solve the Chapman-Kolmogorov equations with

dPi(t)

dt
= 0

so that

0 = −(λi + µi)pi + µi+1pi+1 + λi−1pi−1

0 = −λ0p0 + µ1p1 .

Rewriting gives

pi+1 =
λi + µi
µi+1

pi −
λi−1
µi+1

pi−1 (i ≥ 1)

p1 =
λ0
µ1
p0 .

CSM 2017/18 (116)

Stochastic balance

Under steady-state conditions we require total flow into a state to
equal total flow out of a state.

The total flow is the product of the steady state probabilities and the
flow rates.

We enter state i at rate pi−1λi−1 + pi+1µi+1.

We exit state i at rate piλi + piµi.

The equation

pi−1λi−1 + pi+1µi+1 = piλi + piµi (i ≥ 1)

equates the flow into and out of state i.

This is called the global balance equation.

CSM 2017/18 (117)

Stochastic balance (2)

The equations

piλi = pi+1µi+1 (i ≥ 0)

describing flow from state i to state i+ 1 are the detailed balance
equations. Rewriting gives

pi+1 =
λi
µi+1

pi

which gives us the product solution

pk = p0

k−1∏
i=0

λi
µi+1

for k ≥ 1

for pk (k ≥ 1) in terms of p0.

CSM 2017/18 (118)

Stochastic balance (3)

Since the sum of state probabilities is unity,

1 = p0 +

∞∑
k=1

pk = p0 +

∞∑
k=1

p0

k−1∏
i=0

λi
µi+1

= p0

[
1 +

∞∑
k=1

k−1∏
i=0

λi
µi+1

]

so that

p0 =

[
1 +

∞∑
k=1

k−1∏
i=0

λi
µi+1

]−1

and

pk = p0

k−1∏
i=0

λi
µi+1

is the steady state equilibrium distribution provided that p0 > 0.

CSM 2017/18 (119)

The M/M/1 queue

The birth death process maps well onto queueing systems.

Births represent arrivals to queue, deaths represent departures as
customers finish service.

The M/M/1 queue is an infinite customer system, with infinite
waiting room, and a state independent service rate.

This means that λi = λ and µi = µ for all i and we can solve the
detailed balance equations as

pk = p0

k−1∏
i=0

λ

µ

= p0

(
λ

µ

)k
.

CSM 2017/18 (120)

The M/M/1 queue (2)

Writing ρ =
λ

µ
and for ρ < 1 then

p0 =
1

1 +
∑∞
k=1 ρ

k

=
1

1 + ρ
∑∞
k=0 ρ

k

=
1

1 + ρ
(

1
1−ρ

)
= 1− ρ > 0 .

Consequently, the distribution of the number in the system, N , is

pk = (1− ρ)ρk, k = 0, 1, 2, . . .

If ρ ≥ 1, that is, if λ ≥ µ the system will not reach equilibrium—the
mean number present will simply increase indefinitely.

CSM 2017/18 (121)

The M/M/1 queue (3)

What is the mean number of customers, E(N), in the system?

E(N) =

∞∑
k=0

kpk =

∞∑
k=0

k(1− ρ)ρk

= (1− ρ)ρ

∞∑
k=0

kρk−1

= (1− ρ)ρ

∞∑
k=0

d

dρ

(
ρk
)

= (1− ρ)ρ
d

dρ

(∞∑
k=0

ρk

)

= (1− ρ)ρ
d

dρ

(
1

1− ρ

)
= (1− ρ)ρ

1

(1− ρ)2

=
ρ

1− ρ
.

CSM 2017/18 (122)

The M/M/1 queue (4)

An arriving customer will find, on average E(N) in the system, and
will spend a time, say E(T), in the system. During E(T) there will be,
on average λE(T) arrivals, leaving E(N) customers in the queue. Thus

E(N) = λE(T)

which is Little’s result restated. In our case

E(T) =
E(N)

λ
=

ρ

λ(1− ρ)

=
1

µ(1− ρ)
=

1

µ− λ

which is the M/M/1 mean residence time.

Note that

I 1
µ is the average service time;

I ρ is the utilization.

CSM 2017/18 (123)

Performance at high load

At high utilizations ρ approaches one and the residence time and
queue lengths are unbounded.

0 0.2 0.4 0.6 0.8 1
0

50

100

Traffic intensity, ρ = λ/µ

Expected number in the system, E(N) = ρ/(1− ρ)

Exercise: what happens to the variance as ρ→ 1?
CSM 2017/18 (124)

Residence time

Consider the effect on residence time by increasing the utilization by
a constant load of 0.1.

utilization (ρ) residence time (E(T))

old new % ↑ old new % ↑
0.1 0.2 100.0 1.11 1

µ 1.25 1
µ 13

0.5 0.6 20.0 2 1
µ 2.5 1

µ 25

0.8 0.9 12.5 5 1
µ 10 1

µ 100

Predicting residence times is very difficult at high loads.

Running systems at maximum utilization may please the providers,
but it doesn’t please the users.

CSM 2017/18 (125)

M/M/1 — an example

H.R Cutt barber shop—no appointment needed!

Customers served FCFS.

On Saturday mornings he is very busy and is considering hiring a
helper.

The Poisson arrival rate of customers is measured to be 5 per hour.

Customers are prepared to wait, and he spends on average 10 min per
cut.

What are the average number of customers in the shop and the
average number of customers waiting? What percentage of time can a
customer receive a cut without waiting?

He has 4 seats in his waiting room. What is the probability that an
arriving customer will find no seat and have to stand?

CSM 2017/18 (126)

M/M/1 example solution

We have that λ = 5 per hour and µ = 6 per hour. So

ρ =
λ

µ
=

5

6
< 1

and hence

E(N) =
ρ

1− ρ
=

5/6

1− 5/6
= 5 .

Since the mean number of customers in service is ρ, the utilization,
the mean number of customers waiting is

E(Nq) = E(N)− ρ = 4
1

6
.

How likely is the barber to be idle?

p0 = 1− ρ =
1

6
.

How often is no seat free?

P(no seat) = P(N ≥ 5) = ρ5 ≈ 0.402 .

CSM 2017/18 (127)

M/M/m — m servers

This is just like the M/M/1 system except that there are m servers.

For all k, λk = λ, but now the service rate is a function of the number
of customers in the system

µk =

{
kµ if 0 < k < m

mµ if k ≥ m.

For an equilibrium distribution to exist we require that λ
mµ < 1.

0 1 · · · m−1 m m+1 · · ·
λ

µ

λ

2µ

λ

(m− 1)µ

λ

mµ

λ

mµ

λ

mµ

CSM 2017/18 (128)

M/M/1/K — finite capacity

The system can hold up to K customers.

Now for k ≥ K, λk = 0 and for k > K, pk = 0.

Using the equations from the M/M/1 queueing system, but limiting
the summation to k ≤ K, and again writing ρ = λ

µ ,

pk = p0ρ
k for k ≤ K

p0 =
1

1 +
∑K
k=1 ρ

k

=


1

1+ ρ−ρK+1

1−ρ

(ρ 6= 1)

1
1+K (ρ = 1)

=

{
1−ρ

1−ρK+1 (ρ 6= 1)
1

1+K (ρ = 1) .

For this system with a finite state space an equilibrium distribution
always exists whatever the arrival and departure rates.

Note that p0 is greater than 1− ρ which is the equilibrium probability
that the system is empty in the M/M/1 case.

CSM 2017/18 (129)

M/M/1//N — finite population

Single server, unbounded queue capacity and a population of N
customers. We solve this system by modifying the λk to model the
arrival rate. Instead of having an arrival rate for the population as a
whole, we assign an arrival rate to each customer, say λ.

If there are no customers in the system, then all of them are eligible
to be born, so that

λ0 = Nλ .

As we have more customers in the system, we have less eligible to be
born. So that,

λk = (N − k)λ, for 0 ≤ k ≤ N .

With a single server the service rate is constant

µk = µ, for k ≥ 1 .

CSM 2017/18 (130)

M/M/m/m — m server loss system

An application of this system is to model a link in a telephone
network.

Such a link contains m circuits each of which carries a single call.

Suppose that calls arrive at the link according to a Poisson process of
rate λ.

If there is a free circuit the call is connected and holds the circuit for
an exponentially distributed length of time, with mean 1

µ .

At the end of this holding period the call terminates and the circuit is
freed.

If there are no free circuits then the call is lost.

CSM 2017/18 (131)

M/M/m/m loss system

0 1 2 · · · m−1 m

λ

µ

λ

2µ

λ

3µ

λ

(m− 1)µ

λ

mµ

λk =

{
λ k < m

0 k ≥ m

µk = kµ for 1 ≤ k ≤ m

The flow balance equations give for k ≤ m

pk = p0

k−1∏
i=0

λi
µi+1

= p0

k−1∏
i=0

λ

(i+ 1)µ

= p0

(
λ

µ

)k
1

k!
.

CSM 2017/18 (132)

M/M/m/m loss system (2)

Solving for p0 gives

1 =

m∑
k=0

pk = p0

m∑
k=0

(
λ

µ

)k
1

k!

and so

p0 =

[
m∑
k=0

(
λ

µ

)k
1

k!

]−1
> 0 .

The probability that an arriving call finds all circuits occupied, pm, is
called the loss probability for the telephone link. Thus,

pm = p0

(
λ

µ

)m
1

m!

=

(
λ

µ

)m
1

m!

[
m∑
k=0

(
λ

µ

)k
1

k!

]−1
This expression for the loss probability is known as Erlang’s formula.

CSM 2017/18 (133)

Extensions

First we relax our constraints on the arrival process distribution.

We want to model systems in which the coefficient of variation of the
interarrival time is less than one.

Consider a system in which a birth occurs in two stages.

2λ 2λ

Each stage lasts an exponentially distributed time.

CSM 2017/18 (134)

Extensions (2)

If the desired birth rate is λ then let each stage have a rate 2λ.

The average time, τ , to get through the combined birth process will be

E(τ) =
1

2λ
+

1

2λ
=

1

λ
.

Since each stage lasts an exponentially distributed time the variance
of each stage is given by 1

(2λ)2 .

The two stages are independent so the variance of τ , the time to get
through both stages, is

Var(τ) =
1

(2λ)2
+

1

(2λ)2
=

1

2λ2
.

CSM 2017/18 (135)

Extensions (3)

Then the coefficient of variation is given by

Cτ =

√
1

2λ2

1
λ

=
1√
2
.

In general, if we use r stages each with rate rλ we get an average time
through all stages of 1

λ and a coefficient of variation of 1√
r
.

The distribution that describes the time to complete the r stages is
the Erlang distribution, denoted Er.

CSM 2017/18 (136)

Example, M/E2/1

Allow the state of the process to represent the number of stages
remaining to be served.

An arrival increases the number of stages remaining to be served by 2
and occurs at rate λ.

A departure from a stage reduces the number of stages to be served
by 1 and occurs at rate 2µ.

0 1 2 3 · · ·

λ λ λ

2µ 2µ 2µ 2µ

Note that we no longer have a birth death process since the arrivals
move up by two states instead of one.

CSM 2017/18 (137)

Parallel Servers

Combining stages in series reduces the coefficient of variation.

If, instead, we combine them in parallel with a probability αi of
choosing the ith parallel stage we get a service distribution with
coefficient of variation larger than 1. We have that

∑r
i=1 αi = 1.

µ1

µ2

α1

α2

e.g. r = 2

The squared coefficient of variation is given (see Kleinrock) by

C2
τ =

2
∑r
i=1

αi
µ2
i(∑r

i=1
αi
µi

)2 − 1 ≥ 1 .

CSM 2017/18 (138)

Queueing Networks

We have seen the solution of several queueing systems of interest.

In general we want to solve a system of such queues representing a
real world performance problem e.g. a distributed computing system.

We represent the system under study as a network of connected
queues.

Customers move (instantaneously) between service centres where they
receive service.

1 2 3

45

-
�

-
� -

- -

6

?
��

�
��*
HH

HH
HY

��
���

���
���

���
�:

6

CSM 2017/18 (139)

Model definition

I customers: typically these represent programs or data packets etc

I service centres: the resources in the system e.g. disks, CPU,
transmission links

I service time distributions: may vary according to customer type
and visit

I load dependence: multi-processor systems have load dependent
service rates

I waiting lines and scheduling: may have limited capacity and
various scheduling algorithms

I customer types: multiple customer classes may exist

CSM 2017/18 (140)

Open Queueing Networks

Customers arrive as a Poisson stream at node i at rate γi.

Customers may leave the network on completion of service.

Assume we have N nodes, each a single server queue with infinite
waiting room.

Each server i has exponential service time with mean 1/µi.

A customer completing at node i moves to node j with probability qij
for (i, j = 1, 2, . . . , N).

Note that

N∑
j=1

qij ≤ 1 .

CSM 2017/18 (141)

Open Queueing Networks (2)

A job leaves the network from node i with probability

qi0 = 1−
N∑
j=1

qij .

The probabilities qij are called the routing probabilities.

Written as an N ×N matrix this is called the routing matrix
Q = (qij).

An open network with parameters γi, µi and Q is called a Jackson
network.

The system state is (k1, k2, . . . , kN), where ki is the number of jobs
present at node i.

CSM 2017/18 (142)

Steady state solution

Let λj be the average number of arrivals to node j per unit time.

On average the departure count per unit time is therefore λj .

A fraction qji go to node i.

The rate of traffic from node j to node i is thus λjqji.

i- -

@
@
@R

HHHj

��
�*

�
�
��

�
�
��

�
��*

HHHj@
@
@R

γi

λ1q1i

λ2q2i
λNqNi

λiqi0
λiqi1

λiqi2
λiqiN

...
...

λi λi

CSM 2017/18 (143)

Traffic equations

Adding together all contributions,

λi = γi +

N∑
j=1

λjqji i = 1, 2, . . . , N .

These are known as the traffic equations.

A necessary and sufficient condition for the existence of an
equilibrium distribution is that

ρi :=
λi
µi

< 1 i = 1, 2, . . . , N

where λi is the solution of the traffic equations.

CSM 2017/18 (144)

Jackson’s Theorem

Let p(k1, k2, . . . , kN) be the equilibrium distribution. Jackson’s
Theorem states that

p(k1, k2, . . . , kN) = p1(k1)p2(k2) · · · pN (kN)

where pi(ki) is the equilibrium distribution that there are ki jobs in
an M/M/1 queue with traffic intensity ρi.

Jackson’s theorem has some important implications:

I the numbers of jobs at the various nodes are independent;

I node i behaves as if subjected to a Poisson stream with rate λi.

Jackson’s theorem may be generalized to the case where node i has ni
servers and so the nodes behave as independent M/M/ni queues.

CSM 2017/18 (145)

Closed Queueing Networks

Frequently used to model systems at high load or where a limited,
constant number of jobs is admitted to service.

No external arrivals or departures.

Now the routing probabilities satisfy

N∑
j=1

qij = 1 , i = 1, 2, . . . , N

The number of jobs in the system is always a constant, denoted by K.

The states of the system, described by the vector (k1, k2, . . . , kN),
thus satisfy the constraint

N∑
i=1

ki = K .

CSM 2017/18 (146)

Closed Queueing Networks (2)

The state space, S, is then finite. The number of states is(
K +N − 1

N − 1

)
.

The traffic equations become

λi =

N∑
j=1

λjqji , i = 1, 2, . . . , N .

With a finite state space there always exists an equilibrium
distribution.

Analogous to Jackson’s theorem for the open network case it may be
shown that

p(k1, k2, . . . , kN) =
1

G
r1(k1)r2(k2) · · · rN (kN)

where ri(ki) is the probability that there are ki jobs in an M/M/1
queue with traffic intensity given by a solution to the traffic equations.

CSM 2017/18 (147)

Open vs closed networks

The normalization constant G has to be determined by

G =
∑
s∈S

r1(k1)r2(k2) · · · rN (kN)

obtained by summing over all states s = (k1, k2, . . . , kn) in the state
space S.

With closed networks need to compute the normalization constant G
— a computationally hard problem.

The constraint
∑N
i=1 ki = K means that the numbers of jobs in the

various queues are no longer independent. For instance, consider the
extreme case where all K jobs are at one node.

CSM 2017/18 (148)

Size of state space, S

We now show that

p(K,N) :=

(
K +N − 1

N − 1

)
is the number of (ordered) partitions of a positive integer K into N
integer summands

K =

N∑
i=1

ki .

Proof : consider K +N − 1 boxes arranged in a row and select N − 1
of these boxes (without replacement) which can be done in p(K,N)
ways. Place a “/” symbol in each of the boxes and a “1” in each of
the other boxes. The boxes now represent an (ordered) partition of K
into N groups of “1” which when added together give the ki
summands.

CSM 2017/18 (149)

The M/G/1 queue

It is usually easier to justify the memoryless property for arrivals than
for service times.

For arrivals, we can appeal to asymptotic results on the merging of
large numbers of independent streams to help justify the memoryless
property for arrivals.

For service times, it is easy to think of examples where the service
times have a quite different distribution to the exponential. For
example, the service times might be constant corresponding to fixed
packet lengths in a communication network.

This leads to an interest in the M/G/1 queue with general service
times given by a distribution function B(x) = P(service time ≤ x),
say.

CSM 2017/18 (150)

(Lack of) Markov property

With general service times we no longer find that X(t), the number of
customers in the system at time t, has the Markov property.

This follows since the future evolution of X(t) now depends not just
on the number present but also on the remaining service time of the
customer (if any) currently in service.

Recall, that in the ·/M/· case the remaining service time always has
the same memoryless (that is, exponential) distribution whenever we
observe the queue.

CSM 2017/18 (151)

Performance measures

The determination of a full description of the M/G/1 model is
possible but can be complicated in general. Instead, we shall look at
some steady state performance measures.

Let 1/µ be the mean service time of a customer in the M/G/1 queue
obtained from the distribution function of the service time
distribution B(·), say. Then the mean queueing time, E(Tq), of a
customer before it receives service is given by

E(Tq) = E(Nq)
1

µ
+ ρE(R)

where E(Nq) is the average number of customers waiting in the queue
at the time of arrival, E(R) is the average remaining service time of
the customer, if any, in service and ρ = λ/µ, the traffic intensity, gives
the utilization of the server.

CSM 2017/18 (152)

Remaining service time, R

A result from renewal theory is that E(R) = µE(S2)/2.

Notice that this involves the 2nd moment, E(S2), of the service
time S.

For the exponential case, E(S2) = 2/µ2 so that E(R) = 1/µ as we
expect from the Memoryless property.

CSM 2017/18 (153)

Performance measures (2)

From Little’s law,

E(Nq) = λE(Tq)

and so

E(Tq) = λE(Tq)
1

µ
+ ρE(R)

=
ρE(R)

(1− ρ)

=
ρµE(S2)

2(1− ρ)

=
λE(S2)

2(1− ρ)
.

CSM 2017/18 (154)

Performance measures (3)

Let CS be the coefficient of variation of the service time distribution
then

C2
S =

E(S2)

(E(S))2
− 1

where E(S) = 1/µ so

E(S2) =
(1 + C2

S)

µ2

Hence,

E(Tq) =
λ(1 + C2

S)

µ22(1− ρ)

=
ρ(1 + C2

S)

2µ(1− ρ)
.

CSM 2017/18 (155)

Pollaczek-Khintchine formula

Consider now the total time on average, E(T), for a customer to pass
through the system given by their waiting time in the queue together
with their own service time.

Thus,

E(T) = E(Tq) +
1

µ
=

1

µ

(
1 +

ρ(1 + C2
S)

2(1− ρ)

)
.

Using Little’s law for the entire system we can now find, E(N), the
mean number of customers in an M/G/1 queueing system by

E(N) = λE(T)

= ρ+
ρ2(1 + C2

S)

2(1− ρ)

This is known as the Pollaczek-Khintchine (P-K) formula.

CSM 2017/18 (156)

Pollaczek-Khintchine formula (2)

The Pollaczek-Khintchine formula tells us that the mean number of
customers is determined not only by the mean interarrival and mean
service times but also by the coefficient of variation of the service time
distribution, CS .

There are several cases:

I CS = 0: this is the case of constant service times. For example,
in ATM networks where the cells (that is, the packets) are of
fixed length (53 bytes).

I CS < 1: this is the case where the variability is less than in the
case of exponential service times, thus the M/M/1 model will be
conservative in its performance estimates.

CSM 2017/18 (157)

Pollaczek-Khintchine formula (3)

I CS ≈ 1: this is where the M/M/1 model works best and many
systems correspond to this model. For example, batch jobs on a
mainframe.

I CS > 1: this is the case where the M/G/1 model is required. An
example, is the observed packet lengths in Internet traffic. The
distribution of packet sizes (and hence service times) is often
found to be bimodal with many small packets and many longer
packets of length determined by the MTU.

CSM 2017/18 (158)

