Distributed systems

Lecture 13: Vector clocks, consistent cuts, process
groups, and distributed mutual exclusion

Dr Robert N. M. Watson

Last time

* Saw physical time can’t be kept exactly in sync;
instead use logical clocks to track ordering
between events:

— Defined a— b to mean ‘a happens-before b’

— Easy inside single process, & use causal ordering
(send — receive) to extend relation across processes

— if send,(m,) — send;(m,) then deliver,(m;) —
deliver,(m,)
* Lamport clocks, L(e): an integer
— Increment to (max of (sender, receiver)) + 1 on receipt
— But given L(a) < L(b), order of @ and b is unknown

* The obvious question arises: How can we extend
logical time to work “in the other direction”?

9/30/17



Vector clocks

* With Lamport clocks, given L(a) and L(b), we
can‘ttellifa—>borb—>aora~hb
* One solution is vector clocks:
— An ordered list of logical clocks, one per-process
— Each process P; maintains V,[], initially all zeroes
— On alocal event e, P; increments V[i]
* If the event is message send, new V;[] copied into packet
— If P; receives a message from P; then, forallk=0, 1, .
it sets V. i[k] := max(V;[k], v, [k]) and increments V, [|]

* Intuitively V;[k] captures the number of events at
process P, that have been observed by P;

Vector clocks: example

(1,0,0) (2,0,0)

P1 P
a b m, >
(2,1,0) (2,2,0)
P2 > physical time
c d m,
(0,0,1) (2,2,2)
P3 ®

€ f
* When P2 receives m,, it merges entries from P1’s clock
— choose the maximum value in each position
 Similarly when P3 receives m,, it merges in P2’s clock
— this incorporates the changes from P1 that P2 already saw

» Vector clocks explicitly track transitive causal order:
f's timestamp captures the history ofa, b, c & d

9/30/17



Using vector clocks for ordering

e Can compare vector clocks piecewise:

- Vi = V] iff VI[k] = Vj[k] fOI' k = 0, 1, 2, o

—V;~V,; otherwise

e.g. [2,0,0] versus [0,0,1]

* For any two event timestamps T(a) and T(b)
— ifa > bthen T(a) < T(b) ; and
— if T(a) < T(b) thena - b

* Hence can use timestamps to determine if there
is a causal ordering between any two events

— i.e. determine whethera ->b, b »>a,ora~b
Does this seem familiar? Recall Time-Stamp Ordering and

Optimistic Concurrency Control for transactions last term. >

Consistent global state

* We have the notion of “a happens-before b” (a— b) or
“ais concurrent with b” (a ~ b)
* What about ‘instantaneous’ system-wide state?
— distributed debugging, GC, deadlock detection, ...
* Chandy/Lamport introduced consistent cuts:
— draw a (possibly wiggly) line across all processes
— this is a consistent cut if the set of events (on the |hs) is
closed under the happens-before relationship
— i.e. if the cut includes event x, then it also includes all
events e which happened before x
* In practical terms, this means every delivered message
included in the cut was also sent within the cut

9/30/17



Consistent cuts: example

P2 ﬁ physical time

Iy

1 7
Pl —o—i -- —

a : \ C

1 SNhen " R

: s

: v

1

1

1 h

- 3

1 . . !

P3 >

» Vertical cuts are always consistent (due to the way we
draw these diagrams), but some curves are ok too:

— providing we don’t include any receive events without
their corresponding send events
* Intuition is that a consistent cut could have occurred
during execution (depending on scheduling etc),

Observing consistent cuts — sketch

We will skip this material in lecture and it is not examinable

— but it is helpful in thinking about distributed algorithms:

* Chandy/Lamport Snapshot Algorithm (1985)

* Distributed algorithm to generate a snapshot of relevant
system-wide state (e.g. all memory, locks held, ...)

* Flood a special marker message M to all processes; causal
order of flood defines the cut

* If P;receives M from P; and it has yet to snapshot:

— It pauses all communication, takes local snapshot & sets C; to {}

— Then sends M to all other processes P, and starts recording C;, =
{ set of all post local snapshot messages received from P, }

* If P, receives M from some P, after taking snapshot

— Stops recording C,,, and saves alongside local snapshot
* Global snapshot comprises all local snapshots & C;
* Assumes reliable, in-order messages, & no failures

9/30/17



9/30/17

Process groups

* Process groups are a key distributed-systems primitive:
— Set of processes on some number of machines
— Possible to multicast messages to all members
— Allows fault-tolerant systems even if some processes fail
* Membership can be fixed or dynamic
— if dynamic, have explicit join() and leave() primitives
* Groups can be open or closed:
— Closed groups only allow messages from members
* Internally can be structured (e.g. coordinator and set of
slaves), or symmetric (peer-to-peer)
— Coordinator makes e.g. concurrent join/leave easier...
— ... but may require extra work to elect coordinator
When we use “multicast” in distributed systems, we mean something stronger

than conventional network datagram multicasting — do not confuse them.

Group communication: assumptions

* Assume we have ability to send a message to
multiple (or all) members of a group

— Don’t care if ‘true’ multicast (single packet sent,
received by multiple recipients) or “netcast” (send set
of messages, one to each recipient)

* Assume also that message delivery is reliable,
and that messages arrive in bounded time

— But may take different amounts of time to reach
different recipients

* Assume (for now) that processes don’t crash
* What delivery orderings can we enforce?

10




FIFO ordering

P1

Z \\ ”’2/ - \ \ / s, Physical time
P4 \ \ / >

* With FIFO ordering, messages from process P; must be
received at each process P; in the order they were sent

— E.g. in the above, each receiver must see m, before it sees my

— But other relative delivery orders are unconstrained — e.g., m; vs
m,, m, vs. m,, etc.

* Looks easy, but is non-trivial on delays/retransmissions
— E.g. what if message m; to P2 takes a loooong time?

* Receivers may need to buffer messages to ensure order
— Must “hold back” m; until m; has been delivered to P2

11

Receiving versus delivering

* Group communication middleware provides extra
features above ‘basic’ communication

— e.g. providing reliability and/or ordering guarantees
on top of IP multicast or netcast

* Assume that OS provides receive() primitive:
— returns with a packet when one arrives on wire

* Received messages either delivered or held back:
— Delivered means inserted into delivery queue
— Held back means inserted into hold-back queue

— held-back messages are delivered later as the result of
the receipt of another message...

12

9/30/17



Implementing FIFO ordering

receive(M from Pi) { messages consumed by application
s = SegNho(M); | TTTTTTTTTTTTTTTTTTTITTTITTTTTTTTmeeTTT
if (s == (Sji+l :
dé'l S EMg ) ) A add M to delivery Q iel’very queue
’ sji
; = flush(hba) ; %g delivergp/e ? held back message delivered
ji = s; T
}} else holdback(M); %W hold-back queue

* Each process P; maintains sequence number (SeqNo) S;
* New messages sent by P; include S, incremented after each send

— Not including retransmissions, which retransmit with the same SeqNo!
* P;maintains S;: the SeqNo of the last delivered message from P;

— If receive message from P; with SeqNo = (S;+1), hold back

— When receive message with SeqNo = (S;+1), enqueue for delivery
Also deliver consecutive messages in hold-back queue (if present)
Update S;;
* Apps. receive asynchronously as they read from delivery queue 1

Stronger orderings

* Can also implement FIFO ordering by just using a
reliable FIFO transport like TCP/IP

* But the general ‘receive versus deliver’ model also
allows us to provide stronger orderings:

— Causal ordering: if event multicast(g, m,;) — multicast(g,
m,), then all processes will see m; before m,

— Total ordering: if any processes delivers a message m;
before m,, then all processes will deliver m; before m,

* Causal ordering implies FIFO ordering, since any two
multicasts by the same process are related by —

 Total ordering (as defined) does not imply FIFO (or
causal) ordering, just says that all processes must agree

— Sometimes want FIFO-total ordering (combines the two)

14

9/30/17



Causal ordering

R e N4
R\ A N
P4 \ N\m/

» Same example as before, but causal ordering requires:
(a) everyone must see m,; before m; (as with FIFO), and
(b) everyone must see m, before m, (due to happens-before)
* Is this ok?
— No! m; - m,, but P2 sees m, before m,

— To be correct, must hold back (delay) delivery of m, at P2
— But how do we know this?

15

Implementing causal ordering

* Turns out this is pretty easy!
— Start with receive algorithm for FIFO multicast...
— and replace sequence numbers with vector clocks

Have (0,0,0) !=(1,0,2), so must
hold back m, until missing

events seen

Once m, received, can deliver
m, and then m,

P3

-(1,0,1) ->(1,0,2)

* Some care needed with dynamic groups

16

9/30/17



Total ordering

* Sometimes we want all processes to see exactly the
same, FIFO, sequence of messages

— particularly for state machine replication (see later)
* One way is to have a ‘can send’ token:

— Token passed round-robin between processes

— Only process with token can send (if he wants)
* Or use a dedicated sequencer process

— Other processes ask for global sequence no. (GSN), and
then send with this in packet

— Use FIFO ordering algorithm, but on GSNs

* Can also build non-FIFO total-order multicast by having
processes generate GSNs themselves and resolving ties

17

Ordering and asynchrony

* FIFO ordering allows quite a lot of asynchrony

— E.g. any process can delay sending a message until it has a
batch (to improve performance)

— Or can just tolerate variable and/or long delays
* Causal ordering also allows some asynchrony
— But must be careful queues don’t grow too large!
* Traditional total-order multicast not so good:

— Since every message delivery transitively depends on
every other one, delays holds up the entire system

— Instead tend to an (almost) synchronous model, but this
performs poorly, particularly over the wide area ;-)

— Some clever work on virtual synchrony (for the interested)
* Key insight: allow applications to define ordering operator(s)

18

9/30/17



Distributed mutual exclusion

* In first part of course, saw need to coordinate
concurrent processes / threads

In particular considered how to ensure mutual exclusion
allow only 1 thread in a critical section

* A variety of schemes possible

— test-and-set locks; semaphores; monitors; active objects

* But most of these ultimately rely on hardware support
(atomic operations, or disabling interrupts...)

— not available across an entire distributed system

* Assuming we have some shared distributed resources
how can we provide mutual exclusion in this case?

19

P1

T ...execute critical section
P2 [
C

* Nominate one process C as coordinator
- i

Solution #1: central lock server

10!

(

UL

> physical time

gran,
(10!
\

If P, wants to enter critical section, simply sends lock
message to C, and waits for a reply

If resource free, Creplies to P; with a grant message
otherwise C adds P; to a wait queue

— When finished, P, sends unlock message to C

— C sends grant message to first process in wait queue

20

10

9/30/17



Central lock server: pros and cons

* Central lock server has some good properties:
— Simple to understand and verify
— Live (providing delays are bounded, and no failure)

— Fair (if queue is fair, e.g. FIFO), and easily supports
priorities if we want them

— Decent performance: lock acquire takes one round-
trip, and release is ‘free’ with asynchronous messages

* But C can become a performance bottleneck...

 ...and can’t distinguish crash of C from long wait
— can add additional messages, at some cost

21

Solution #2: token passing

Initial token e °
generated by PO e
around ‘ring’
If e.g. P4 wants to e
enter CS, holds onto
token for duration ° e

* Avoid central bottleneck

* Arrange processes in a logical ring
— Each process knows its predecessor & successor
— Single token passes continuously around ring

— Can only enter critical section when possess token;
pass token on when finished (or if don’t need to enter
critical section)

22

9/30/17

11



Token passing: pros and cons

* Several advantages :

— Simple to understand: only 1 process ever has token =>
mutual exclusion guaranteed by construction

— No central server bottleneck
— Liveness guaranteed (in the absence of failure)

— So-so performance (between 0 and N messages until a
waiting process enters, 1 message to leave)

* But:
— Doesn’t guarantee fairness (FIFO order)
— If a process crashes must repair ring (route around)
— And worse: may need to regenerate token — tricky!
* And constant network traffic: an advantage???

Solution #3: Totally ordered multicast

* Scheme due to Ricart & Agrawala (1981)
* Consider N processes, where each process maintains local
variable state which is one of { FREE, WANT, HELD }
* Invariant: At most one process is in HELD state at a time.
* To obtain lock, a process P, sets state:= WANT, and then
multicasts lock request to all other processes
* When a process P; receives a request from P;:
— If P/s local state is FREE, then P, replies immediately with Ok
— If P/'s local state is HELD, P; queues the request to reply later
* Arequesting process P; waits for Ok from N-1 processes
— Once received, sets state:= HELD, and enters critical section
— Once done, sets state:= FREE, & replies to any queued requests
* What about concurrent requests?
— By concurrent we mean: P; is already in the WANT state when it

receives a request from P; N

9/30/17

12



Handling concurrent requests

* Need to decide upon a total order:
— Each processes maintains a Lamport timestamp, T;
— Processes put current T; into request message

— Insufficient on its own (recall that Lamport timestamps can
be identical) => use process ID (or similar) to break ties
— Note: may not be “fair” as the same process always “wins”
* Hence if a process P, receives a request from P; and P; is
also acquiring the lock (i.e. P;’s local state is WANT)
— If (T;, P;) < (T, P;) then queue request from P,
— Otherwise, reply with Ok, and continue waiting
* Note that using the total order ensures correctness,
but not fairness (i.e. no FIFO ordering)

— Q: can we fix this by using vector clocks?

25

Totally ordered multicast: example
2w » )
() (=)

* Imagine P1 and P2 simultaneously try to acquire lock...
— Both set state to WANT, and both send multicast message
— Assume that timestamps are 17 (for P1) and 9 (for P2)

* P3 has no interest (state is FREE), so replies Ok to both
* 9<17:Plreplies OK; P2 stays quiet & enqueues P1

* P2 enters the critical section and executes...

* and when done, replies to P1 (to enter critical section)ze

9/30/17

13



Additional details

* Completely decentralized solution ... but:

Lots of messages (1 multicast + N-1 unicast)
OK for most recent holder to re-enter CS without any messages

* Variant scheme (Lamport) - multicast for total ordering

Processes each maintain (and collectively agree on) an ordered
queue of requests and ACKs, relying on total ordering

To enter, process P; multicasts request(P;, T;) [same as before]
On receipt of a message, P, replies with an ack(P;,T;)
Processes adds all requests and ACKs to the queue in order

If process P; sees his request is earliest and ACK’d by all, can
enter CS ... and when done, multicasts a release(P;, T;) message

When P, receives release, removes P;'s request from queue
If P/'s request is now earliest in queue, can enter CS...

* Both Ricart & Agrawala and Lamport’s scheme have N
points of failure: doomed if any process dies :-(

27

Summary + next time

* Vector clocks

* Consistent global state + consistent cuts
* Process groups and reliable multicast

* Implementing order

 Distributed mutual exclusion

* Leader elections and distributed consensus
* Distributed transactions and commit protocols
* Replication and consistency

28

9/30/17

14



