Concurrent systems
Lecture 8: Case study - FreeBSD kernel concurrency

Dr Robert N. M. Watson

FreeBSD kernel

* Open-source OS kernel
— Large: millions of LoC
— Complex: thousands of subsystems,
drivers, ...
— Very concurrent: dozens or hundreds
of CPU cores / hyperthreads

OLLVANIWITdWI

' THE
— Widely usgd: NetApp, EMC, Dell, S T
Apple, Juniper, Netflix, Sony, .| OF THE

Panasonic, Cisco, Yahoo!, ... FreeBSD
° Why a Case Study? OPERATING SYSTEM
— Extensively employs C&DS principles
— Concurrency performance and
composability at scale

* Consider design and evolution

SECOND EDITION

In the library: Marshall Kirk McKusick, George V. Neville-Neil, and Robert N. M. Watson. The Design an(é
Implementation of the FreeBSD Operating System (2nd Edition), Pearson Education, 2014.

9/28/17

BSD + FreeBSD: a brief history

» 1980s Berkeley Standard Distribution (BSD)
— ‘BSD’-style open-source license (MIT, ISC, CMU, ...)

— UNIX Fast File System (UFS/FFS), sockets API, DNS,
used TCP/IP stack, FTP, sendmail, BIND, cron, vi, ...

* Open-source FreeBSD operating system
1993: FreeBSD 1.0 without support for multiprocessing

1998: FreeBSD 3.0 with “giant-lock” multiprocessing

2003: FreeBSD 5.0 with fine-grained locking
2005: FreeBSD 6.0 with mature fine-grained locking

2012: FreeBSD 9.0 with TCP scalability beyond 32 cores

FreeBSD: before multiprocessing (1)

* Concurrency model inherited from UNIX

* Userspace
— Preemptive multitasking between processes
— Later, preemptive multithreading within processes

e Kernel

— ‘Just’ a C program running ‘bare metal’

— Internally multithreaded
* User threads operating ‘in kernel’ (e.g., in system calls)
* Kernel services (e.g., asynchronous work for VM, etc.)

9/28/17

FreeBSD: before multiprocessing (2)

* Cooperative multitasking within kernel

— Mutual exclusion as long as you don’t s1leep()

— Implied global lock means local locks rarely required

— Except for interrupt handlers, non-preemptive kernel
Critical sections control interrupt-handler execution
* Wait channels: implied condition variable per address

sleep(&x, ..); // Wait for event on &x
wakeup (&x) ; // Signal an event on &x

— Must leave global state consistent when calling sleep()
— Must reload any cached local state after sleep() returns
* Use to build higher-level synchronization primitives

— E.g., lockmgr() reader-writer lock can be held over I/O
(sleep), used in filesystems

Pre-multiprocessor scheduling

CPUO== sshd | sshd (k) | apache | apache (k) | idle | netisr | sshd (k) sshd | apache (k) | apache ==

Lots of unexploited
parallelism!

9/28/17

Hardware parallelism, synchronization

Late 1990s: multi-CPU begins to move down market
— In 2000s: 2-processor a big deal

— In 2010s: 64-core is increasingly common

* Coherent, symmetric, shared memory systems

— Instructions for atomic memory access
* Compare-and-swap, test-and-set, load linked/store conditional

* Signaling via Inter-Processor Interrupts (IPls)
— CPUs can trigger an interrupt handler on each another

* Vendor extensions for performance, programmability
— MIPS inter-thread message passing
— Intel TM support: TSX (Whoops: HSW136!)

Giant locking the kernel

* FreeBSD follows footsteps of Cray, Sun, ...

* First, allow user programs to run in parallel
— One instance of kernel code/data shared by all CPUs
— Different user processes/threads on different CPUs
* Giant spinlock around kernel
— Acquire on syscall/trap to kernel; drop on return
— In effect: kernel runs on at most once CPU at a time;
‘migrates’ between CPUs on demand
* Interrupts

— If interrupt delivered on CPU X while kernel is on CPU
Y, forward interrupt to Y using an IPI

9/28/17

Giant-locked scheduling

CPUO== sshd | sshd (k) | apache | apache (k) | idle | netisr | sshd (k) sshd | apache (k) | apache ==

User-user Kernel-user
parallelism parallelism

CPUO==«| sshd | sshd (k) idle sshd [idle (=P
|
]

CPU 1==«| apache | spin apache (k) | idle | nefisr | sshd (k) | apache (k) apache: idle

Kernel giant-lock Serial kernel execution; parallelism
contention opportunity missed

Fine-grained locking

* Giant locking is OK for user-program parallelism
* Kernel-centered workloads trigger Giant contention
— Scheduler, IPC-intensive workloads
— TCP/buffer cache on high-load web servers
— Process-model contention with multithreading (VM, ...)
* Motivates migration to fine-grained locking
— Greater granularity (may) afford greater parallelism
* Mutexes + condition variables rather than semaphores
— Increasing consensus on pthreads-like synchronization
— Explicit locks are easier to debug than semaphores
— Support for priority inheritance + priority propagation
— E.g., Linux has also now migrated away from semaphores

10

9/28/17

Fine-grained scheduling

CPUO== sshd | sshd (k) | apache | apache (k) | idle | netisr | sshd (k) sshd | apache (k) | apache ==

CPU | = o 0 o - - - - - >
I I
I
CPUO== sshd | sshd (k) idle sshd [idle (=P
CPU1 =~ True kern el netisr | sshd (k) | apache (k) | apache : idle %-}
parallelism
]]
i i
I
CPUO== sshd | sshd (k) idle sshd (k) sshd A idle |- -
CPU 1=« apache | apache (k) | idle | netisr | apache (k) apach)' idle I-->
11

How does this work in practice?

* Kernel is heavily multi-threaded
* Each user thread has a corresponding kernel thread
— Represents user thread when in syscall, page fault, etc.
* Kernels services often execute in asynchronous threads
— Interrupts, timers, 1/0, networking, etc.
= Therefore extensive synchronization
— Locking model is almost always data-oriented
— Think ‘monitors’ rather than ‘critical sections’
— Reference counting or reader-writer locks used for stability

— Higher-level patterns (producer-consumer, active objects,
etc.) used frequently

* Avoiding deadlock is an essential aspect of the design

9/28/17

Kernel threads in action

r:’;:anID coMM 4:~;DNAME - CPU PRI STATE WCHAN : VaSt hoa rds Of threads
HEsoks represent concurrent activities

eo

0 100000 kernel swapper 1 84 sleep sched
0 100009 kernel firmvare taskq 0 108 sleep -
0 100014 kernel kqueue taskg T CEPL PR
0 100016 kernel thread tas o
0 100020 kernel acpi_task_| i b usbus0
0 100021 kernel acpi_task_| Idle CPUs are OCCUpled by b usbus0
0 100022 kernel usbus0

32 sleep

acpi_task. . b
0 100023 kernel fj:»im [an |d|e thread Why? b usbus0 = o -
CPU PRI STATE WCHAN

32 sleep -
28 sleep
32 sleep

USBWAIT

lboooo

PID TID COMM
11 100003 idle idle: cpu0 0 255 run -
12 100024 intr irgl4: atal 0 12 wait -
100025 intr irgl5: atal 1 12 wait -
8, i swil: netisr 0 1 28 wait -
0 select

938 100077 getty
939 100067 getty
940 100072 getty

swil: netisr 0
swi5: +
swi6: Giant task

Asynchronous packet Familiar userspace
Device-driver interrupts processing occurs in a thread: sshd, blocked in
execute in kernel ithreads netisr ‘soft’ ithread network I/O (‘in kernel’)
1

Kernel-internal concurrency is represented using a familiar
shared memory threading model

WITNESS lock-order checker

Kernel relies on partial lock order to prevent deadlock
(Recall dining philosophers)

— In-field lock-related deadlocks are (very) rare
WITNESS is a lock-order debugging tool
— Warns when lock cycles (could) arise by tracking edges
— Only in debugging kernels due to overhead (15%+)
Tracks both statically declared, dynamic lock orders
— Static orders most commonly intra-module
— Dynamic orders most commonly inter-module
Deadlocks for condition variables remain hard to debug
— What thread should have woken up a CV being waited on?
— Similar to semaphore problem

14

9/28/17

WITNESS: global lock-order graph*

* Turns out that the global lock-order
graph is pretty complicated. 15

* Commentary on WITNESS full-system lock-order
graph complexity; courtesy Scott Long, Netflix 16

9/28/17

Excerpt from global lock-order graph*

This bit mostly has to do E— Local clusters: e.g., related
with networking locks from the firewall: two
- = leaf nodes; one is held over

calls to other subsystems

Network interface locks:
“transmit” occurs at the
bottom of call stacks via many
layers holding locks

Memory allocator locks
follow most other locks, since
most kernel components
require memory allocation

* The local lock-order graph is also complicated.

WITNESS debug output

1st O0xffffff80025207f0 run0_node_ lock (run0_node lock) @
/usr/src/sys/net80211/ieee80211_ioctl.c:1341

2nd Oxffffff80025142a8 run0 (network driver) @
/usr/src/sys/modules/usb/run/../../../dev/usb/wlan/if_run.c:3368

KDB: stack backtrace:
db_trace_self wrapper() at db_trace self wrapper+0x2a Lock names and source
kdb_backtrace() at kdb_backtrace+0x37 code locations of
_witness_debugger() at _witness_debugger+0x2c . .
witness checkorder() at witness_ checkorder+0x853 acquisitions adding the
_mtx lock flags() at mtx lock flags+0x85 offending graph edge
run_raw xmit() at run raw xmit+0x58
ieee80211_send mgmt() at ieee80211_ send mgmt+0x4d5
domlme() at domlme+0x95

setmlme common() at setmlme common+0x2f0
ieeeB80211 ioctl setmlme() at ieee80211 ioctl setmlme+0x7e
ieee80211_ioctl_set80211() at ieee80211 ioctl set80211+0x46f
in control() at in_control+Oxad

ifioctl() at ifioctl+Oxece Stack trace to acquisition
kern ioctl() at kern ioctl+0xcd that triggered cycle:
sys_ioctl() at sys_ioctl+0x£f0 802.11 called USB;
amd64_ syscall() at amd64_syscall+0x380 :

xXfast syscall() at Xfast syscall+0xf7 previously, perhaps USB

——- syscall (54, FreeBSD ELF64, sys ioctl), rip = 0 called 802.11?
Ox7f£f£ffff£fd848, rbp = 0x2a --- _

9/28/17

Case study: the network stack (1)

 What is a network stack?

— Kernel-resident library of networking routines
— Sockets, TCP/IP, UDP/IP, Ethernet, ...

* Implements user abstractions, network-interface
abstraction, protocol state machines, sockets, etc.

— System calls: socket(), connect(), send(), recv(), listen(), ...
* Highly complex and concurrent subsystem

— Composed from many (pluggable) elements

— Socket layer, network device drivers, protocols, ...

Typical paths ‘up’ and ‘down’: packets come in, go out

19

Network-stack work flows

Applications send,

receive, await data

on sockets

Data/packets
processed;
dispatched via
producer-
consumer
relationships

Packets go in and
out of network
interfaces

The work: adding/removing headers, calculating checksums,

Application send() recv()
| |
System call layer send() recv()
Socketlayer ~EE B e e el SRR l zmm
tep_send() 1cp_reass() =]
TCP layer tcp_output() tep_input()
- -
IP layer ip_putput() ip_input()
1 — S -
Link layer ether_output() ether_input()
Device driver [o o I .:g:il:;g em_intr()

fragmentation/defragmentation, segment reassembly, reordering, flow control, etc.

9/28/17

10

Case study: the network stack (2)

* First, make it safe without the Giant lock
— Lots of data structures require locks
— Condition signaling already exists but will be added to
— Establish key work flows, lock orders
* Then, make it fast
— Especially locking primitives themselves
— Increase locking granularity where there is contention
* As hardware becomes more parallel, identify and
exploit further concurrency opportunities
— Add more threads, distribute more work

21

What to lock and how?

* Fine-grained locking overhead vs. contention
— Some contention is inherent: necessary communication
— Some contention is false sharing: side effect of structures
* Principle: lock data, not code (i.e., not critical sections)
— Key structures: NICs, sockets, work queues, ...
— Independent structure instances often have own locks
* Horizontal vs. vertical parallelism
— H: Different locks across connections (e.g., TCP1 vs. TCP2)
— H: Different locks within a layer (e.g., recv. vs. send buffers)
— V: Different locks at different layers (e.g., socket vs. TCP)
* Things not to lock: packets in flight - mbufs (‘work’)

22

9/28/17

11

Example: Universal Memory Allocator

Memory consumers (mbufs, sockets, ...) o Key ke rne | se rvi ce
e < || + Slaballocator
/R /X

— (Bonwick 1994)

* Per-CPU caches
— Individually locked

— Amortise (or avoid) global
lock contention

£ * Some allocation patterns
£\ use only per-CPU caches
() e * Others require dipping
| Y4 O into the global pool
Work distribution

Packets (mbufs) are units of work

Parallel work requires distribution to threads
Must keep packets ordered — or TCP gets cranky!
Implication: strong per-flow serialization

— l.e., no generalized producer-consumer/round robin

— Various strategies to keep work ordered; e.g.:
* Process in a single thread
* Multiple threads in a ‘pipeline’ linked by a queue

— Misordering OK between flows, just not within them

Establish flow-CPU affinity can both order
processing and utilize caches well

24

9/28/17

12

Scalability

Performance increase may (GATe[ER
reduce due to contention, speedup
which wastes resources
As we add more
parallelism, we would like
the system to get faster.

Key idea:
performance collapse

Transactions/sec

Sometimes parallelism
hurts performance more
than it helps due to work-
distribution overheads,
contention.

FreeBSD 8.0, ULE —+—

) N FreeBSD 8.0, ULE topology ——

2 a 6 8 10 12 14 16 18 20 25
Concurren cy (# threads)

Longer-term strategies

* Hardware change motivates continuing work
— Optimize inevitable contention
— Lockless primitives
— Read-mostly locks, read-copy-update (RCU)
— Per-CPU data structures
— Better distribute work to more threads to utilise
growing core/hyperthread count

e Optimise for locality, not just contention: cache,
NUMA, and I/0O affinity

— If communication is essential, contention is inevitable

26

9/28/17

13

Conclusions

* FreeBSD employs many of C&DS techniques

— Multithreading within (and over) the kernel

— Mutual exclusion, condition synchronization

— Partial lock order with dynamic checking

— Producer-consumer, lockless primitives

— Also Write-Ahead Logging (WAL) in filesystems, ...
* Real-world systems are really complicated

— Composition is not straightforward

— Parallelism performance wins are a lot of work

— Hardware continues to evolve, placing pressure on
software systems to utilise new parallelism

* Next: Distributed Systems!

27

9/28/17

14

