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Concurrent	systems
Lecture	8:	Case	study	- FreeBSD	kernel	concurrency

Dr Robert	N.	M.	Watson
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FreeBSD	kernel
• Open-source	OS	kernel

– Large:	millions	of	LoC
– Complex:	thousands	of	subsystems,	

drivers,	...
– Very	concurrent:	dozens	or	hundreds	

of	CPU	cores	/	hyperthreads
– Widely	used:	NetApp,	EMC,	Dell,	

Apple,	Juniper,	Netflix,	Sony,	
Panasonic,	Cisco,	Yahoo!,	…

• Why	a	case	study?
– Extensively	employs	C&DS	principles
– Concurrency	performance	and	

composability	at	scale
• Consider	design	and	evolution

2In	the	library:	Marshall	Kirk	McKusick,	George	V.	Neville-Neil,	and	Robert	N.	M.	Watson.	The	Design	and	
Implementation	of	the	FreeBSD	Operating	System (2nd	Edition),	Pearson	Education,	2014.
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BSD	+	FreeBSD:	a	brief	history
• 1980s	Berkeley	Standard	Distribution	(BSD)
– ‘BSD’-style	open-source	license	(MIT,	ISC,	CMU,	…)
– UNIX	Fast	File	System	(UFS/FFS),	sockets	API,	DNS,	
used	TCP/IP	stack,	FTP,	sendmail,	BIND,	cron,	vi,	…

• Open-source	FreeBSD	operating	system
1993:	FreeBSD	1.0	without	support	for	multiprocessing
1998:	FreeBSD	3.0	with	“giant-lock”	multiprocessing
2003:	FreeBSD	5.0	with	fine-grained	locking
2005:	FreeBSD	6.0	with	mature	fine-grained	locking
2012:	FreeBSD	9.0	with	TCP	scalability	beyond	32	cores

3

FreeBSD:	before	multiprocessing	(1)

• Concurrency	model	inherited	from	UNIX
• Userspace
– Preemptive	multitasking	between processes
– Later,	preemptive	multithreading	within processes

• Kernel
– ‘Just’	a	C	program	running	‘bare	metal’
– Internally	multithreaded

• User	threads	operating	‘in	kernel’	(e.g.,	in	system	calls)
• Kernel	services	(e.g.,	asynchronous	work	for	VM,	etc.)

4
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FreeBSD:	before	multiprocessing	(2)
• Cooperative	multitasking	within	kernel
– Mutual	exclusion	as	long	as	you	don’t	sleep()
– Implied	global	lock	means	local	locks	rarely	required
– Except	for	interrupt	handlers,	non-preemptive	kernel
– Critical	sections	control	interrupt-handler	execution

• Wait	channels:	implied	condition	variable	per	address
sleep(&x, …); // Wait for event on &x
wakeup(&x); // Signal an event on &x

– Must	leave	global	state	consistent	when	calling	sleep()
– Must	reload	any	cached	local	state	after	sleep()	returns

• Use	to	build	higher-level	synchronization	primitives
– E.g.,	lockmgr()	reader-writer	lock	can	be	held	over	I/O	
(sleep),	used	in	filesystems

5

Pre-multiprocessor	scheduling

6

Lots	of	unexploited	
parallelism!
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Hardware	parallelism,	synchronization

• Late	1990s:	multi-CPU	begins	to	move	down	market
– In	2000s:	2-processor	a	big	deal
– In	2010s:	64-core	is	increasingly	common

• Coherent,	symmetric,	shared	memory	systems
– Instructions	for	atomic	memory	access

• Compare-and-swap,	test-and-set,	load	linked/store	conditional
• Signaling	via	Inter-Processor	Interrupts	(IPIs)
– CPUs	can	trigger	an	interrupt	handler	on	each	another

• Vendor	extensions	for	performance,	programmability
– MIPS	inter-thread	message	passing
– Intel	TM	support:	TSX (Whoops:	HSW136!)

7

Giant	locking	the	kernel
• FreeBSD	follows	footsteps	of	Cray,	Sun,	…
• First,	allow	user	programs	to	run	in	parallel
– One	instance	of	kernel	code/data	shared	by	all	CPUs
– Different	user	processes/threads	on	different	CPUs

• Giant	spinlock	around	kernel
– Acquire	on	syscall/trap	to	kernel;	drop	on	return
– In	effect:	kernel	runs	on	at	most	once	CPU	at	a	time;	
‘migrates’	between	CPUs	on	demand

• Interrupts
– If	interrupt	delivered	on	CPU	X	while	kernel	is	on	CPU	
Y,	forward	interrupt	to	Y	using	an	IPI

8



9/28/17

5

Giant-locked	scheduling

9

Serial	kernel	execution;	parallelism	
opportunity	missed

Kernel	giant-lock	
contention

Kernel-user	
parallelism

User-user	
parallelism

Fine-grained	locking
• Giant locking	is	OK	for	user-program	parallelism
• Kernel-centered	workloads	trigger	Giant	contention
– Scheduler,	IPC-intensive	workloads
– TCP/buffer	cache	on	high-load	web	servers
– Process-model	contention	with	multithreading	(VM,	…)

• Motivates	migration	to	fine-grained	locking
– Greater	granularity	(may)	afford	greater	parallelism

• Mutexes +	condition	variables	rather	than	semaphores
– Increasing	consensus	on	pthreads-like	synchronization
– Explicit	locks	are	easier	to	debug	than	semaphores
– Support	for	priority	inheritance +	priority	propagation
– E.g.,	Linux	has	also	now	migrated	away	from	semaphores

10
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Fine-grained	scheduling

11

True	kernel	
parallelism

How	does	this	work	in	practice?
• Kernel	is	heavily	multi-threaded
• Each	user	thread	has	a	corresponding	kernel	thread
– Represents	user	thread	when	in	syscall,	page	fault,	etc.

• Kernels	services	often	execute	in	asynchronous	threads
– Interrupts,	timers,	I/O,	networking,	etc.

➡ Therefore	extensive	synchronization
– Locking	model	is	almost	always	data-oriented
– Think	‘monitors’	rather	than	‘critical	sections’
– Reference	counting	or	reader-writer	locks	used	for	stability
– Higher-level	patterns	(producer-consumer,	active	objects,	
etc.)	used	frequently

• Avoiding	deadlock	is	an	essential	aspect	of	the	design
12
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Kernel	threads	in	action

13

robert@lemongrass-freebsd64:~> procstat –at
PID    TID COMM             TDNAME           CPU  PRI STATE   WCHAN    
0 100000 kernel           swapper            1   84 sleep   sched
0 100009 kernel           firmware taskq 0  108 sleep   -
0 100014 kernel           kqueue taskq 0  108 sleep   -
0 100016 kernel           thread taskq 0  108 sleep   -
0 100020 kernel           acpi_task_0        1  108 sleep   -
0 100021 kernel           acpi_task_1        1  108 sleep   -
0 100022 kernel           acpi_task_2        1  108 sleep   -
0 100023 kernel           ffs_trim taskq 1  108 sleep   -
0 100033 kernel           em0 taskq 1    8 sleep   -
1 100002 init - 0  152 sleep   wait      
2 100027 mpt_recovery0    - 0   84 sleep   idle      
3 100039 fdc0             - 1   84 sleep   -
4 100040 ctl_thrd - 0   84 sleep   ctl_work
5 100041 sctp_iterator - 0   84 sleep   waiting_  
6 100042 xpt_thrd - 0   84 sleep   ccb_scan
7 100043 pagedaemon - 1   84 sleep   psleep
8 100044 vmdaemon - 1   84 sleep   psleep
9 100045 pagezero - 1  255 sleep   pgzero
10 100001 audit            - 0   84 sleep   audit_wo
11 100003 idle             idle: cpu0         0  255 run     -
11 100004 idle             idle: cpu1         1  255 run     -
12 100005 intr swi4: clock        1   40 wait    -
12 100006 intr swi4: clock        0   40 wait    -
12 100007 intr swi3: vm 0   36 wait    -
12 100008 intr swi1: netisr 0     1   28 wait    -
12 100015 intr swi5: +            0   44 wait    -
12 100017 intr swi6: Giant task   0   48 wait    -
12 100018 intr swi6: task queue   0   48 wait    -
12 100019 intr swi2: cambio 1   32 wait    -
12 100024 intr irq14: ata0        0   12 wait    -
12 100025 intr irq15: ata1        1   12 wait    -
12 100026 intr irq17: mpt0        1   12 wait    -
12 100028 intr irq18: uhci0       0   12 wait    -
12 100034 intr irq16: pcm0        0    4 wait    -
12 100035 intr irq1: atkbd0       1   16 wait    -
12 100036 intr irq12: psm0        0   16 wait    -

12 100037 intr irq7: ppc0         0   16 wait    -
12 100038 intr swi0: uart uart 0   24 wait    -
13 100010 geom g_event 0   92 sleep   -
13 100011 geom g_up 1   92 sleep   -
13 100012 geom g_down 1   92 sleep   -
14 100013 yarrow           - 1   84 sleep   -
15 100029 usb usbus0             0   32 sleep   -
15 100030 usb usbus0             0   28 sleep   -
15 100031 usb usbus0             0   32 sleep   USBWAIT   
15 100032 usb usbus0             0   32 sleep   -
16 100046 bufdaemon - 0   84 sleep   psleep
17 100047 syncer - 1  116 sleep   syncer
18 100048 vnlru - 1   84 sleep   vlruwt
19 100049 softdepflush - 1   84 sleep sdflush
104 100055 adjkerntz - 1  152 sleep   pause
615 100056 dhclient - 0  139 sleep   select    
667 100075 dhclient - 1  120 sleep   select    
685 100068 devd - 1  120 sleep   wait
798 100065 syslogd - 0  120 sleep   select    
895 100076 sshd - 0  120 sleep   select    
934 100052 login            - 1  120 sleep   wait
935 100070 getty - 0  152 sleep   ttyin
936 100060 getty - 0  152 sleep   ttyin
937 100064 getty - 0  152 sleep   ttyin
938 100077 getty - 1  152 sleep   ttyin
939 100067 getty - 1  152 sleep   ttyin
940 100072 getty - 1  152 sleep   ttyin
941 100073 getty - 0  152 sleep   ttyin
9074 100138 csh - 0  120 sleep   ttyin
3023 100207 ssh-agent        - 1  120 sleep   select    
3556 100231 sh               - 0  123 sleep   piperd
3558 100216 sh               - 1  124 sleep   wait
3559 100145 sh               - 0  122 sleep   vmo_de
3560 100058 sh               - 0  123 sleep   piperd
3588 100176 sshd - 0  122 sleep   select    
3590 101853 sshd - 1  122 run     -
3591 100069 tcsh - 0  152 sleep   pause
3596 100172 procstat - 0  172 run     -

Kernel-internal		concurrency	is	represented	using	a	familiar
shared	memory	threading	model

PID    TID COMM             TDNAME           CPU  PRI STATE   WCHAN    
11 100003 idle             idle: cpu0         0  255 run     -
12 100024 intr             irq14: ata0        0   12 wait    -
12 100025 intr             irq15: ata1        1   12 wait    -
12 100008 intr             swi1: netisr 0     1   28 wait    -

3588 100176 sshd             - 0  122 sleep   select

Vast	hoards	of	threads
represent	concurrent	activities

Device-driver	interrupts	
execute	in	kernel	ithreads

Idle	CPUs	are	occupied	by	
an	idle	thread	…	why?

Asynchronous	packet	
processing	occurs	in	a	
netisr ‘soft’	ithread

Familiar	userspace
thread:	sshd,	blocked	in	
network	I/O	(‘in	kernel’)

WITNESS	lock-order	checker
• Kernel	relies	on	partial	lock	order	to	prevent	deadlock
(Recall	dining	philosophers)
– In-field	lock-related	deadlocks	are	(very)	rare

• WITNESS	is	a	lock-order	debugging	tool
– Warns	when	lock	cycles	(could)	arise	by	tracking	edges
– Only	in	debugging	kernels	due	to	overhead	(15%+)

• Tracks	both	statically	declared,	dynamic	lock	orders
– Static	orders	most	commonly	intra-module
– Dynamic	orders	most	commonly	inter-module

• Deadlocks	for	condition	variables	remain	hard	to	debug
– What	thread	should	have	woken	up	a	CV	being	waited	on?
– Similar	to	semaphore	problem

14
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WITNESS:	global	lock-order	graph*

15
*	Turns	out	that	the	global	lock-order	
graph	is	pretty	complicated.

16
*	Commentary	on	WITNESS	full-system	lock-order
graph	complexity;	courtesy	Scott	Long,	Netflix

*
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Excerpt	from	global	lock-order	graph*

17*	The	local	lock-order	graph	is	also complicated.

This	bit	mostly	has	to	do	
with	networking

Local	clusters:	e.g.,	related	
locks	from	the	firewall:	two	
leaf	nodes;	one	is	held	over	
calls	to	other	subsystems

Network	interface	locks:	
“transmit”	occurs	at	the	

bottom	of	call	stacks	via	many	
layers	holding	locks

Memory	allocator	locks	
follow	most	other	locks,	since	
most	kernel	components	
require	memory	allocation

WITNESS	debug	output

18

1st 0xffffff80025207f0 run0_node_lock (run0_node_lock) @ 
/usr/src/sys/net80211/ieee80211_ioctl.c:1341
2nd 0xffffff80025142a8 run0 (network driver) @ 
/usr/src/sys/modules/usb/run/../../../dev/usb/wlan/if_run.c:3368

KDB: stack backtrace:
db_trace_self_wrapper() at db_trace_self_wrapper+0x2a
kdb_backtrace() at kdb_backtrace+0x37
_witness_debugger() at _witness_debugger+0x2c
witness_checkorder() at witness_checkorder+0x853
_mtx_lock_flags() at _mtx_lock_flags+0x85
run_raw_xmit() at run_raw_xmit+0x58
ieee80211_send_mgmt() at ieee80211_send_mgmt+0x4d5
domlme() at domlme+0x95
setmlme_common() at setmlme_common+0x2f0
ieee80211_ioctl_setmlme() at ieee80211_ioctl_setmlme+0x7e
ieee80211_ioctl_set80211() at ieee80211_ioctl_set80211+0x46f
in_control() at in_control+0xad
ifioctl() at ifioctl+0xece
kern_ioctl() at kern_ioctl+0xcd
sys_ioctl() at sys_ioctl+0xf0
amd64_syscall() at amd64_syscall+0x380
Xfast_syscall() at Xfast_syscall+0xf7
--- syscall (54, FreeBSD ELF64, sys_ioctl), rip = 0x800de7aec, rsp = 
0x7fffffffd848, rbp = 0x2a ---

Lock	names	and	source	
code	locations	of	

acquisitions	adding	the	
offending	graph	edge

Stack	trace	to	acquisition	
that	triggered	cycle:	
802.11	called	USB;	

previously,	perhaps	USB	
called	802.11?
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Case	study:	the	network	stack	(1)
• What	is	a	network	stack?
– Kernel-resident	library	of	networking	routines
– Sockets,	TCP/IP,	UDP/IP,	Ethernet,	…

• Implements	user	abstractions,	network-interface	
abstraction,	protocol	state	machines,	sockets,	etc.
– System	calls:	socket(),	connect(),	send(),	recv(),	listen(),	…

• Highly	complex	and	concurrent	subsystem
– Composed	from	many	(pluggable)	elements
– Socket	layer,	network	device	drivers,	protocols,	…

• Typical	paths	‘up’	and	‘down’:	packets	come	in,	go	out

19

Network-stack	work	flows

20

Applications	send,	
receive,	await	data	

on	sockets

Data/packets	
processed;		

dispatched	via	
producer-
consumer	

relationships

Packets	go	in	and	
out	of	network	

interfaces

The	work:	adding/removing	headers,	calculating	checksums,	
fragmentation/defragmentation,	segment	reassembly,	reordering,	flow	control,	etc.
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Case	study:	the	network	stack	(2)

• First,	make	it	safe without	the	Giant	lock
– Lots	of	data	structures	require	locks
– Condition	signaling	already	exists	but	will	be	added	to
– Establish	key	work	flows,	lock	orders

• Then,	make	it	fast
– Especially	locking	primitives	themselves
– Increase	locking	granularity	where	there	is	contention

• As	hardware	becomes	more	parallel,	identify	and	
exploit	further	concurrency	opportunities
– Add	more	threads,	distribute	more	work

21

What	to	lock	and	how?
• Fine-grained	locking	overhead vs.	contention
– Some	contention	is	inherent:	necessary	communication
– Some	contention	is	false	sharing:	side	effect	of	structures

• Principle:	lock	data,	not	code	(i.e.,	not	critical	sections)
– Key	structures:	NICs,	sockets,	work	queues,	…
– Independent	structure	instances	often	have	own	locks

• Horizontal	vs.	vertical	parallelism
– H:	Different	locks	across	connections	(e.g.,	TCP1	vs.	TCP2)
– H:	Different	locks	within	a	layer	(e.g.,	recv.	vs.	send	buffers)
– V:	Different	locks	at	different	layers	(e.g.,	socket	vs.	TCP)

• Things	not	to	lock:	packets	in	flight	- mbufs (‘work’)

22
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Example:	Universal	Memory	Allocator	
(UMA)

• Key	kernel	service
• Slab	allocator

– (Bonwick 1994)
• Per-CPU	caches

– Individually	locked
– Amortise (or	avoid)	global	

lock	contention
• Some	allocation	patterns	

use	only	per-CPU	caches
• Others	require	dipping	

into	the	global	pool

23

🔒🔒

🔒

Work	distribution
• Packets	(mbufs)	are	units	of	work
• Parallel	work	requires	distribution	to	threads
• Must	keep	packets	ordered	– or	TCP	gets	cranky!
• Implication:	strong	per-flow	serialization
– I.e.,	no	generalized	producer-consumer/round	robin
– Various	strategies	to	keep	work	ordered;	e.g.:

• Process	in	a	single	thread
• Multiple	threads	in	a	‘pipeline’	linked	by	a	queue

– Misordering OK	between	flows,	just	not	within	them
• Establish	flow-CPU	affinity can	both	order	
processing	and	utilize	caches	well

24
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Scalability

25

?

Performance	increase	may	
reduce	due	to	contention,	
which	wastes	resources

Key	idea:
speedup

As	we	add	more	
parallelism,	we	would	like	
the	system	to	get	faster.

Key	idea:
performance	collapse

Sometimes	parallelism	
hurts	performance	more	
than	it	helps	due	to	work-
distribution	overheads,	

contention.

Longer-term	strategies

• Hardware	change	motivates	continuing	work
– Optimize	inevitable	contention
– Lockless	primitives
– Read-mostly	locks,	read-copy-update	(RCU)
– Per-CPU	data	structures
– Better	distribute	work	to	more	threads	to	utilise
growing	core/hyperthread count

• Optimise for	locality,	not	just	contention:	cache,	
NUMA,	and	I/O	affinity
– If	communication	is	essential,	contention	is	inevitable

26
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Conclusions
• FreeBSD	employs	many	of	C&DS	techniques
– Multithreading	within	(and	over)	the	kernel
– Mutual	exclusion,	condition	synchronization
– Partial	lock	order	with	dynamic	checking
– Producer-consumer,	lockless	primitives
– Also	Write-Ahead	Logging	(WAL)	in	filesystems,	…

• Real-world	systems	are	really	complicated
– Composition	is	not	straightforward
– Parallelism	performance	wins	are	a	lot	of	work
– Hardware	continues	to	evolve,	placing	pressure	on	
software	systems	to	utilise new	parallelism

• Next:	Distributed	Systems!
27


