
30/09/2017

1

Distributed	systems
Lecture	9:	Introduction	to	distributed	systems,

client-server	computing,	and	RPC

Michaelmas 2017
Dr Robert	N.	M.	Watson

(With	thanks	to	Dr Steven	Hand)

1

Recommended	reading

• “Distributed	Systems:	Concepts	and	Design”,	(5th Ed)	
Coulouris et	al,	Addison-Wesley	2012

• “Distributed Systems: Principles and Paradigms”
(2nd Ed),	Tannenbaum et	al,	Prentice	Hall,	2006

• “Operating	Systems,	Concurrent	and	Distributed
S/W	Design“,	Bacon	&	Harris,	Addison-Wesley	2003
– or	“Concurrent	Systems”,	(2nd Ed),	Jean	Bacon,	
Addison-Wesley	1997

2

30/09/2017

2

What	are	distributed	systems?

• A	set	of	discrete	computers	(“nodes”)	that	
cooperate	to	perform	a	computation	
– Operates	“as	if”	it	were	a	single	computing	system

• Examples	include:	
– Compute	clusters	(e.g.	CERN,	HPCF)
– BOINC	(aka	SETI@Home and	friends)
– Distributed	storage	systems	(e.g.	NFS,	Dropbox,	…)
– The	Web	(client/server;	CDNs;	and	back-end	too!)
– Peer-to-peer	systems	such	as	Tor
– Vehicles,	factories,	buildings	(?)

3

Preview:	Lecture	15	- Google	architecture
(Or:	How	to	treat	100,000	computers	as	1	computer)

Structured	storage:	BigTable

Parallel	data	
processing:	
MapReduce Cross-datacenter	

RDBMS:	Spanner

Distributed	storage:	Colossus

Distributed	locking:	
Chubby

Web	serving:	GWSFast	data	
analytics:	
Dremel

Cluster	managment	and	
scheduling:

Borg	/	Omega

RP
Cs

4

30/09/2017

3

Concurrent	systems	reminder
• Foundations	of	concurrency:	processor(s),	threads
• Mutual	exclusion:	locks,	semaphores,	monitors,	etc.
• Producer-consumer,	active	objects,	message	passing
• Races,	deadlock,	livelock,	starvation,	priority	inversion
• Transactions,	ACID,	isolation,	serialisability,	schedules
• 2-phase	locking,	rollback,	time-stamp	ordering	(TSO),	
optimistic	concurrency	control	(OCC)

• Durability,	write-ahead	logging,	recovery
• Lock-free	algorithms,	transactional	memory
• Operating-system	case	study

5
These	problems	were	not	hard	enough	– distributed	systems	add:
loss	of	global	visibility;	loss	of	global	ordering;	new	failure	modes

Distributed	systems:	advantages

• Scale	and	performance
– Cheaper	to	buy	100	PCs	than	a	supercomputer…
– …	and	easier	to	incrementally	scale	up	too!

• Sharing	and	Communication
– Allow	access	to	shared	resources	(e.g.	a	printer)	and	
information	(e.g.	distributed	FS	or	DBMS)

– Enable	explicit	communication	between	machines	
(e.g.	EDI,	CDNs)	or	people	(e.g.	email,	twitter)

• Reliability
– Can	hopefully	continue	to	operate	even	if	some	parts	
of	the	system	are	inaccessible,	or	simply	crash

6

30/09/2017

4

Distributed	systems:	challenges

• Distributed	Systems	are	Concurrent	Systems
– Need	to	coordinate	independent	execution	at	
each	node	(c/f	first	part	of	course)

• Failure	of	any	components	(nodes,	network)
– At	any	time,	for	any	reason

• Network	delays
– Can’t	distinguish	congestion	from	crash/partition

• No	global	time
– Tricky	to	coordinate,	or	even	agree	on	ordering!

7

Middleware

• Middleware helps	application	authors	write	software	
intended	to	run	on	more	than	one	machine	at	a	time. 8

Local	
network/OS	
services

Kernel

Local	
network/OS	
services

Kernel

Local	
network/OS	
services

Kernel

Distributed	applications

Middleware	services

Machine	A Machine	B Machine	C

E.g.,	
TCP/IP,	
Ethernet Network

What	you	
actually	
wanted	
to	create! E.g.,	Java	

RMI

E.g.,	Java	
runtime

E.g.,	
Linux,	
BSD,	

Windows

30/09/2017

5

Transparency	&	middleware

• Recall	a	distributed	system	should	appear	“as	if”	
it	were	executing	on	a	single	computer

• We	often	call	this	transparency:	
– User	is	unaware	of	multiple	machines
– Programmer	is	unaware	of	multiple	machines

• How	“unaware”	can	vary	quite	a	bit
– e.g.	web	user	probably	aware	that	there’s	network	
communication	...	but	not	the	number	or	location	of	
the	various	machines	involved

– e.g.	programmer	may	explicitly	code	communication,	
or	may	have	layers	of	abstraction:	middleware

9

Types	of	transparency

10

Transparency Description
Access Hide	differences	in	data	representation	and	how	a	resource	is	

accessed
Location Hide	where	a	resource	is	located
Migration Hide	that	a	resource	may	move	to	another	location
Relocation Hide	that	a	resource	may	be	moved	to	another	location	..	

while	in	use
Replication Hide	that	a	resource	may	be	provided	by	multiple	

cooperating	systems
Concurrency Hide	that a	resource	may	be	simultaneously	shared	by	several	

competitive	users
Failure Hide	the	failure	and	recovery	of	a	resource
Persistence Hide	whether	a (software)	resource	is	in	memory	or	on	disk
Performance Hide	the	level of	demand	for	a	service	as	demand	changes

30/09/2017

6

In	Distributed	Systems…

• We	will	look	at	techniques,	protocols	&	
algorithms	used	in	distributed	systems	
– in	many	cases,	these	will	be	provided	for	you	by	a	
middleware	software	suite

– but	knowing	how	things	work	will	still	be	useful!
• Assume	OS	&	networking	support
– processes,	threads,	synchronization
– basic	communication	via	messages
– (will	see	later	how	assumptions	about	messages	will	
influence	the	systems	we	[can]	build)	

• Let’s	start	with	a	simple	client-server	systems
11

Client-server	model
• 1970s:	development	of	Local	Area	Networks	(LANs)
• 1980s:	standard	deployment	involves	small	number	of	
servers,	plus	many	workstations
– Servers:	always-on,	powerful	machines
– Workstations:	personal	computers

• Workstations	request	‘service’	from	servers	over	the	
network,	e.g.	access	to	a	shared	file-system:

12

Client Client File	server

Network

Disks	on	
which	shared	
file	system	is	
stored

Request

Reply

30/09/2017

7

Request-reply	protocols

• Basic	scheme:
– Client	issues	a	request	message
– Server	performs	operation,	and	sends	reply

• Example:	HTTP	1.0
– Client	(browser)	sends	“GET	/index.html”	
– Web	server	loads	file	and	returns	it
– Browser	displays	HTML	web	page

13

Cl
ie
nt

Server
GET	/index.html

…	data	...

Tim
e

Synchrony	and	asynchrony
• Synchrony and	asynchrony have	to	do	with	waiting
• For	software,	this	relates	to	a	program’s	event	model:

– Synchronous	clients	block	awaiting	a	reply
– Asynchronous	clients	can	continue	work	while	awaiting	a	reply
– E.g.,	a	command-line	fetch	tool	vs.	an	interactive	web	browser

• For	protocols,	this	relates	to	the	ability	to	express	multiple	
concurrent	operations	within	a	logical	connection:
– Synchronous	protocols	require	that	replies	be	issued	in	the	

same	order	that	requests	are	sent
– Asynchronous	protocols	allow	out-of-order	replies – e.g.,	by	

tagging	replies	with	the	ID	number	of	the	request
– E.g.,	SMTP	(one	operation	at	a	time)	vs.	IMAP	(tagged	requests)

• We	often	find	complex	combinations	of	synchrony	and	
asynchrony	within	a	single	software/protocol	stack

14

30/09/2017

8

Handling	errors	&	failures

• Errors are	application-level things	=>	easy	;-)
– E.g.	client	requests	non-existent	web	page
– Need	special	reply	(e.g.	“404	Not	Found”)

• Failures are	system-level things,	e.g.:	
– lost	message,	client/server	crash,	network	down,…

• To	handle	failure,	client	must	timeout if	it	
doesn’t	receive	a	reply	within	a	certain	time	T
– On	timeout,	client	can	retry request
– (Q:	what	should	we	set	T to?)

15

Retry	semantics

• Client	could	timeout	because:
1. Request	lost
2. Request	sent,	but	server	crashed	before	op.	performed
3. Request	sent	&	received,	op.	performed,	server	crashed	before	reply
4. Request	sent	&	received,	operation	performed,	reply	sent	…	but	lost	
5. As	#4,	but	reply	has	just	been	delayed	for	longer	than	T	

• For	read-only	stateless	requests	(e.g.,	HTTP	GET),	can	retry	in	all	
cases,	but	what	if	request	was	an	order	with	Amazon?	
– For	#1,	we	(probably)	want	to	re-order…	in	#5	we	want	to	wait	….?	

• Worse:	We	don’t	know	which	case	it	actually	was!
16

Cl
ie
nt

Server

POST	/script.cgi

…	reply	...

Tim
e

❌
①

❌
④

❌③

❌
②

⑤

30/09/2017

9

Ideal	semantics

• What	we	want	is	exactly-once semantics:
– Our	request	occurs	once	no	matter	how	many	
times	we	retry	(or	if	the	network	duplicates	our	
messages)

• E.g.	add	a	unique	ID	to	every	request
– Server	remembers	IDs,	and	associated	responses
– If	sees	a	duplicate,	just	returns	old	response
– Client	ignores	duplicate	responses

• Pretty	tricky	to	ensure	exactly-once	in	practice
– E.g.	if	server	explodes	;-)	

17

Practical	semantics
• In	practice,	protocols	guarantee	one	of:
• All-or-nothing (atomic)	semantics
– Use	scheme	on	previous	page;	persistent	log
– (similar	idea	to	transaction	processing)	

• At-most-once semantics
– Request	carried	out	once,	or	not	at	all
– If	no	reply,	we	don’t	know	which	outcome	it	was
– e.g.	send	one	request;	give	up	on	timeout

• At-least-once semantics
– Retry	on	timeout; risk	operation	occurring	again
– Ok	if	the	operation	is	read-only,	or	idempotent

• Note:	Assumption	of	no	network	duplication
18

Server	state	
not	required

Server	state	
required	to	
suppress	
retries

30/09/2017

10

Remote	Procedure	Call	(RPC)
• Request/response	protocols	are	useful	– and	widely	
used	– but	rather	clunky	to	use
– e.g.	need	to	define	the	set	of	requests,	including	how	they	
are	represented	in	network	messages

• A	nicer	abstraction	is	Remote	Procedure	Call	(RPC)
– Programmer	simply	invokes	a	procedure…	
– …but	it	executes	on	a	remote	machine	(the	server)
– RPC	subsystem	handles	message	formats,	sending	&	
receiving,	handling	timeouts,	etc

• Aim	is	to	make	distribution	(mostly)	transparent
– Certain	failure	cases	wouldn’t	happen	locally
– Distributed	and	local	function	call	performance	different

19

Marshalling	arguments

• RPC	is	integrated	with	the	programming	language
– Some	additional	magic	to	specify	things	are	remote

• RPC	layer	marshals parameters	to	the	call,	as	well	
as	any	return	value(s),	e.g.

Caller RPC	Service RPC	Service Remote
Function

call(…)

1)	Marshal	args
2)	Generate	ID
4)	Start	timer 5)	Unmarshal args

6)	Record	ID

7)	Marshal
return	values

9)	Set	timer
10)	Unmarshal

return	values
11)	Acknowledge

fun(…)

3)	Send
message

20

8)	Send
reply

30/09/2017

11

IDLs	and	stubs	
• To	marshal,	the	RPC	layer	(on	both	sides!)	must	know:
– how	many	arguments	the	procedure	has,	
– how	many	results	are	expected,	and	
– the	types	of	all	of	the	above

• The	programmer	must	specify	this	by	describing	things	
in	an	interface	definition	language	(IDL)
– In	higher-level	languages,	this	may	already	be	included	as	
standard	(e.g.	C#,	Java)

– In	others	(e.g.	C),	IDL	is	part	of	the	middleware
• The	RPC	layer	can	then	automatically	generate	stubs
– Small	pieces	of	code	at	client	and	server	(see	previous)
– May	also	provide	authentication,	encryption
– Provides	integrity,	confidentiality

21

Example:	SunRPC
• Developed	mid	80’s	for	Sun	Unix	systems
• Simple	request/response	protocol:
– Server	registers	one	or	more	“programs”	(services)
– Client	issues	requests	to	invoke	specific	procedures	
within	a	specific	service

• Messages	can	be	sent	over	any	transport	protocol	
(most	commonly	UDP/IP	and	later	TCP/IP)		
– Requests	have	a	unique	transaction	id	which	can	be	
used	to	detect	&	handle	retransmissions

– At-least-once	semantics
– Various	types	of	access	transparency	including	byte-
order

22

30/09/2017

12

eXternal Data	Representation	(XDR)

• SunRPC used	XDR for	describing	interfaces:

23

// file: test.x
program test {

version testver {
int get(getargs) = 1; // procedure number
int put(putargs) = 2; // procedure number

} = 1; // version number
} = 0x12345678; // program number

• rpcgen generates	[un]marshaling	code,	stubs
• Single	arguments…	but	recursively	convert	values
• Some	support	for	following	pointers	too	

• Data	on	the	wire	always	in	big-endian	format	(oops!)

Using	SunRPC
1. Write	XDR,	and	use	rpcgen to	generate	skeleton	code
2. Fill	in	blanks	(i.e.	write	client/server),	compile	code	
3. Run	server	&	register	with	portmapper (now:	rpcbind)	
– Mappings	from	{	prog#,	ver#,	proto	}	->	port
– (on	Linux/UNIX,	try	“/usr/sbin/rpcinfo –p”)	
– Portmapper is	an	RPC	service	on	a	well-known	port

4. Server	process	will	then	listen(),	awaiting	clients		
5. When	a	client	starts,	client	stub	calls	clnt_create()
– Sends	{	prog#,	ver#,	proto	}		to	portmapper on	server,	

receives	port	number	to	use	for	actual	RPC	connection
– Client	invokes	remote	procedures	as	needed

6. Lately:	GSS	authentication/encryption	(e.g.,	Kerberos)
24

30/09/2017

13

Summary	+	next	time

• About	this	course
• Advantages	and	challenges	of	distributed	
systems

• Types	of	transparency	(+scalability)
• Middleware,	the	client-server	model
• Errors	and	retry	semantics
• RPC,	marshalling,	SunRPC,	and	XDR

• Case	study:	the	Network	File	System	(NFS)
25

