In the past lectures, we have discussed Hoare logic: we have given
e a notation for specifying the intended behaviour of programs:
{P} C{Q}
e a semantics capturing the precise meaning of this notation:
={P} C{Q}

e a syntactic proof system for proving that programs satisfy

Hoare logic

Lecture 3: Examples in Hoare logic

Jean Pichon-Pharabod

University of Cambridge their intended specification:

CST Part Il - 2017/18 H{P} C{Q}

e a proof of soundness of that proof system:

F{P C{Q} = F{P} C{Q}

Introduction

Today, we will use Hoare logic, and look at how to find proofs.

We will first establish derived rules that make using Hoare logic Lo
easier. Finding proofs

Using these, we will then verify two simple programs to exercise
Hoare logic, and to illustrate how to find invariants in Hoare logic.

We will also find proof rules for total correctness.

Forward reasoning

The proof rules we have seen so far are best suited for forward
(also “top down") reasoning, where a proof tree is constructed
starting from the leaves, going towards the root.

. e . For instance, consider a proof of
Finding proofs: backwards reasoning

— F{X=a} X =X+1{X=a+1}

using the assignment rule:

FH{P[E/V]} V = E {P}

Proof of a simple assignment using the forward reasoning Backwards reasoning & backwards assignment rule

It is often more natural to work backwards (also “bottom up”),
starting from the root of the proof tree, and generating new
subgoals until all the nodes have been shown to be derivable.

We can derive rules better suited for backwards reasoning.

FX=1=X+1=a+1 F{X=a+)X+1/XX:=X+1{X=a+1} FX=atl=>X=a+l
F{X=a}X=X+1{X=a+1}

For instance, we can derive this backwards assignment rule:

Given that (X =a+1)[X+1/X] =X +1=a+1. =P = Q[E/V]
F{P} V :=E {Q}

&

This rule does not impose that the precondition is of a given
shape, but instead that it implies an assertion of the desired shape.

Backwards assignment rule Backwards sequenced assignment rule

The sequence rule can already be applied bottom up, but requires

us to guess an assertion R:

We can derive the backwards assignment rule by combining the - {P} Ci {R} - {R} G {Q}
F{P} Ci; & {Q}

assignment rule with the rule of consequence:

In the case of a command sequenced before an assignment, we can

: avoid having to guess R by using the sequenced assignment rule:
FP= Q[E/V] F{Q[E/V]}V = E{Q} FQ=Q (P} C {Q[E/V]}
F{PHV = E{Q} -{P} C;V = E {Q}

This is easily derivable using the sequencing rule and the

backwards assignment rule (exercise).

Backwards loop rule Backwards skip and conditional rules

We can also derive a backwards skip rule that builds in

consequence:
In the same way, we can derive a backwards reasoning rule for
loops by building in consequence: FP=Q
+ {P} skip {Q}
FP=1 F{IANB} C{l} FIAN-B= Q
F{P} while B do C {Q} The conditional rule needs not be changed:

- {P} if B then C; else G, {Q}

This rule still requires us to guess I to apply it bottom-up.

Backwards reasoning proof rules

FP=Q F{P} G {R} F{R} G {Q}
F{P} skip {Q} F{P} Gi; & {Q}
- P = QIE/V] - {P} C {QIE/V]} o o
F{P} V= E {Q} - (P} C:V = E {Q) Finding proofs: loop invariants

FP=1 F{IAB}YC{l} FIA-B=Q
- {P} while B do C {Q}

F{PAB} G {Q} F{PA-B} G {Q}
F{P} if B then C; else C; {Q}

There is no separate rule of consequence anymore.

These rules are still relatively complete. 10
Specifying a program computing factorial
We wish to verify that the following command computes the
factorial of X, and stores the result in Y:
while X #0do (Y ==Y x X; X =X —1)
Fmdmg proofs: factorial First, we need to formalise the specification:

e Factorial is only defined for non-negative numbers,
so X should be non-negative in the initial state.

e The terminal state of Y should be equal to the factorial of the
initial state of X.

e The implementation assumes that Y is equal to 1 initially.

11

A specification of a program computing factorial How does one find an invariant?

This corresponds to the following partial correctness triple:

FP=1 F{ABYC{l} FIAN-B=Q
- {P} while B do C {Q}

{(X=xAX>0AY =1}
while X #0do (Y :=Y x X; X := X —1)
{Y =x!}

Here, [is an invariant, meaning that it

Here, ‘I" denotes the usual mathematical factorial function. o
e must hold initially;

- . s e must be preserved by the loop body when B is true; and
Note that we used an auxiliary variable x to record the initial value P y P y

of X and relate the terminal value of Y with the initial value of X. e must imply the desired postcondition when B is false.

12 13

Analysing the factorial implementation Observations about the factorial implementation

(X=xAX>0AY =1}
while X £0do (Y := Y x X; X := X — 1)

{Y =x!}
{ XAX 20 ! iteration | Y X
while X #0do (Y =Y x X; X =X -1) 0 1 X
{Y =x!} 1 1xx x—1
2 Ixxx(x—1) x—2
i ?
How does this program work 2 3 1 x x (x—1) x (x—2) Y_3
X Ixxx(x—1)x(x=2)x---x1 0

Y is the value computed so far, and X! remains to be computed.

14 15

An invariant for the factorial implementation Backwards reasoning proof rules (recap)

FP=Q F{P} G {R} F{R} G {Q}
F{P} skip {Q} H{P} Gi; & {Q}
{(X=xAX>0AY=1} =P = QIE/V] = {P} C{QI[E/VI]}
while X £0do (Y = ¥ x X; X := X — 1) -{P} V.= E{Q} - {P} C;V = E {Q)}
{Yy =x!} FP=1 F{IAB}C{l} FIAN-B=Q
Take [to be Y x X! =xI A X > 0. F {P} while B do C {Q}
(We need X > 0 for X! to make sense.) e

F{PAB} G {Q} F{PA-B}G{Q}
- {P} if B then C; else G, {Q}

16 17

Derivation tree of the verified factorial

Finding proofs: proof outlines

18

Proof outlines Proof outline for the implementation of factorial

{X=xAX>0ANY =1}

{Y x XI=xIAX >0}
Derivations in Hoare logic are often more readable when given as

. . while X # 0 do
proof outlines instead of proof trees.
{Y x XI=xIAX>0AX #£0}
Proof outlines are code listings annotated with Hoare logic {{(Y xX)x(X=1)=xIA(X~-1)>0}
assertions between statements. Y =Y xX;
{Yx(X=1I=xIAn(X-1)>0}
Sequences of Hoare logic assertions indicate reasoning about X X 1

assertions.
{Y x XI=xIAX >0})

{Y xXI=xIAX>0A—(X#0)}

{Y =x!}
19 20

A verified Fibonacci implementation

We wish to verify that the following command computes the N-th
Fibonacci number (indexed from 1), and stores the result in Y.
This corresponds to the following partial correctness Hoare triple:

(1I<NAN=n}
X =0
Finding proofs: Fibonacci Y =1
Z =1
while Z < N do
(Y =X4+Y, X=Y-X,Z:=2Z+1)
{Y = fib(n)}

Recall that the Fibonacci sequence is defined by
fib(1) =1, fib(2) =1, ¥n> 2.fib(n) = fib(n— 1)+ fib(n — 2)

Moreover, for convenience, we assume fib(0) = 0. o

A verified Fibonacci implementation Observations about the implementation of Fibonacci

Reasoning about the initial assignment of constants is easy.
{X=0ANY=1IANZ=1AN1<NAN=n}

How can we verify the loop? while Z < N do
(Y =X+Y; X=Y-X;Z2:=2Z2+1)
{Y = fib(n)}
{X=0ANY=1IANZ=1AN1<NAN=n}
while Z < N do iteration [0 1 2 3 4 5 6 - n-1
(Y =X+Y;X=Y-X;Z:=Z+1) Y 112 35 8 13 fib(n)
{Y = fib(n)} X 0 11 2 3 5 8 - fib(n-1)
V4 1 2 3 4 5 6 7 n
First, we need to understand the implementation. z@
22 23

Analysing the implementation of Fibonacci Trying an invariant for the Fibonacci implementation

{X=0ANY=1ANZ=1AN1<NAN=n} {X=0AY=1AZ=1AN1<NAN=n}
while Z < N do while Z < N do
(Y =X+Y; X=Y-X,Z2:=2Z2+1) (Y =X+Y; X=Y-X;Z2:=2Z2+1)
{Y = fib(n)} {Y = fib(n)}
Z is used to count loop iterations, and Y and X are used to Take I =Y = fib(Z) A X = fib(Z —1) A Z > 0.

compute the Fibonacci number: Then we have to prove:

Y contains the current Fibonacci number,
e (X=0ANY=1ANZ=1AN1<NAN=n) =1

e {IN(Z<N)}Y =X4+Y; X=Y-X,Z:=Z+1{l}
This suggests trying the invariant o (IN—(Z < N))=Y = fib(n)

Y =fib(Z) NX = fib(Z —1) NZ > 0. Do all these hold? Only the first two do. (Exercise.)
(We need Z > 0 for fib(Z — 1) to make sense.)

and X contains the previous Fibonacci number.

24 25

A better invariant for the Fibonacci implementation Proof outline for the loop of the Fibonacci implementation

{X=0AY=1AZ=1AN1<NAN=n}
{Y=1ib(Z)YANX = fib(Z—1)ANZ>0ANZ<NAN=n}

{X=0AY=1AZ=1A1<NAN=n} while Z < N do

while Z < N do ({Y = fib(Z)AX = fib(Z —1)ANZ>0AZ<NAN=nAZ< N}
(Y =X+Y,X=Y-X;Z:=Z+1) (X+Y=Ffib(Z+1)ANX+Y)=X=Ffib(Z)YNZ+1>0ANZ+1<NAN=n}

{Y = fib(n)} Y =X+Y;
While Y = fib(Z) A X = fib(Z —1) A Z > 0 is an invariant, {Y=fib(Z+1)AY =X =fb(Z)AZ+1>0AZ+1<NAN=n}
it is not strong enough to establish the desired postcondition. X=Y =X

{(Y=fib(Z+1)AX=fib(Z)NZ+1>0ANZ+1<NAN =n}
We need to know that when the loop terminates, then Z = n. {Y=1fib(Z+D)AX=1ib(Z+1)—1)ANZ+1>0NZ+1<NAN=n}
It suffices to strengthen the invariant to: Z:=7+1
Y =fib(ZYANX = fib(Z-1)NZ>0NZ<NAN=n {Y =fib(Z) NX = fib(Z =1)NZ>0NZ < NAN = n})
. (Y = il(Z)AX =fib(Z—1)ANZ>0AZ<NAN=nA—(Z<N)}
26 {Y = fib(n)} 27

Summary of proof-finding

We have looked at how to find proofs:

e how “backwards” reasoning can help;

e how to find invariants.

Total correctness
Finding invariants is difficult!

Writing out full proof trees or even proof outlines by hand is

tedious and error-prone, even for simple programs.

In the next lecture, we will look at using mechanisation to check

our proofs and help discharge simple proof obligations.

28

Total correctness Total correctness

So far, we have mainly concerned ourselves with partial
non-termination.
Recall: the total correctness triple, [P] C [Q] holds if and only if
Except for the loop rule, all the rules described so far are sound for

. . . e '
whenever C is executed in a state satisfying P, total correctness as well as partial correctness.

then C terminates, and the terminal state satisfies Q.

29 30

The loop rule that we have for partial correctness is not sound for We need an alternative total correctness loop rule that ensures
total correctness: that the loop always terminates.
F(TAT)=T F{T} skip {T} FT =T The idea is to show that some non-negative integer quantity
F{T AT} skip {T} : decreases on each iteration of the loop.
F{T} while T do skip {T AT} FTA-T= L1
- (T} while T do skip { L} If this is the case, then the loop terminates, as there would

otherwise be an infinite decreasing sequence of natural numbers.
If the loop rule were sound for total correctness, then this would

show that while T do skip always terminates in a state satisfying

This decreasing quantity is called a variant.
L.

31 32

Loop rule for total correctness Backwards reasoning total correctness loop rule

In the rule below, the variant is E, and the fact that it decreases is

specified with an auxiliary variable n: Using the rule of consequence, we can derive the following

backwards reasoning total correctness loop rule:

FP=1 FIA-B=Q
FINB=E>0 F[IABA(E=n)]C[IA(E<n)

- [P] while B do C [Q]

FIPABA(E=n)] CI[PA(E<n)] FPAB=E>0
 [P] while B do C [P A —B]

The second hypothesis ensures that the variant is non-negative.

33 34

Total correctness: factorial example

Total correctness: factorial example

Consider the factorial computation we looked at before: [X=xAX>0AY =1]
X=xAX>0AY=1] while X #0do (Y=Y x X; X =X —1)
while X #0 do (Y := ¥ x X; X := X — 1) [Y =x1]
[Y =x] Take / to be Y x X1 =xIA X >0, and E to be X.
By assumption, X is non-negative and decreases in each iteration Then we have to show that

of the loop.
e X=xAX>0NY=1=1

To verify that this factorial implementation terminates, we can e INXAOANX=n)]Y =Y xX;X:=X=-1[IAN(X<n)]
thus take the variant E to be X. e INA(X#0)=Y =x!
¢« INX£0= X >0

35 36

Relation between partial and total correctness Summary of total correctness

We have given rules for total correctness,
similar to those for partial correctness.
The relation between partial and total correctness is informally
given by the equation Only the loop rule differs: the premises of the loop rule require
that the loop body decreases a non-negative expression.
total correctness = partial correctness + termination

It is even possible to do amortised, asymptotic complexity analysis
This is captured formally by the following properties: in Hoare logic:

o If - {P} C{Q}and F[P] C [T], then - [P] C [Q]. e A Fistful of Dollars, Armaél Guéneau et al., ESOP 2018
e If - [P] C [Q], then - {P} C {Q}.

In the next lecture, we will look at using mechanisation to check
our proofs and help discharge simple proof obligations.

37 38

