
Hoare logic

Lecture 6: Examples in separation logic

Jean Pichon-Pharabod

University of Cambridge

CST Part II – 2017/18

Introduction

In the previous lecture, we saw how reasoning about pointers in

Hoare logic was problematic, which motivated introducing

separation logic. We looked at the concepts separation logic is

based on, the new assertions that embody them, and the semantics

of assertions and partial correctness triples in separation logic.

In this lecture, we will

• introduce a syntactic proof system for separation logic;

• use it to verify example programs, thereby illustrating the

power of separation logic.

The lecture will be focused on partial correctness.

1

A proof system for separation logic

Separation logic

Separation logic inherits all the partial correctness rules from Hoare

logic from the first lecture, and extends them with

• structural rules, including the frame rule;

• rules for each new heap-manipulating command.

As we saw last time, some of the rules that were admissible for

plain Hoare logic, for example the rule of constancy, are no longer

sound for separation logic.

We now want the rule of consequence to be able manipulate our

extended assertion language, with our new assertions P ∗ Q,

t1 7→ t2, and emp, and not just first-order logic anymore.

2

The frame rule

The frame rule expresses that separation logic triples always

preserve any assertion disjoint from the precondition:

` {P} C {Q} mod(C) ∩ FV (R) = ∅
` {P ∗ R} C {Q ∗ R}

The second hypothesis ensures that the frame R does not refer to

any program variables modified by the command C .

3

Why the frame rule matters

The frame rule is the core of separation logic.

As we saw last time, it builds in modularity and compositionality.

` {P} C {Q} mod(C) ∩ FV (R) = ∅
` {P ∗ R} C {Q ∗ R}

It is so central to separation logic that its soundness is built in the

definition of the semantics of separation logic triples, making it

sound by construction.

4

Other structural rules

Given the rules that we are going to consider for the

heap-manipulating commands, we are going to need to include

structural rules like the following:

` {P} C {Q}
` {∃v .P} C {∃v .Q}

...

Rules like these were admissible in Hoare logic.

5

The heap assignment rule

Separation logic triples must assert ownership of any heap cells

modified by the command. The heap assignment rule thus asserts

ownership of the heap location being assigned:

` {E1 7→ t} [E1] := E2 {E1 7→ E2}

If expressions are allowed to fault, we need a more complex rule.

6

The heap dereference rule

Separation logic triples must ensure the command does not fault.

The heap dereference rule thus asserts ownership of the given heap

location to ensure the location is allocated in the heap:

` {E 7→ u ∧ V = v} V := [E] {E [v/V] 7→ u ∧ V = u}

Here, u and v are auxiliary variables, and v is used to refer to the

initial value of program variable V in the postcondition.

7

Allocation and deallocation

The allocation rule introduces a new points-to assertion for each

newly allocated location:

` {V = v} V := alloc(E0, ...,En) {V 7→ E0[v/V], ...,En[v/V]}

The deallocation rule destroys the points-to assertion for the

location to not be available anymore:

` {E 7→ t} dispose(E) {emp}

8

Swap example

Specification of swap

To illustrate these rules, consider the following code snippet:

Cswap ≡ A := [X];B := [Y]; [X] := B; [Y] := A;

We want to show that it swaps the values in the locations

referenced by X and Y , when X and Y do not alias:

{X 7→ n1 ∗ Y 7→ n2} Cswap {X 7→ n2 ∗ Y 7→ n1}

P

9

Proof outline for swap

{X 7→ n1 ∗ Y 7→ n2}
A := [X];

{(X 7→ n1 ∗ Y 7→ n2) ∧ A = n1}
B := [Y];

{(X 7→ n1 ∗ Y 7→ n2) ∧ A = n1 ∧ B = n2}
[X] := B;

{(X 7→ B ∗ Y 7→ n2) ∧ A = n1 ∧ B = n2}
[Y] := A;

{(X 7→ B ∗ Y 7→ A) ∧ A = n1 ∧ B = n2}
{X 7→ n2 ∗ Y 7→ n1}

Justifying these individual steps is now considerably more involved

than in Hoare logic. P
10

Detailed proof outline fo the first triple of swap

{X 7→ n1 ∗ Y 7→ n2}
{∃a. ((X 7→ n1 ∗ Y 7→ n2) ∧ A = a)}
{(X 7→ n1 ∗ Y 7→ n2) ∧ A = a}
{(X 7→ n1 ∧ A = a) ∗ Y 7→ n2}
{X 7→ n1 ∧ A = a}

A := [X]

{X [a/A] 7→ n1 ∧ A = n1}
{X 7→ n1 ∧ A = n1}
{(X 7→ n1 ∧ A = n1) ∗ Y 7→ n2}
{(X 7→ n1 ∗ Y 7→ n2) ∧ A = n1}

{∃a. ((X 7→ n1 ∗ Y 7→ n2) ∧ A = n1)}
{(X 7→ n1 ∗ Y 7→ n2) ∧ A = n1} 11

For reference: proof of the first triple of swap

Put another way:

To prove this first triple, we use the heap dereference rule to derive:

{X 7→ n1 ∧ A = a} A := [X] {X [a/A] 7→ n1 ∧ A = n1}
Then we existentially quantify the auxiliary variable a:

{∃a.X 7→ n1 ∧ A = a} A := [X] {∃a.X [a/A] 7→ n1 ∧ A = n1}
Applying the rule of consequence, we obtain:

{X 7→ n1} A := [X] {X 7→ n1 ∧ A = n1}
Since A := [X] does not modify Y , we can frame on Y 7→ n2:

{X 7→ n1 ∗ Y 7→ n2} A := [X] {(X 7→ n1 ∧ A = n1) ∗ Y 7→ n2}
Lastly, by the rule of consequence, we obtain:

{X 7→ n1 ∗ Y 7→ n2} A := [X] {(X 7→ n1 ∗ Y 7→ n2) ∧ A = n1}
12

Proof of the first triple of swap (continued)

We relied on many properties of our assertion logic.

For example, to justify the first application of consequence, we

need to show that

` P ⇒ ∃a. (P ∧ A = a)

and to justify the last application of consequence, we need to show

that:

` ((X 7→ n1∧A = n1)∗Y 7→ n2)⇒ ((X 7→ n1 ∗Y 7→ n2)∧A = n1)

13

Properties of separation logic

assertions

Syntax of assertions in separation logic

We now have an extended language of assertions, with a new

connective, the separating conjunction ∗:
P,Q ::= ⊥ | > | P ∧ Q | P ∨ Q | P ⇒ Q

| P ∗ Q | emp

| ∀v .P | ∃v .P | t1 = t2 | p(t1, ..., tn) n ≥ 0

7→ is a predicate symbol of arity 2.

This is not just usual first-order logic anymore: this is an instance

of the classical first-order logic of bunched implication (which is

related to linear logic).

We will also require inductive predicates later.

We will take an informal look at what kind of properties hold and

do not hold in this logic. Using the semantics, we can prove the

properties we need as we go. 14

Properties of separating conjunction

Separating conjunction is a commutative and associative operator

with emp as a neutral element (like ∧ was with >):

` P ∗ Q ⇔ Q ∗ P
` (P ∗ Q) ∗ R ⇔ P ∗ (Q ∗ R)

` P ∗ emp ⇔ P

Separating conjunction is monotone with respect to implication:

` P1 ⇒ Q1 ` P2 ⇒ Q2

` P1 ∗ P2 ⇒ Q1 ∗ Q2

Separating conjunction distributes over disjunction:

` (P ∨ Q) ∗ R ⇔ (P ∗ R) ∨ (Q ∗ R)

15

Properties of separating conjunction (continued)

Separating conjunction semi-distributes over conjunction (but not

the other direction in general):

` (P ∧ Q) ∗ R ⇒ (P ∗ R) ∧ (Q ∗ R)

In classical separation logic, > is not a neutral element for the

separating conjunction: we only have

` P ⇒ P ∗ >
but not the other direction in general. This means that we cannot

“forget” about allocated locations (this is where classical

separation logic differs from intuitionistic separation logic): we

have ` P ∗ Q ⇒ P ∗ >, but not ` P ∗ Q ⇒ P in general. To

actually get rid of Q, we have to deallocate the corresponding

locations.

16

Properties of pure assertions

An assertion is pure when it does not talk about the heap.

Syntactically, this means it does not contain emp or 7→.

Separating conjunction and conjunction become more similar when

they involve pure assertions:

` P ∧ Q ⇒ P ∗ Q when P or Q is pure

` P ∗ Q ⇒ P ∧ Q when P and Q are pure

` (P ∧ Q) ∗ R ⇔ P ∧ (Q ∗ R) when P is pure

17

Axioms for the points-to assertion

null cannot point to anything:

` ∀t1, t2. t1 7→ t2 ⇒ (t1 7→ t2 ∗ t1 6= null)

locations combined by ∗ are disjoint:

` ∀t1, t2, t3, t4. (t1 7→ t2 ∗ t3 7→ t4)⇒ (t1 7→ t2 ∗ t3 7→ t4 ∗ t1 6= t3)

...

Assertions in separation logic are not freely duplicable in general:

we do not have ` P ⇒ P ∗ P for all P. Therefore, in general, we

need to repeat the assertions on the right-hand side of the

implication to not “lose” them.

18

Verifying abstract data types

Verifying ADTs

Separation logic is very well-suited for specifying and reasoning

about data structures typically found in standard libraries such as

lists, queues, stacks, etc.

To illustrate this, we will specify and verify a library for working

with lists, implemented using null-terminated singly-linked lists, in

separation logic.

19

A list library implemented using singly-linked lists

First, we need to define a memory representation for our lists.

We will use null-terminated singly-linked list, starting from some

designated HEAD program variable that refers to the first element

of the linked list.

For instance, we will represent the mathematical list [12, 99, 37] as

we did in the previous lecture:

12 99 37HEAD

20

Representation predicates

To formalise the memory representation, separation logic uses

representation predicates that relate an abstract description of

the state of the data structure with its concrete memory

representations.

For our example, we want a predicate list(t, α) that relates a

mathematical list, α, with its memory representation starting at

location t (here, α, β, . . . are just terms, but we write them

differently to clarify the fact that they refer to mathematical lists).

To define such a predicate formally, we need to extend the

assertion logic to reason about inductively defined predicates. We

probably also want to extend it to reason about mathematical lists

directly rather than through encodings. We will elide these details.
21

Representation predicates

We are going to define the list(t, α) predicate by induction on the

list α:

• The empty list [] is represented as a null pointer:

list(t, [])
def
= t = null

• The list h :: α (again, h is just a term) is represented by a

pointer to two consecutive heap cells that contain the head h

of the list and the location of the representation of the tail α

of the list, respectively:

list(t, h :: α)
def
= ∃y . t 7→ h ∗ (t + 1) 7→ y ∗ list(y , α)

(recall that t 7→ h⇒ (t 7→ h ∗ t 6= null))

22

Representation predicates

The representation predicate allows us to specify the behaviour of

the list operations by their effect on the abstract state of the list.

For example, assuming that we represent the mathematical list α

at location HEAD, we can specify a push operation Cpush that

pushes the value of program variable X onto the list in terms of its

behaviour on the abstract state of the list as follows:

{list(HEAD, α) ∧ X = x} Cpush {list(HEAD, x :: α)}

23

Representation predicates

We can specify all the operations of the library in a similar manner:

{emp} Cnew {list(HEAD, [])}
{

list(HEAD, α) ∧
X = x

}
Cpush {list(HEAD, x :: α)}

{list(HEAD, α)} Cpop





(
list(HEAD, []) ∧
α = [] ∧ ERR = 1

)
∨


∃h, β.

α = h :: β ∧
list(HEAD, β) ∧
RET = h ∧ ERR = 0








{list(HEAD, α)} Cdelete {emp}
...

The emp in the postcondition of Cdelete ensures that the locations

of the precondition have been deallocated. 24

Implementation of push

The push operation stores the HEAD pointer into a temporary

variable Y before allocating two consecutive locations for the new

list element, storing the start-of-block location to HEAD:

Cpush ≡ Y := HEAD;HEAD := alloc(X ,Y)

We wish to prove that Cpush satisfies its intended specification:

{list(HEAD, α) ∧ X = x} Cpush {list(HEAD, x :: α)}

P

(We could use HEAD := alloc(X ,HEAD) instead.)

25

Proof outline for push

Here is a proof outline for the push operation:

{list(HEAD, α) ∧ X = x}
Y := HEAD

{list(Y , α) ∧ X = x}
HEAD := alloc(X ,Y)

{(list(Y , α) ∗ HEAD 7→ X ,Y) ∧ X = x}
{list(HEAD,X :: α) ∧ X = x}
{list(HEAD, x :: α)}

For the alloc step, we frame off list(Y , α) ∧ X = x .

26

For reference: detailed proof outline for the allocation

{list(Y , α) ∧ X = x}
{∃z . (list(Y , α) ∧ X = x) ∧ HEAD = z}
{(list(Y , α) ∧ X = x) ∧ HEAD = z}
{(list(Y , α) ∧ X = x) ∗ HEAD = z}
{HEAD = z}

HEAD := alloc(X ,Y)

{HEAD 7→ X [z/HEAD],Y [z/HEAD]}
{HEAD 7→ X ,Y }
{(list(Y , α) ∧ X = x) ∗ HEAD 7→ X ,Y }
{(list(Y , α) ∗ HEAD 7→ X ,Y) ∧ X = x)}
{∃z . (list(Y , α) ∗ HEAD 7→ X ,Y) ∧ X = x)}
{(list(Y , α) ∗ HEAD 7→ X ,Y) ∧ X = x}

27

Implementation of delete

The delete operation iterates down over the list, deallocating

nodes until it reaches the end of the list.

Cdelete ≡ X := HEAD;

while X 6= null do

(Y := [X + 1]; dispose(X); dispose(X + 1);X := Y)

We wish to prove that Cdelete satisfies its intended specification:

{list(HEAD, α)} Cdelete {emp}

For that, we need a suitable loop invariant. ­
To execute safely, X effectively needs to point to a list (which is α

only at the start).

28

Proof outline for delete

We can pick the invariant that we own the rest of the list:

{list(HEAD, α)}
X := HEAD;

{list(X , α)}
{∃β. list(X , β)}
while X 6= null do

{∃β. list(X , β) ∧ X 6= null}
(Y := [X + 1]; dispose(X); dispose(X + 1);X := Y)

{∃β. list(X , β)}
{∃β. list(X , β) ∧ ¬(X 6= null)}
{emp}

We need to complete the proof outline for the body of the loop.
29

Proof outline for the loop body of delete

To verify the loop body, we need a lemma to unfold the list

representation predicate in the non-null case:

{∃β. list(X , β) ∧ X 6= null}
{∃h, y , γ.X 7→ h, y ∗ list(y , γ)}
Y := [X + 1];

{∃h, γ.X 7→ h,Y ∗ list(Y , γ)}
dispose(X); dispose(X + 1);

{∃γ. list(Y , γ)}
X := Y

{∃γ. list(X , γ)}
{∃β. list(X , β)}

30

Classical separation logic and deallocation

Classical separation logic forces us to deallocate.

If we did not have the two deallocations in the body of the loop,

we would have to do something with

X 7→ h ∗ X + 1 7→ Y

We can at best weaken that assertion to >, but not fully eliminate

it.

We could weaken our loop invariant to ∃β. list(X , β) ∗ >:

the > would indicate the memory leak.

31

Implementation of max

The max operation iterates over a non-empty list, computing its

maximum element:

Cmax ≡
X := [HEAD + 1];M := [HEAD];

while X 6= null do

(E := [X]; (if E > M then M := E else skip);X := [X + 1])

We wish to prove that Cmax satisfies its intended specification:

{list(HEAD, h :: α)} Cmax {list(HEAD, h :: α) ∗M = max(h :: α)}

For that, we need a suitable loop invariant. ­
The lists represented starting at HEAD and X are not disjoint.

32

Proof outline for max

We can define an auxiliary predicate plist(t1, α, t2) inductively:

plist(t1, [], t2)
def
= (t1 = t2)

plist(t1, h :: α, t2)
def
= (∃y . t1 7→ h, y ∗ plist(y , α, t2))

such that list(t, α ++ β)⇔ ∃y . plist(t, α, y) ∗ list(y , β), and use it

to express our invariant:

{list(HEAD, h :: α)}
X := [HEAD + 1];M := [HEAD];

{plist(HEAD, [h],X) ∗ list(X , α) ∗M = max([h])}
{∃β, γ. h :: α = β ++ γ ∗ plist(HEAD, β,X) ∗ list(X , γ) ∗M = max(β)}
while X 6= null do

(E := [X]; (if E > M then M := E else skip);X := [X + 1])

{list(HEAD, h :: α) ∗M = max(h :: α)}
33

Summary of examples in separation logic

We can specify abstract data types using representation predicates

which relate an abstract model of the state of the data structure

with a concrete memory representation.

Justification of individual steps has to be made quite carefully

given the unfamiliar interaction of connectives in separation logic,

but proof outlines remain very readable.

34

Concurrency (not examinable)

Concurrent composition

Imagine extending our WHILEp language with a concurrent

composition construct (also “parallel composition”), C1||C2, which

executes the two statements C1 and C2 concurrently.

The statement C1||C2 reduces by interleaving execution steps of C1

and C2, until both have terminated.

For instance, (X := 0||X := 1); print(X) is allowed to print 0 or 1.

35

Concurrency disciplines

Adding concurrency complicates reasoning by introducing the

possibility of concurrent interference on shared state.

While separation logic does extend to reason about general

concurrent interference, we will focus on two common idioms of

concurrent programming with limited forms of interference:

• disjoint concurrency, and

• well-synchronised shared state.

36

Disjoint concurrency

Disjoint concurrency

Disjoint concurrency refers to multiple commands potentially

executing concurrently, but all working on disjoint state.

Parallel implementations of divide-and-conquer algorithms can

often be expressed using disjoint concurrency.

For instance, in a parallel merge sort, the recursive calls to merge

sort operate on disjoint parts of the underlying array.

37

Disjoint concurrency

The proof rule for disjoint concurrency requires us to split our

assertions into two disjoint parts, P1 and P2, and give each parallel

command ownership of one of them:

` {P1} C1 {Q1} ` {P2} C2 {Q2}
mod(C1) ∩ FV (P2,Q2) = ∅ mod(C2) ∩ FV (P1,Q1) = ∅

` {P1 ∗ P2} C1||C2 {Q1 ∗ Q2}

The third hypothesis ensures that C1 does not modify any program

variables used in the specification of C2, the fourth hypothesis

ensures the symmetric.

38

Disjoint concurrency example

Here is a simple example to illustrate two parallel increment

operations that operate on disjoint parts of the heap:

{X 7→ 3 ∗ Y 7→ 4}
{X 7→ 3} {Y 7→ 4}
A := [X]; [X] := A + 1 B := [Y]; [Y] := B + 1

{X 7→ 4} {Y 7→ 5}
{X 7→ 4 ∗ Y 7→ 5}

39

Well-synchronised concurrency

Well-synchronised shared state

Well-synchronised shared state refers to the common concurrency

idiom of using locks to ensure exclusive access to state shared

between multiple threads.

To reason about locking, concurrent separation logic extends

separation logic with lock invariants that describe the resources

protected by locks.

When acquiring a lock, the acquiring thread takes ownership of the

lock invariant and when releasing the lock, must give back

ownership of the lock invariant.

40

Well-synchronised shared state

To illustrate, consider a simplified setting with a single global lock.

We write I ` {P} C {Q} to indicate that we can derive the given

triple assuming the lock invariant is I . We have the following rules:

FV (I) = ∅
I ` {emp} lock {I ∗ locked}

FV (I) = ∅
I ` {I ∗ locked} unlock {emp}

The locked resource ensures the lock can only be unlocked by the

thread that currently has the lock.

41

Well-synchronised shared state example

To illustrate, consider a program with two threads that both access

a number stored in shared heap cell at location X concurrently.

Thread A increments X by 1 twice, and thread B increments X by

2. The threads use a lock to ensure their accesses are

well-synchronised.

Assuming that location X initially contains an even number, we

wish to prove that the contents of location X is still even after the

two concurrent threads have terminated.

A non-synchronised interleaving would allow X to end up being

odd.

42

Well-synchronised shared state example

First, we need to define a lock invariant.

The lock invariant needs to own the shared heap cell at location X

and should express that it always contains an even number:

I ≡ ∃n. x 7→ 2× n

We have to use an indirection through X = x because I is not

allowed to mention program variables.

43

Well-synchronised shared state example

{X = x ∧ emp}
{X = x ∧ emp} {X = x ∧ emp}
lock; lock;

{X = x ∧ I ∗ locked} {X = x ∧ I ∗ locked}
{X = x ∧ (∃n. x 7→ 2× n) ∗ locked}
A := [X]; [X] := A + 1;

{X = x ∧ (∃n. x 7→ 2× n + 1) ∗ locked}
B := [X]; [X] := B + 1;

{X = x ∧ (∃n. x 7→ 2× n) ∗ locked}

C := [X]; [X] := C + 2;

{X = x ∧ I ∗ locked} {X = x ∧ I ∗ locked}
unlock; unlock;

{X = x ∧ emp} {X = x ∧ emp}
{X = x ∧ emp}

We can temporarily violate the invariant when holding the lock.
44

Summary of concurrent separation logic

Concurrent separation logic supports disjoint concurrency by

splitting resources into disjoint parts and distributing them to

non-interacting commands.

Concurrent separation logic also supports reasoning about

well-synchronised concurrent programs, using lock invariants to

guard access to shared state.

Concurrent separation logic can also be extended to support

reasoning about general concurrency interference.

Papers of historical interest:

• Peter O’Hearn. Resources, Concurrency and Local Reasoning.

45

Perspectives

• Verification of the seL4 microkernel assembly:

https://entropy2018.sciencesconf.org/data/myreen.pdf

• The RustBelt project:

https://plv.mpi-sws.org/rustbelt/

• The iGPS logic for relaxed memory concurrency:

http://plv.mpi-sws.org/igps/

• The Iris higher-order concurrent separation logic framework,

implemented and verified in a proof assistant:

http://iris-project.org/

• Facebook’s bug-finding Infer tool:

http://fbinfer.com/

46

Overall summary

We have seen that Hoare logic (separation logic, when we have

pointers) enables specifying and reasoning about programs.

Reasoning remains close to the syntax, and captures the intuitions

we have about why programs are correct.

It’s all about invariants!*

*Or recursive function pre- and postconditions, which amount to

the same thing.

47

The heap assignment rule for when expressions can fault

` {E1 7→ t1 ∗ E2 = t2} [E1] := E2 {E1 7→ E2}

It also requires that evaluating E2 does not fault.

Exercise: Why is E1 = t1 not necessary in the precondition?

48

