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Recap: Tolerant Retrieval

What to do when there is no exact match between query term
and document term?

Dictionary as hash, B-tree, trie

Wildcards via permuterm

and k-gram index

k-gram index and edit-distance for spelling correction
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Upcoming

Ranking search results: why it is important (as opposed to
just presenting a set of unordered Boolean results)

Term frequency: This is a key ingredient for ranking.

Tf–idf ranking: best known traditional ranking scheme

And one explanation for why it works: Zipf’s Law

Vector space model: One of the most important formal
models for information retrieval (along with Boolean and
probabilistic models)
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Ranked retrieval

Thus far, our queries have been Boolean.

Documents either match or don’t.

Good for expert users with precise understanding of their
needs and of the collection.

Also good for applications: Applications can easily consume
1000s of results.

Not good for the majority of users.

Don’t want to write Boolean queries or wade through 1000s
of results.

This is particularly true of web search.
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Problem with Boolean search: Feast or famine

Boolean queries often have either too few or too many results.

Query 1

standard AND user AND dlink AND 650
→ 200,000 hits Feast!

Query 2

standard AND user AND dlink AND 650
AND no AND card AND found
→ 0 hits Famine!

It takes a lot of skill to come up with a query that produces a
manageable number of hits (OR vs. AND).
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Ranked retrieval models

Solution: ranked retrieval!

Condition: Results that are more relevant are ranked higher
than results that are less relevant. (i.e., the ranking algorithm
works.)

Size of results returned not an issue, assuming ranking
algorithm works.

(Normally associated with) Free text queries: words in a
human language rather than query language.
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Scoring as the basis of ranked retrieval

Rank documents in the collection according to how relevant
they are to a query.

Assign a score to each query–document pair, say in [0, 1].

This score measures how well document and query “match”.

If the query consists of just one term . . .

lioness

Score should be 0 if the query term does not occur in the
document.
The more frequent the query term in the document, the higher
the score.
We will look at a number of alternatives for doing this.
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Take 1: Scoring with the Jaccard coefficient

A commonly used measure of overlap of two sets.

Let A and B be two sets.

Jaccard coefficient:

jaccard(A,B) =
|A ∩ B|
|A ∪ B|

(A ̸= ∅ or B ̸= ∅)
jaccard(A,A) = 1

jaccard(A,B) = 0 if A ∩ B = 0

A and B don’t have to be the same size.

Always assigns a number between 0 and 1.
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Jaccard coefficient: Scoring example

What is the query–document match score that the Jaccard
coefficient computes for:

Query

“ides of March”

Document 1

“Caesar died in March”

Document 2

“the long March”

jaccard(q, d1) = 1/6

jaccard(q, d2) = 1/5
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What’s wrong with Jaccard?

It doesn’t consider term frequency (how many occurrences a
term has).

It also does not consider that some (rare) terms are inherently
more informative than frequent terms.

We need a more sophisticated way of normalizing for the
length of a document.

Later in this lecture, we’ll use |A ∩ B|/
√
|A ∪ B| (cosine) . . .

. . . instead of |A ∩ B|/|A ∪ B| (Jaccard) for length
normalization.

14



Overview

1 Recap

2 Why ranked retrieval?

3 Term frequency

4 Zipf’s Law and tf–idf weighting

5 The vector space model



Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Each document is represented as a binary vector ∈ {0, 1}|V |.
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Count matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
. . .

Each document is now represented as a count vector ∈ N|V |.
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Bag of words model

Vector representation doesn’t consider the order of words in a
document (but considers the counts).

Represented the same way:

John is quicker than Mary
Mary is quicker than John

This is called a bag of words model.

In a sense, this is a step back: The positional index was able
to distinguish these two documents.

(though we can recover positional information. . . )
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Term frequency tf

The term frequency tft,d of term t in document d is defined
as the number of times that t occurs in d .

How can we use tf when computing query–document match
scores?

We could just use tf as is (“raw term frequency”).

A document with tf = 10 occurrences of the term is more
relevant than a document with tf = 1 occurrence of the term.

But not 10 times more relevant.

Relevance does not increase proportionally with term
frequency.
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Instead of raw frequency: Log-frequency weighting

The log frequency weight of term t in d is defined as follows:

wt,d =

{
1 + log10 tft,d if tft,d > 0
0 otherwise

tft,d 0 1 2 10 1000
wt,d 0 1 1.3 2 4

Score for a document–query pair: sum over terms t in both q
and d :

tf-matching-score(q, d) =
∑

t∈q∩d(1 + log tft,d)

Note: the score is 0 if none of the query terms is present in
the document.
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Frequency in document vs. frequency in collection

In addition, to term frequency (the frequency of the term in
the document) . . .

. . . we also want to reward terms which are rare in the
document collection overall.

Now: excursion to an important statistical observation about
language.
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Zipf’s law

How many frequent vs. infrequent words should we expect in
a collection?

In natural language, there are a small number of very
high-frequency words and a large number of low-frequency
words.

Word frequency distributions obey a power law (Zipf’s law)

Zipf’s law

The i th most frequent word has
frequency cfi proportional to 1/i :

cfi ∝ 1
i

cfi is collection frequency: the number of occurrences of the
word ti in the collection.

A word’s frequency in a corpus is inversely proportional to its
rank.
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Zipf’s law

Zipf’s law

The i th most frequent term has
frequency cfi proportional to 1/i :

cfi ∝ 1
i

So if the most frequent term (the) occurs cf1 times, then the
second most frequent term (of) has half as many occurrences
cf2 =

1
2cf1 . . .

. . . and the third most frequent term (and) has a third as
many occurrences cf3 =

1
3cf1 etc.

Equivalent: cfi = p · ik and log cfi = log p + k log i (for
k = −1)
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There are a small number of high-frequency words...
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Zipf’s Law: Examples from 5 Languages

Top 10 most frequent words in some large language samples:

English German Spanish Italian Dutch

1 the 61,847 1 der 7,377,879 1 que 32,894 1 non 25,757 1 de 4,770
2 of 29,391 2 die 7,036,092 2 de 32,116 2 di 22,868 2 en 2,709
3 and 26,817 3 und 4,813,169 3 no 29,897 3 che 22,738 3 het/’t 2,469
4 a 21,626 4 in 3,768,565 4 a 22,313 4 è 18,624 4 van 2,259
5 in 18,214 5 den 2,717,150 5 la 21,127 5 e 17,600 5 ik 1,999
6 to 16,284 6 von 2,250,642 6 el 18,112 6 la 16,404 6 te 1,935
7 it 10,875 7 zu 1,992,268 7 es 16,620 7 il 14,765 7 dat 1,875
8 is 9,982 8 das 1,983,589 8 y 15,743 8 un 14,460 8 die 1,807
9 to 9,343 9 mit 1,878,243 9 en 15,303 9 a 13,915 9 in 1,639
10 was 9,236 10 sich 1,680,106 10 lo 14,010 10 per 10,501 10 een 1,637

BNC,
100Mw

“Deutscher
Wortschatz”,
500Mw

subtitles,
27.4Mw

subtitles,
5.6Mw

subtitles,
800Kw
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Zipf’s law for Reuters

Plotting Zipf curves in log space:

(fit is not perfect)
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Other collections (allegedly) obeying power laws

Sizes of settlements

Frequency of access to web pages

Income distributions amongst top earning 3% individuals

Korean family names

Size of earthquakes

Word senses per word

Notes in musical performances

. . .
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Desired weight for rare terms

Rare terms are more informative than frequent terms (recall
stopwords).

Frequent terms: not very determinant when it comes to
matching query–document pairs.

Consider a term in the query that is rare in the collection
(e.g., arachnocentric).

A document containing this term is very likely to be relevant
to the query.

→ We want high weights for rare terms like
arachnocentric.
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Desired weight for frequent terms

Frequent terms are less informative than rare terms.

Consider a term in the query that is frequent in the collection
(e.g., good, increase, line).

A document containing this term is more likely to be relevant
than a document that doesn’t . . .

. . . but words like good, increase and line are not sure
indicators of relevance.

→ For frequent terms like good, increase, and line, we
want positive weights . . .

. . . but lower weights than for rare terms.
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Document frequency

We want high weights for rare terms like arachnocentric.

We want low (positive) weights for frequent words like good,
increase, and line.

We will use document frequency to factor this into computing
the matching score.

The document frequency is the number of documents in the
collection that the term occurs in.
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idf weight

dft is the document frequency, the number of documents that
t occurs in.

dft is an inverse measure of the informativeness of term t.

We define the idf weight of term t as follows:

idft = log10
N

dft

(N is the number of documents in the collection.)

idft is a measure of the informativeness of the term.

log N
dft

instead of N
dft

to “dampen” the effect of idf.

Note that we use the log transformation for both term
frequency and document frequency.
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Examples for idf (suppose N = 1,000,000)

Compute idft using the formula: idft = log10
1,000,000

dft

term dft idft
calpurnia 1 6
animal 100 4
sunday 1000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0
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Effect of idf on ranking

idf affects the ranking of documents for queries with at least
two terms.

For example, in the query “arachnocentric line”, idf weighting
increases the relative weight of arachnocentric and
decreases the relative weight of line.

idf has little effect on ranking for one-term queries.
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Collection frequency vs. Document frequency

Collection Document
Term frequency frequency
insurance 10440 3997
try 10422 8760

Collection frequency of t: number of tokens of t in the
collection

Document frequency of t: number of documents t occurs in

Clearly, insurance is a more discriminating search term and
should get a higher weight.

This example suggests that df (and idf) is better for weighting
than cf (and “icf”).
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tf–idf weighting

The tf–idf weight of a term is the product of its tf weight and
its idf weight.

tf–idf weight

wt,d = (1 + log tft,d) · log
N

dft

tf weight

idf weight

Best known weighting scheme in information retrieval
(alternative names: tf.idf, tf x idf)

Increases wrt number of occurrences in document (tf)

Increases wrt the rarity of the term in the entire collection
(idf)
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Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Each document is represented as a binary vector ∈ {0, 1}|V |.
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Count matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
. . .

Each document is now represented as a count vector ∈ N|V |.
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Binary → count → weight matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 5.25 3.18 0.0 0.0 0.0 0.35
Brutus 1.21 6.10 0.0 1.0 0.0 0.0
Caesar 8.59 2.54 0.0 1.51 0.25 0.0
Calpurnia 0.0 1.54 0.0 0.0 0.0 0.0
Cleopatra 2.85 0.0 0.0 0.0 0.0 0.0
mercy 1.51 0.0 1.90 0.12 5.25 0.88
worser 1.37 0.0 0.11 4.15 0.25 1.95
. . .

Each document is now represented as a real-valued vector of tf–idf weights
∈ R|V |.
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Documents as vectors

Each document is now represented as a real-valued vector of
tf-idf weights ∈ R|V |.

So we have a |V |-dimensional real-valued vector space.

Terms are axes of the space.

Documents are points or vectors in this space.

Very high-dimensional: tens of millions of dimensions when
you apply this to web search engines.

Each vector is very sparse – most entries are zero.
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Queries as vectors

Key idea 1: do the same for queries: represent them as vectors
in the high-dimensional space

Key idea 2: Rank documents according to their proximity to
the query

proximity ≈ similarity of vectors ≈ inverse of distance

This allows us to rank relevant documents higher than
non-relevant documents
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How do we formalize vector space similarity?

First cut: (negative) distance between two points

( = distance between the end points of the two vectors)

Euclidean distance?

Euclidean distance is a bad idea . . .

. . . because Euclidean distance is large for vectors of different
lengths.
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Why distance is a bad idea

0 1
0

1

rich

poor

q: [rich poor]

d1:Ranks of starving poets swell
d2:Rich poor gap grows

d3:Record baseball salaries in 2010

The Euclidean distance of q⃗ and d⃗2 is large although the
distribution of terms in the query q and the distribution of terms in
the document d2 is very similar.
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Use angle instead of distance

Rank documents according to angle with query.

Thought experiment: take a document d and append it to
itself. Call this document d ′ (d ′ is twice as long as d).

“Semantically” d and d ′ have the same content.

The angle between the two documents is 0, corresponding to
maximal similarity . . .

. . . even though the Euclidean distance between the two
documents can be quite large.
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From angles to cosines

The following two notions are equivalent.

Rank documents according to the angle between query and
document in increasing order
Rank documents according to cosine(query,document) in
decreasing order

Cosine is a monotonically decreasing function of the angle for
the interval [0◦, 180◦]
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Length normalization

How do we compute the cosine?

A vector can be (length-) normalized by dividing each of its
components by its length – here we use the L2 norm:

||x ||2 =
√∑

i

x2i

This maps vectors onto the unit sphere . . .

. . . since after normalization:

||x ||2 =
√∑

i

x2i = 1.0

Effect on the two documents d and d ′ (d appended to itself)
from earlier slide: they have identical vectors after
length-normalization.

Long documents and short documents have weights of the
same order of magnitude.
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Cosine similarity between query and document

cos(q⃗, d⃗) = sim(q⃗, d⃗) =
q⃗ · d⃗
|q⃗||d⃗ |

=

|V |∑
i=1

qidi√
|V |∑
i=1

q2i

√
|V |∑
i=1

d2
i

qi is the tf–idf weight of term i in the query.

di is the tf–idf weight of term i in the document.

|q⃗| and |d⃗ | are the lengths of q⃗ and d⃗ .

This is the cosine similarity of q⃗ and d⃗ . . . . . . or, equivalently,
the cosine of the angle between q⃗ and d⃗ .

45



Cosine for normalized vectors

For normalized vectors, the cosine is equivalent to the dot
product or scalar product:

cos(q⃗, d⃗) = q⃗ · d⃗ =
∑
i

qi · di

(if q⃗ and d⃗ are length-normalized).
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Cosine similarity illustrated

0 1
0

1

rich

poor

v⃗(q)

v⃗(d1)

v⃗(d2)

v⃗(d3)

θ
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Cosine: Example

How similar are the following novels?

SaS: Sense and Sensibility

PaP: Pride and Prejudice

WH: Wuthering Heights
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Cosine: Example

a Term frequencies
a (raw counts)

term SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

Log frequency
weighting

SaS PaP WH
3.06 2.76 2.30
2.0 1.85 2.04

1.30 0.00 1.78
0.00 0.00 2.58

Log frequency weighting
and length normalisation
SaS PaP WH
0.789 0.832 0.524
0.515 0.555 0.465
0.335 0.000 0.405
0.000 0.000 0.588

(To simplify this example, we don’t do idf weighting.)

cos(SaS,PaP) ≈
0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0 ≈ 0.94.

cos(SaS,WH) ≈ 0.79

cos(PaP,WH) ≈ 0.69
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Components of tf–idf weighting

Term frequency Document frequency Normalization

n (natural) tft,d n (no) 1 n (none)
1

l (logarithm) 1 + log(tft,d) t (idf) log N
dft

c (cosine)
1√

w2
1+w2

2+...+w2
M

a (augmented) 0.5 +
0.5×tft,d
maxt(tft,d )

p (prob idf) max{0, log N−dft
dft

} u (pivoted
unique)

1/u

b (boolean)

{
1 if tft,d > 0
0 otherwise

b (byte size) 1/CharLengthα,
α < 1

L (log ave)
1+log(tft,d )

1+log(avet∈d (tft,d ))

Best known combination of weighting options

Default: no weighting
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tf–idf example

Many search engines allow for different weightings for queries
and documents.

Notation: ddd.qqq (denotes combination in use based on
acronyms in previous slide)

Example: lnc.ltn

Document:
l ogarithmic tf
n o df weighting
c osine normalization

Query:
l ogarithmic tf
t – means idf
n o normalization
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tf-idf example: lnc.ltn

Query: “best car insurance”. Document: “car insurance auto insurance”.

word query document product
tf-raw tf-wght df idf weight tf-raw tf-wght weight n’lized

auto 0 0 5000 2.3 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0 0 0 0 0
car 1 1 10000 2.0 2.0 1 1 1 0.52 1.04
insurance 1 1 1000 3.0 3.0 2 1.3 1.3 0.68 2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted
term frequency, df: document frequency, idf: inverse document frequency, weight: the final
weight of the term in the query or document, n’lized: document weights after cosine
normalization, product: the product of final query weight and final document weight
√
12 + 02 + 12 + 1.32 ≈ 1.92

1/1.92 ≈ 0.52
1.3/1.92 ≈ 0.68

Final similarity score between query and document:
∑

i wqi · wdi = 0 + 0 + 1.04 + 2.04 = 3.08
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Summary: Ranked retrieval in the vector space model

Represent the query as a weighted tf–idf vector.

Represent each document as a weighted tf–idf vector.

Compute the cosine similarity between the query vector and
each document vector.

Rank documents with respect to the query.

Return the top K (e.g., K = 10) to the user.
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Reading

MRS, Chapter 5.1.2 (Zipf’s Law)

MRS, Chapter 6 (Term Weighting)

54


	Recap
	Why ranked retrieval?
	Term frequency
	Zipf's Law and tf–idf weighting
	The vector space model

