Introduction

L25: Modern Compiler Design




Course Aims

e Understand the performance characteristics of modern
processors

e Become familiar with strategies for optimising dynamic
dispatch for languages like JavaScript and Objective-C

e Acquire experience with algorithms for automatically taking
advantage of SIMD, SIMT, and MIMD parallelism



Course Structure

e 8 Lectures
e 8 Supervised practical sessions

e Hands-on work with the LLVM compiler infrastructure



Assessment

e 3 short exercises
e Simple pass / fail
e Due: October 26", November 9t", November 23
e Assessed by oral viva in lab classes

e Longer assessed mini-project report

e Up to 4,000 words
e Approved proposal Due: November 2"
e Writeup due: January 17%, 16:00



LLVM

e Began as Chris Lattner's Masters’ project in UIUC in 2002,
supervised by Vikram Adve
e Now used in many compilers
e ARM / AMD / Intel / nVidia GPU shader compilers
e C/C++ compilers for various platforms
e Lots of domain-specific languages
e LLVM is written in C++11. This course will not teach you
C++11!
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Modern Intermediate Representations (IR)
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Reusable IR

Modern compilers are made from loosely coupled components
Front ends produce IR

Middle ‘ends’ transform IR (optimisation / analysis /
instrumentation)

Back ends generate native code (object code or assembly)



Structure of a Modern Compiler

Source Code

\. Token Stream
; Parser Actions
\I ntermediate Representation

Intermediate Representation

Executable Code
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Optimisation Passes

Modular, transform IR (Analysis passes just inspect IR)
Can be run multiple times, in different orders
May not always produce improvements in the wrong order!

Some intentionally pessimise code to make later passes work
better



Register vs Stack IR

e Stack makes interpreting, naive compilation easier
o Register makes various optimisations easier
e Which ones?
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Common Subexpression Elimination: Register IR

Source language:
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Common Subexpression
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Common Subexpression Elimination: Stack IR

Source language:

La = (b+c) * (b+c);

load b
load c¢
add

dup

mul
store a




Problems with CSE and Stack IR

e Entire operation must happen at once (no incremental
algorithm)

e Finding identical subtrees is possible, reusing results is harder

e If the operations were not adjacent, must spill to temporary



Hierarchical vs Flat IR

Source code is hierarchical (contains structured flow control,
scoped values)

Assembly is flat (all flow control is by jumps)

Intermediate representations are supposed to be somewhere
between the two

Think about how a for loop, while loop, and if statement
with a backwards goto might be represented.



Hierarchical IR

Easy to express high-level constructs

Preserves program semantics

Preserves high-level semantics (variable lifetime, exceptions)
clearly

Example: WHRIL in MIPSPro/Open64/Path64 and
derivatives



Flat IR

Easy to map to the back end
Simple for optimisations to process

Must carry scope information in ad-hoc ways (e.g. LLVM IR
has intrinsics to explicitly manage lifetimes for stack
allocations)

Examples: LLVM IR, CGIR, PTX
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LLVM IR and Transform Pipeline
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What Is LLVM IR?

e Unlimited Single-Assignment Register machine instruction set
e Strongly typed
e Three common representations:

e Human-readable LLVM assembly (.II files)
e Dense ‘bitcode’ binary representation (.bc files)
e CH4+ classes



Unlimited Register Machine?

Real CPUs have a fixed number of registers

LLVM IR has an infinite number

New registers are created to hold the result of every
Instruction

CodeGen'’s register allocator determines the mapping from
LLVM registers to physical registers

Type legalisation maps LLVM types to machine types and so
on (e.g. 128-element float vector to 32 SSE vectors or 16
AVX vectors, 1-bit integers to 32-bit values)



Static Single Assignment

Registers may be assigned to only once

Most (imperative) languages allow variables to be... variable
This requires some effort to support in LLVM IR: SSA
registers are not variables

SSA form makes dataflow explicit: All consumers of the result
of an instruction read the output register(s)



Multiple Assignment

(

int a = someFunction();
at+;

’

e One variable, assigned to twice.



Translating to LLVM IR

%a
%a

call i32 @someFunction ()
add i32 %a, 1

error: multiple definition of local value named ’a’
%a = add i32 %a, 1



Translating to Correct LLVM IR

%a = call i32 @someFunction ()
%a2 = add i32 %a, 1

e Front end must keep track of which register holds the current
value of a at any point in the code

e How do we track the new values?



Translating to LLVM IR The Easy Way

~

; int a
%a = alloca i32, align 4
; a = someFunction

%0 = call i32 @someFunction ()
store i32 %0, i32x*x %a

; at+

%1 = load i32%* Y%a

%2 = add i32 %1, 1

store 132 %2, i32*x Y%a

\S

e Numbered register are allocated automatically

e Each expression in the source is translated without worrying
about data flow

e Memory is not SSA in LLVM



Isn't That Slow?

e Lots of redundant memory operations
e Stores followed immediately by loads

e The Scalar Replacement of Aggregates (SROA) or mem2reg
pass cleans it up for us

%0 = call i32 @someFunction ()
%1 add i32 %0, 1

Important: SROA only works if the alloca is declared in the
entry block to the function!



Sequences of Instructions

A sequence of instructions that execute in order is a basic
block

Basic blocks must end with a terminator
Terminators are intraprocedural flow control instructions.

call is not a terminator because execution resumes at the
same place after the call

invoke is a terminator because flow either continues or
branches to an exception cleanup handler

This means that even “zero-cost” exceptions can have a cost:
they complicate the control-flow graph (CFG) within a
function and make optimisation harder.



Intraprocedural Flow Control

Assembly languages typically manage flow control via jumps /
branches (often the same instructions for inter- and
intraprocedural flow)

LLVM IR has conditional and unconditional branches

Branch instructions are terminators (they go at the end of a
basic block)

Basic blocks are branch targets

You can't jump into the middle of a basic block (by the
definition of a basic block)



What About Conditionals?

int b = 12;
if (a)
b++;

return b;

e Flow control requires one basic block for each path

e Conditional branches determine which path is taken



‘Phi, my lord, phi!" - Lady Macbeth, Compiler Developer

e ¢ nodes are special instructions used in SSA construction

Their value is determined by the preceding basic block

¢ nodes must come before any non-¢ instructions in a basic
block

In code generation, ¢ nodes become a requirement for one
basic block to leave a value in a specific register.

Alternate representation: named parameters to basic blocks
(used in Swift IR)



Easy Translation into LLVM IR

entry:

; int b = 12

%b = alloca 132

store 132 12, i32* %b

; if (a)

%0 = load i32* %a

%cond = icmp ne i32 %0, O

br i1 %cond, label %then, label %end

/

then:

; bt++ end :

%1 = load i32* Y%Db ; return b

%2 = add i32 %1, 1 a %3 = load i32* ¥%b
store i32 %2, i32%* %b ret i32 %3

br label Y%end



In SSA Form...

entry:

; if (a)

%cond = icmp ne i32 %a, O

br il %cond, label Y%then, label %end

v

then:
; b+t
%inc = add i32 12, 1

br label %end

end:

; return b

%b.0 = phi i32 [ %inc, Y%then 1, [ 12, Y%entry ]
ret i32 %b.0



In SSA Form...

entry:

; if (a)

%cond = icmp ne i32 %a, O

br il %cond, label Y%then, label %end

v

then:
; b+t The output from
%inc = add i32 12, 1 the mem2reg pass

br label %end

~N

end:

; return b

%b.0 = phi i32 [ %inc, %then 1, [ 12, Y%entry 1]
ret i32 %b.0



And After Constant Propagation...

entry:

; if (a)

%cond = icmp ne i32 %a, O

br il %cond, label Y%then, label %end

then:

br label Y%end

instruction.
\ +
8

; return b

The output from the
constprop pass. No add

end :
b++

%b.0 = phi i32 [ 13, Y%then 1, [ 12, Yentry ]

ret i32 %b.0



And After CFG Simplification...

entry:
%tobool = icmp ne i32 %a, O
%0 = select il Ytobool, i32 13, i32 12
ret 132 %0

e Output from the simplifycfg pass

e No flow control in the IR, just a select instruction



Why Select?

x86: ARM: PowerPC:
testl %edi, %edi mov rl, r0 cmplwi 0, 3, 0
setne %al mov r0O, #12 beq 0, .LBBO_2
movzbl %al, %eax cmp rl, #0 1i 3, 13
orl $12, Y%eax movne r0, #13 blr
ret mov pc, 1r .LBB0O_2:

1i 3, 12

blr

Branch is only needed on some architectures.



Why Select?

x86: ARM: PowerPC:
testl %edi, %edi mov rl, r0 cmplwi 0, 3, 0
setne %al mov r0O, #12 beq 0, .LBBO_2
movzbl %al, %eax cmp rl, #0 1i 3, 13
orl $12, Y%eax movne r0, #13 blr
ret mov pc, 1r .LBB0O_2:

1i 3, 12

blr

Branch is only needed on some architectures.
Would a predicated add instruction be better on ARM?



Canonical Form

LLVM IR has a notion of canonical form

High-level have a single canonical representation
For example, loops:

e Have a single entry block
e Have a single back branch to the start of the entry block
e Have induction variables in a specific form

Some passes generate canonical form from non-canonical
versions commonly generated by front ends

All other passes can expect canonical form as input



Functions

e LLVM functions contain at least one basic block
e Arguments are registers and are explicitly typed

o Registers are valid only within a function scope

@hello = private constant [13 x i8] c"Hello
world!\oo"

define 132 @main(i32 %argc, i8x*x* jargv) {

entry:
%0 = getelementptr [13 x i8]* @hello, i32 O,
i32 0
call i32 @puts(i8x* %0)
ret 132 0




Get Element Pointer?

Often shortened to GEP (in code as well as documentation)

Represents pointer arithmetic

Translated to complex addressing modes for the CPU

Also useful for alias analysis: result of a GEP is the same
object as the original pointer (or undefined)

In modern LLVM IR, on the way to typeless pointers, GEP
instructions carry the pointee type. For brevity, we'll use the old
form in the slides.



FI@Ling GEPs! HOW DO THEY WORK?!?

struct a {
int c;
int b[128];
} a;
int get(int i) { return a.b[i]; }




FI@Ling GEPs! HOW DO THEY WORK?!?

p
struct a {

int c;

int b[128];
} a;
int get(int i) { return a.bl[i]; }
N\

\S

%hstruct.a = type { 132, [128 x i32] }
@a = common global Ystruct.a zeroinitializer,
align 4

define 132 @get(i32 %i) {
entry:
%arrayidx = getelementptr inbounds Y%struct.a*
@a, i32 0, i32 1, 132 %i
%0 = load i32% jarrayidx
ret 132 %0




As x86 Assembly

define i32 @get (i32 %i) A
entry:
%arrayidx = getelementptr inbounds J%struct.a*
@a, i32 0, i32 1, i32 %i
%0 = load i32* Yjarrayidx
ret i32 %0

get:
movl 4 (Yesp), heax # load parameter
movl a+4(,%eax,4), %heax # GEP + load
ret



As ARM Assembly

define i32 @get (i32 %i) A

entry:
harrayidx = getelementptr inbounds J%struct.ax
@a, i32 0, i32 1, i32 %i
%0 = load i32* Yarrayidx
ret i32 %0
}
=
get:
ldr rl, .LCPIO_O // Load global address
add r0, rl, r0, 1sl #2 // GEP
1ldr r0, [r0, #4] // load return value
bx 1r
.LCPIO_O:
.long a



How Does LLVM IR Become Native Code?

e Transformed to directed acyclic graph representation
(SelectionDAG)

e Mapped to instructions (Machine IR)

e Streamed to assembly or object code writer



Selection DAG

DAG defining operations and dependencies
Legalisation phase lowers IR types to target types

e Arbitrary-sized vectors to fixed-size
o Float to integer and softfloat library calls
e And so on

DAG-to-DAG transforms simplify structure
Code is still (more or less) architecture independent at this
point

Some peephole optimisations happen here
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Instruction Selection

Pattern matching engine maps subtrees to instructions and
pseudo-ops

Generates another SSA form: Machine IR (MIR)

Real machine instructions

Some (target-specific) pseudo instructions

Mix of virtual and physical registers

Low-level optimisations can happen here



Register allocation

e Maps virtual registers to physical registers
e Adds stack spills / reloads as required

e Can reorder instructions, with some constraints



MC Streamer

e Class with assembler-like interface
e Emits one of:

e Textual assembly
e Object code file (ELF, Mach-O, COFF)
e In-memory instruction stream

o All generated from the same instruction definitions



The Most Important LLVM Classes

e Module - A compilation unit.
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The Most Important LLVM Classes

Module - A compilation unit.

Function - Can you guess?

BasicBlock - a basic block

GlobalVariable (I hope it's obvious)

IRBuilder - a helper for creating IR

Type - superclass for all LLVM concrete types
ConstantExpr - superclass for all constant expressions

PassManagerBuilder - Constructs optimisation pass
sequences to run

ExecutionEngine - Interface to the JIT compiler



Writing a New Pass

LLVM optimisations are self-contained classes:

e ModulePass subclasses modify a whole module
e FunctionPass subclasses modify a function

e LoopPass subclasses modify a function

Lots of analysis passes create information your passes can use!



Example Language-specific Passes

ARC Optimisations:
e Part of LLVM
o Elide reference counting operations in Objective-C code when
not required
e Makes heavy use of LLVM's flow control analysis
GNUstep Objective-C runtime optimisations:
e Distributed with the runtime.
e Can be used by clang (Objective-C) or LanguageKit
(Smalltalk)
e Cache method lookups, turn dynamic into static behaviour if
safe



Writing A Simple Pass

Memoise an expensive library call

Call maps a string to an integer (e.g. string intern function)
Mapping can be expensive.

Always returns the same result.

E

example ("somey,string”) ;

static int ._cache;
if (!._cache)
._cache = example("some,string");

X = ._cache;




Declaring the Pass

struct MemoiseExample : ModulePass, InstVisitor<

{

SimplePass>

// Boilerplate, see SimplePass

/// The function that we’re going to memoise

Function *exampleFn;

/// The return type of the function

Type *retTy;

/// Call sites and their constant string
arguments

using ExampleCall = std::pair<CallInst&,std::
string>;

/// All of the call sites that we’ve found

SmallVector <ExampleCall, 16> sites;




The Entry Point

f/// Pass entry point
bool runOnModule (Module &Mod) override {
sites.clear () ;
// Find the example function
exampleFn = Mod.getFunction("ezample");
// If it isn’t referenced, exit early
if (!exampleFn)
return false;
// We’ll use the return type later for the
caches
retTy = exampleFn->getFunctionType ()->
getReturnType () ;
// Find all call sites
visit (Mod) ;
// Insert the caches
return insertCaches (Mod) ;




Finding the Call

void visitCallInst(CallInst &CI) {
if (CI.getCalledValue () == exampleFn)
if (auto *arg = dyn_cast<GlobalVariable >(
CI.getOperand (0)->stripPointerCasts ()))
if (auto *init = dyn_cast<
ConstantDataSequential >(
arg->getInitializer ()))
if (init->isString())
sites.push_back ({CI,
init->getAsString O 1});

\S




Creating the Cache

e Once we've found all of the replacement points, we can insert
the caches.

e Don't do this during the search - iteration doesn't like the
collection being mutated...

StringMap<GlobalVariable*> statics;
for (auto &s : sites) {
auto *lookup = &s.first;
auto arg = s.second;
GlobalVariable #*cache = statics[arg];
if (!cache) {
cache = new GlobalVariable (M, retTy, false,
GlobalVariable::Privatelinkage ,
Constant::getNullValue (retTy),
._cache);
statics[arg] = cache;

n

}

\S




Restructuring the CFG

auto *preLookupBB = lookup->getParent () ;

auto *lookupBB =
preLookupBB->splitBasicBlock (lookup) ;

BasicBlock::iterator iter (lookup);

auto *afterLookupBB =
lookupBB->splitBasicBlock (++iter) ;

prelLookupBB->getTerminator () ->eraseFromParent () ;

lookupBB->getTerminator () ->eraseFromParent () ;

auto *phi = PHINode::Create(retTy, 2, "cache”,
&*xafterLookupBB->begin());

lookup->replaceAllUsesWith (phi);

=

\S




Adding the Test

IRBuilder <> B(beforeLookupBB);
llvm::Value *cachedClass =
B.CreateBitCast (B.CreatelLoad (cache), retTy);
1lvm::Value *needsLookup =
B.CreateIsNull (cachedClass) ;
B.CreateCondBr (needsLookup , lookupBB ,
afterLookupBB) ;
B.SetInsertPoint (lookupBB);
B.CreateStore (lookup , cache);
B.CreateBr (afterLookupBB) ;
phi->addIncoming(cachedClass, beforeLookupBB);
phi->addIncoming (lookup, lookupBB);
.

NS




A Simple Test

int example (char *foo) {
printf ("exzample (s)\n", foo);
int i=0;
while (xfoo)

i += *x(foo++);

return i;

}

int main(void) {
int a = example("ay contrived, ezample");
a += example("ay contrived, ezample");
a += example("ay contrived, ezample");
a += example("ay contrived, ezample");
a += example("aycontrived, ezample");
return a;




Running the Test

$ clang example.c -02 ; ./a.out ; echo $7
example(a contrived example)

example(a contrived example)

example(a contrived example)

example(a contrived example)

example(a contrived example)

199

$ clang -Xclang -load -Xclang ./memo.so -02
$ ./a.out ; echo $7

example(a contrived example)

199



