
Autovectorisation

L25: Modern Compiler Design

SIMD

• Single Instruction, Multiple Data

• Single Register Multiple Data

• 2-8 values are loaded at once, operated on, stored.

• Operations must be grouped

• Modern SIMD units support scatter-gather, but slower than
contiguous data

Characteristics of Modern Vector Units

• Multiple pipelines for different kinds of operation

• Independent operations dispatched in parallel

• Usually one instruction (e.g. add two four-lane vectors in
parallel) per pipeline dispatched per cycle

• Multi-cycle (2-20) latency before results are available

• ISA vector width does not necessarily imply microarchitectural
vector width! (e.g. Early Intel Atom had 128-bit vectors but
64-bit ALUs, dispatches half of the vector instruction each
cycle)

Explicit Language Support

• Fortran, APL, GNU C and OpenCL C provide vector types

• Compiles to scalar operations or vector operations if available

• Lots of work for the programmer

�
typedef __attribute__ ((vector_size (16))) int v4;

v4 vadd(v4 a, v4 b) {

return a+b;

} 	� ��
define <4 x i32 > @vadd(<4 x i32 > %a,

<4 x i32 > %b) {

%1 = add <4 x i32 > %b, %a

ret <4 x i32 > %1

} 	� ��
paddd %xmm1 , %xmm0

retq 	� �

Explicit Language Support

• Fortran, APL, GNU C and OpenCL C provide vector types

• Compiles to scalar operations or vector operations if available

• Lots of work for the programmer�
typedef __attribute__ ((vector_size (16))) int v4;

v4 vadd(v4 a, v4 b) {

return a+b;

} 	� �

�
define <4 x i32 > @vadd(<4 x i32 > %a,

<4 x i32 > %b) {

%1 = add <4 x i32 > %b, %a

ret <4 x i32 > %1

} 	� ��
paddd %xmm1 , %xmm0

retq 	� �

Explicit Language Support

• Fortran, APL, GNU C and OpenCL C provide vector types

• Compiles to scalar operations or vector operations if available

• Lots of work for the programmer�
typedef __attribute__ ((vector_size (16))) int v4;

v4 vadd(v4 a, v4 b) {

return a+b;

} 	� ��
define <4 x i32 > @vadd(<4 x i32 > %a,

<4 x i32 > %b) {

%1 = add <4 x i32 > %b, %a

ret <4 x i32 > %1

} 	� �

�
paddd %xmm1 , %xmm0

retq 	� �

Explicit Language Support

• Fortran, APL, GNU C and OpenCL C provide vector types

• Compiles to scalar operations or vector operations if available

• Lots of work for the programmer�
typedef __attribute__ ((vector_size (16))) int v4;

v4 vadd(v4 a, v4 b) {

return a+b;

} 	� ��
define <4 x i32 > @vadd(<4 x i32 > %a,

<4 x i32 > %b) {

%1 = add <4 x i32 > %b, %a

ret <4 x i32 > %1

} 	� ��
paddd %xmm1 , %xmm0

retq 	� �

Autovectorisation

• Take scalar source code

• ???

• Profit!

• Run high-performance vector code

Aside: Vector Types in LLVM

• LLVM IR supports arbitrary-sized vectors

• All scalar arithmetic operations are defined for vectors

• Type legalisation (before code generation) splits them into
smaller vectors for the target

• Autovectorisation algorithms can be target independent,
converting scalar IR into vector IR

• Target-specific cost model is important for deciding which
transforms make sense

Prerequisites for Vectorisation:

Alias Analysis

Example:�
a = b+c;

d = e+f; 	� �
• Can this be vectorised?

• Only if a doesn’t alias e or f (e.g. C++ int &a = e)

• restrict keyword is helpful in this context

• Why might the resulting code be slower?

Prerequisites for Vectorisation: Alias Analysis

Example:�
a = b+c;

d = e+f; 	� �
• Can this be vectorised?

• Only if a doesn’t alias e or f (e.g. C++ int &a = e)

• restrict keyword is helpful in this context

• Why might the resulting code be slower?

Prerequisites for Vectorisation: Alignment

• Many vector units depend on vectors having natural alignment
for loads and stores

• Unaligned loads and stores can be done by loading as scalar
and copying to vector register

• Alternatively by two vector loads and a permute

• This is very slow

• For on-stack allocations, we can modify the alignment

• For loops, we can special-case the unaligned first / last
elements

Pattern-Based Loop Vectorisation

• Recognise common loop patterns

• Transform to vector equivalents

• Used by GCC, XLC

• Works well for specific cases that match patterns

• Not general - no benefit for near misses (pattern must match
exactly)

Example Loop Pattern

�
for (int i=0 ; i<x; i++)

a[i] = b[i] + c[i]; 	� �
Transforms to (pseudocode):�
int i=0;

while (insufficiently_aligned (&a[i]))

a[i] = b[i] + c[i];

for (; i+4<x; i+=4)

vector4_add (&a[i], &b[i], &c[i]);

for (; i<x; i++)

a[i] = b[i] + c[i]; 	� �

Loop Nest Optimisation (LNO)

• Generic family of optimisations

• Transform nested loops into canonical forms

• Expose many future optimisation opportunities

• Most autovectorisation works on loops and depends on loops
being in a comprehensible form

• Heuristic: 90% of all program execution is spent in relatively
tight loops

General Loop Vectorisation

• Unroll the loop (a multiple of n times for n-way vectors)

• Perform if conversion to eliminate branches

• Canonicalise induction variables / pointers

• Vectorise instructions within the resulting basic block

• Re-roll the loop

Canonicise induction variables

• Canonical form for induction loops (‘for loops’) has value that
is incremented on each iteration

• Transform loop induction variables such that:
• Induction variable starts at 0
• Is incremented by 1 each iteration

• Followed by Loop Strength Reduction
• Turns all array accesses into GEPs on array base for first

iteration and loop increment

Before:�
for (i=7 ; i<j ; i+=2)

bar(y[i]); 	� �
After:�
int t = j - 7;

for (i=0 ; i<t ; i++)

bar(y[(i*2) +7]); 	� �

Aside: Do-Loop Transform

• Some targets (especially DSPs) have very simple loop branch
predictors or ‘zero cost’ loops

• Loop induction variable should count down to 0, decrementing
by 1 each time

• Loop branch always predicted taken when induction variable is
non-zero

• Loop branch always predicted not-taken when induction
variable is zero

• No branch predictor misses for loop in this form

Loop Invariant Code Motion (LICM)

• Hoist values that don’t depend on any φ nodes inside the loop
to the start

• Avoids redundant computations within loop

• Reduces the amount of code that loop optimisations need to
look at

• Very easy with SSA form: dependencies are explicit in the IR

Before:�
for (i=0 ; i<j ; i++){

x = a + b;

bar(y[i] + x);

} 	� �

After:�
x = a + b;

for (i=0 ; i<j ; i++){

bar(y[i] + x);

} 	� �

Loop Unswitching

• Transform loops containing conditionals into conditionals
containing loops

• Dramatically reduces number of conditional branches executed

• Exposes parallelism between iterations more cleanly

• Dual of LICM

Before:�
for (i=0 ; i<j ; i++){

if (x)

foo(y[i]);

else

bar(y[i]);

} 	� �

After:�
if (x) {

for (i=0 ; i<j ; i++)

foo(y[i]);

} else {

for (i=0 ; i<j ; i++)

bar(y[i]);

} 	� �

Loop Unrolling

• Expands loops to be a smaller number of loops with multiple
copies of the body

• Less useful when loop branch predictors are competent

• Increases instruction cache usage

• ...but exposes more optimisation opportunities

Before:�
for (i=0 ; i<32 ; i++)

bar(y[i]); 	� �
After:�
for (i=0 ; i<32 ; i++){

bar(y[i++]);

bar(y[i++]);

bar(y[i++]);

bar(y[i]);

} 	� �

Superword Level Parallelism (SLP)

• Identify pairs / tuples of the same instruction

• Combine into vector operations

• Inspect operands, try to perform the same combination

• Bottom-up, works across basic blocks

Padded SLP vectorisation

• Observe that there are lots of near-misses for SLP
opportunities (e.g. same operation done to 3 adjacent things,
not to the 4th)

• Pad vectors

• Insert data into one operand to perform a nop on one lane:
• Multiply by one
• Add zero

• More opportunities for vectorisation

Polyhedral Optimisation (Polytope Model)

• Create dependency graph of array elements for array iterations

• Perform affine transform on graph

• Rewrite loop

Polyhedral Example

Dithering:�
for (int j = 0; j < h; ++j) {

for (int i = 0; i < w; ++i) {

int v = src[i][j];

v -= (dst[i-1][j] - src[i-1][j]) / 2;

v -= (dst[i][j-1] - src[i][j-1]) / 4;

v -= (dst[i+1][j-1] - src[i+1][j-1]) / 2;

dst[i][j] = (v < 128) ? 0 : 255;

src[i][j] = (v < 0) ? 0 : (v < 255) ? v :

255;

}

} 	� �

Loop Data Dependencies

Each iteration reads:�
src[i][j]

dst[i-1][j], src[i-1][j]

dst[i][j-1], src[i][j-1]

dst[i+1][j-1], src[i+1][j-1]; 	� �
Each iteration writes:�
dst[i][j]

src[i][j] 	� �

Loop Iteration Dependencies
Each iteration depends on the results from:�
(i-1,j)

(i,j-1)

(i+1,j-1) 	� �
As a polyhedron (arrows show data flow between loop iterations):

1 2 3 4

5 6 7 8

9 10 11 12

i

j

Applying an Affine Transform

• Affine transforms are matrices that change coordinate spaces

• Can skew, rotate, scale (not relevant in this context)

• Skew and rotate applied here to the dependencies:

• (p, t) = (i , 2j + i)

1

2

3

4

5

6

7

8

9

10

11

12

t = 2j − i

p = i

Changing the Execution Order

• t becomes the outer loop

• p becomes the inner loop

1

2

4

6

3

5

8

10

7

9

11

12

t = 2j − i

p = i

Why?

• Polyhedral transformations allow various reorderings of the
loop

• Dependencies between iterations are preserved

• May expose better parallelism opportunities

• May expose better locality of reference

• Factor of 10× speedup or more for some algorithms

Parallel Execution

• First and last two iterations are scalar

• All of the rest are 2-element vectors

1

2

3

4

3

4

5

6

5

6

7

8

t = 2j − i

p = i

Questions?

