Autovectorisation

L25: Modern Compiler Design



SIMD

Single Instruction, Multiple Data

Single Register Multiple Data

2-8 values are loaded at once, operated on, stored.
Operations must be grouped

Modern SIMD units support scatter-gather, but slower than
contiguous data



Characteristics of Modern Vector Units

Multiple pipelines for different kinds of operation
Independent operations dispatched in parallel

Usually one instruction (e.g. add two four-lane vectors in
parallel) per pipeline dispatched per cycle

Multi-cycle (2-20) latency before results are available

ISA vector width does not necessarily imply microarchitectural
vector width! (e.g. Early Intel Atom had 128-bit vectors but
64-bit ALUs, dispatches half of the vector instruction each
cycle)



Explicit Language Support

e Fortran, APL, GNU C and OpenCL C provide vector types
e Compiles to scalar operations or vector operations if available
e Lots of work for the programmer



Explicit Language Support

e Fortran, APL, GNU C and OpenCL C provide vector types
e Compiles to scalar operations or vector operations if available
e Lots of work for the programmer

typedef __attribute__((vector_size(16))) int v4;
v4 vadd(v4 a, v4 b) {
return a+b;

3




Explicit Language Support

e Fortran, APL, GNU C and OpenCL C provide vector types
e Compiles to scalar operations or vector operations if available
e Lots of work for the programmer

typedef __attribute__((vector_size(16))) int v4;
v4 vadd(v4 a, v4 b) {
return a+b;

3

define <4 x 132> @vadd(<4 x i32> Y%a,
<4 x i32> %b) {
%1 = add <4 x i32> %b, Y%a
ret <4 x i32> %1




Explicit Language Support

e Fortran, APL, GNU C and OpenCL C provide vector types
e Compiles to scalar operations or vector operations if available
e Lots of work for the programmer

typedef __attribute__((vector_size(16))) int v4;
v4 vadd(v4 a, v4 b) {
return a+b;

3

define <4 x 132> @vadd(<4 x i32> Y%a,
<4 x 132> %b) {
%1 = add <4 x i32> %b, Y%a
ret <4 x i32> %1
}

p
paddd %xmml, %xmmO
retq




Autovectorisation

Take scalar source code
7

Profitt

Run high-performance vector code



Aside: Vector Types in LLVM

LLVM IR supports arbitrary-sized vectors
All scalar arithmetic operations are defined for vectors

Type legalisation (before code generation) splits them into
smaller vectors for the target

Autovectorisation algorithms can be target independent,
converting scalar IR into vector IR

Target-specific cost model is important for deciding which
transforms make sense



Prerequisites for Vectorisation:

Example:

(

a = b+c;
d = e+f;

e Can this be vectorised?



Prerequisites for Vectorisation: Alias Analysis

Example:

a = b+c;
d = e+f;

Can this be vectorised?

Only if a doesn't alias e or £ (e.g. C++ int &a = e)
restrict keyword is helpful in this context

Why might the resulting code be slower?



Prerequisites for Vectorisation: Alignment

Many vector units depend on vectors having natural alignment
for loads and stores

Unaligned loads and stores can be done by loading as scalar
and copying to vector register

Alternatively by two vector loads and a permute
This is very slow
For on-stack allocations, we can modify the alignment

For loops, we can special-case the unaligned first / last
elements



Pattern-Based Loop Vectorisation

Recognise common loop patterns

Transform to vector equivalents

Used by GCC, XLC

Works well for specific cases that match patterns

Not general - no benefit for near misses (pattern must match
exactly)



Example Loop Pattern

for (int i=0 ; i<x; i++)
alil = bl[i] + c[i];

.

Transforms to (pseudocode):

int i=0;
while (insufficiently_aligned (&al[il))
alil = b[i]l + cl[i]l;
for (; i+4<x; i+=4)
vector4_add (kal[i], &b[il, &c[il);
for (; i<x; i++)
ali]l = b[i]l + c[il;




Loop Nest Optimisation (LNO)

Generic family of optimisations
Transform nested loops into canonical forms
Expose many future optimisation opportunities

Most autovectorisation works on loops and depends on loops
being in a comprehensible form

Heuristic: 90% of all program execution is spent in relatively
tight loops



General Loop Vectorisation

Unroll the loop (a multiple of n times for n-way vectors)
Perform if conversion to eliminate branches
Canonicalise induction variables / pointers

Vectorise instructions within the resulting basic block

Re-roll the loop



Canonicise induction variables

e Canonical form for induction loops (‘for loops') has value that
is incremented on each iteration
e Transform loop induction variables such that:

e Induction variable starts at 0
e |s incremented by 1 each iteration

e Followed by Loop Strength Reduction

e Turns all array accesses into GEPs on array base for first
iteration and loop increment

Before: After:
for (i=7 ; i<j ; i+=2) int t = j - 7;
bar (y[il); for (i=0 ; i<t ; i++)

bar (y[(i*2)+7]);




Aside: Do-Loop Transform

Some targets (especially DSPs) have very simple loop branch
predictors or ‘zero cost’ loops

Loop induction variable should count down to 0, decrementing
by 1 each time

Loop branch always predicted taken when induction variable is
non-zero

Loop branch always predicted not-taken when induction
variable is zero

No branch predictor misses for loop in this form



Loop Invariant Code Motion (LICM)

e Hoist values that don't depend on any ¢ nodes inside the loop
to the start

e Avoids redundant computations within loop

e Reduces the amount of code that loop optimisations need to

look at
e Very easy with SSA form: dependencies are explicit in the IR
Before: After:
for (i=0 ; i<j ; i++){ X = a + b;
X = a + b; for (i=0 ; i<j ; i++){
bar(y[i]l + x); bar (y[i]l + x);

} }




containing loops

Loop Unswitching

Transform loops containing conditionals into conditionals

Exposes parallelism between iterations more cleanly

Dramatically reduces number of conditional branches executed

e Dual of LICM
Before: After:
for (i=0 ; i<j ; i+#){ |[if x) 1
if (x) for (i=0 ; i<j ; i++)
foo(y[il); foo(y[il);
else } else {
bar (y[il); for (i=0 ; i<j ; i++)
¥ bar(y[il);
=1 }

-/




Loop Unrolling

copies of the body

Expands loops to be a smaller number of loops with multiple

Less useful when loop branch predictors are competent

e Increases instruction cache usage

e ...but exposes more optimisation opportunities

L

Before: After:
for (i=0 ; i<32 ; i++) for (i=0 ; i<32 ; i++){
bar(y[il); bar (y[i++]);

bar (y[1i++]) ;
bar (y[i++]);
bar(y[il);

-~/




Superword Level Parallelism (SLP)

Identify pairs / tuples of the same instruction
Combine into vector operations
Inspect operands, try to perform the same combination

Bottom-up, works across basic blocks



Padded SLP vectorisation

Observe that there are lots of near-misses for SLP
opportunities (e.g. same operation done to 3 adjacent things,
not to the 4th)

Pad vectors

Insert data into one operand to perform a nop on one lane:

e Multiply by one
e Add zero

More opportunities for vectorisation



Polyhedral Optimisation (Polytope Model)

e Create dependency graph of array elements for array iterations
e Perform affine transform on graph

e Rewrite loop



Polyhedral Example

Dithering:

for (int j = 0; j < h; ++j) {
for (int i = 0; i < w; ++i) {
int v = srcl[il[j];
(dst[i-11[j] - srcli-11L[j1) / 2;

v -=
v -= (dst[il[j-1] - srclillj-11) / 4;
v -= (dst[i+1][j-11 - srcli+1]1[j-11) / 2;

dst[i]1[j] = (v < 128) ? 0 : 255;
src[i]l[j] (v <0) 27 0 : (v < 255) 7 v :
255;

\S




Loop Data Dependencies

Each iteration reads:

src[il[j]

dst[i-11[j], srcli-1]1[j]
dst[il1[j-11, srcl[il[j-1]
dst[i+1][j-1], srcli+1]1[j-11;

Each iteration writes:

dst[1][j]
srcl[i][j]




Loop Iteration Dependencies
Each iteration depends on the results from:

(i-1,3)
(i,j-1)
(i+1,j-1)

As a polyhedron (arrows show data flow between loop iterations):

®
2




Applying an Affine Transform

Affine transforms are matrices that change coordinate spaces
Can skew, rotate, scale (not relevant in this context)

Skew and rotate applied here to the dependencies:
(p,t) = (i,2j+1)

t=2j—i




Changing the Execution Order

e t becomes the outer loop

e p becomes the inner loop




Why?

Polyhedral transformations allow various reorderings of the
loop

Dependencies between iterations are preserved
May expose better parallelism opportunities
May expose better locality of reference

Factor of 10x speedup or more for some algorithms



Parallel Execution

e First and last two iterations are scalar

e All of the rest are 2-element vectors

t=2j— i




Q”eStions?

«or Fr o«

Q>




