ELF linking: what it means and why it matters

Stephen Kell

stephen.kell@cl.cam.ac.uk

joint work with Dominic P. Mulligan and Peter Sewell

Computer Laboratory
University of Cambridge

A kernel 1s born

1d -m elf x86_64 —-build-id -o vmlinux \

-T arch/x86/kernel/vmlinux.lds \
arch/x86/kernel/head{ _64,64,}.0 \
arch/x86/kernel/init_task.o init/built-in.o \

——start—-group \

{usr,arch/x86,kernel,mm, fs}/built—-in.o \
{ipc, security, crypto,block}/built-in.o \
lib/lib.a arch/x86/1lib/lib.a \

lib/built-in.o arch/x86/lib/built-in.o \
{drivers, sound, firmware}/built—-in.o \
{arch/x86/{pci, power,video},net}/built-in.o \
——end—-group \

.tmp_kallsyms2.0

How can we get strong guarantees about software like this?

2

Shopping list

m specify the architecture(s)

m specity the C source language
m verily the compiler
m specity & verifty the hardware

m specify & verify functional properties. ..
All good stuff, but

m what was actually happening in that link command?

m ... something we can hand-wave away, right?

Of POPLs past (1)

1 Introduction

Program modularization arose from the necessity of splitting
large programs into fragments in order to compile them. As sys-
tem libraries grew in size, it became essential to compile the li-
braries separately from the user programs; libraries acquired in-
terfaces that minimized compilation dependencies. A linker was
used to patch compiled fragments together.

Cardelli
“Program Fragments, Linking and Modularization™

POPL °97

Of POPLs past (2)

and compilable. In this paper we provide a context where linking
can be studied, and separate compilability can be formally stated
and checked. We propose a framework where each module is
separately compiled to a self-contained entity called a linkset; we
show that separately compiled, compatible modules can be safe-
ly linked together.

Is separate compilation really the substance of linking?

m hint: no

That kernel again

1d -m elf x86_64 —-build-id -o vmlinux \

-T arch/x86/kernel/vmlinux.lds \
arch/x86/kernel/head{ _64,64,}.0 \
arch/x86/kernel/init_task.o init/built-in.o \

——start—-group \

{usr,arch/x86,kernel,mm, fs}/built—-in.o \
{ipc, security, crypto,block}/built-in.o \
lib/lib.a arch/x86/1lib/lib.a \

lib/built-in.o arch/x86/lib/built-in.o \
{drivers, sound, firmware}/built—-in.o \
{arch/x86/{pci, power,video},net}/built-in.o \
——end—-group \

.tmp_kallsyms2.0

Another shopping list

specity the object file formats

1.
2. specify the linker’s own language(s!)
3. verity the linker

4. go back to the other shopping list

The rest of this talk: our start on tackling these.

m non-idealised spec of Unix linking
m ... ELF object format. ..
m ... and (static) linking of ELF files

B ambition: usable as test oracle

+ some experience from a “systems person”

Systems software 1s written 1n. . .

. 1n C, mostly, right? With a bit of assembly?

Systems software 1s written 1n. . .

. 1n C, mostly, right? With a bit of assembly?

/x NOTE: gcc doesn’t actually guarantee that global objects will be
x laid out in memory in the order of declaration, so put these in
x different sections and use the linker script to order them. %/

Systems software 1s written 1n. . .

. 1n C, mostly, right? With a bit of assembly?

/x NOTE: gcc doesn’t actually guarantee that global objects will be
x laid out in memory in the order of declaration, so put these in
x different sections and use the linker script to order them. %/
pmd_t pmdO[PTRS_PER_PMD] __attribute__ ((
__section__ (”.data..vm0.pmd”), aligned(PAGE_SIZE)));
pgd_t swapper_pg_dirfPTRS_PER_PGD] __attribute__ ((
__section__ (”.data..vm0.pgd”), aligned(PAGE_SIZE)));
pte_t pgO[PT_INITIAL « PTRS_PER_PTE] __attribute__ ((
__section__ (”.data..vm0.pte”), aligned(PAGE_SIZE)));

Systems software 1s written 1n. . .

. 1n C, mostly, right? With a bit of assembly?

/x NOTE: gcc doesn’t actually guarantee that global objects will be
x laid out in memory in the order of declaration, so put these in
x different sections and use the linker script to order them. %/
pmd_t pmdO[PTRS_PER_PMD] __attribute__ ((
__section__ (”.data..vm0.pmd”), aligned(PAGE_SIZE)));
pgd_t swapper_pg_dirfPTRS_PER_PGD] __attribute__ ((
__section__ (”.data..vm0.pgd”), aligned(PAGE_SIZE)));
pte_t pgO[PT_INITIAL « PTRS_PER_PTE] __attribute__ ((
__section__ (”.data..vm0.pte”), aligned(PAGE_SIZE)));

Semantically, this 1s crucial!

It’s this whole other language

/x Put page table entries (swapper_pg_dir) as the first thing

x in .bss. This ensures that it has bss alignment (PAGE_SIZE). */
. = ALIGN(bss_align);

.bss : AT(ADDR(.bss) — LOAD_OFFSET) {

x(.data..vmO0.pmd) *x(.data..vm0.pgd) *(.data..vmO.pte)
x(.bss..page_aligned)
x(.dynbss) x(.bss)
*(COMMON)

Command lines are languages too

sage: /usr/local/bin/ld.bfd [options] file...

ptions:

—e ADDRESS, ——entry ADDRESS

—E, ——export-dynamic
O
-r, -1, —-—-relocatable

-R FILE, --just-symbols FILE
-T FILE, —--script FILE

-(, ——start—group

-), ——end-group

——as—needed

—-Bstatic, —-dn, -static
—Bsymbolic

——defsym SYMBOL=EXPRESSION
——gc—sections

——sort—section namel|align

Set start address

Export all dynamic symbols
Optimise output file

Generate relocatable output

Just link symbols

Read linker script

Start a group

End a group

Only set DT_NEEDED for following c
Do not link against shared librari
Bind global references locally
Define a symbol

Remove unused sections (on some ts

Sort sections by name or mBXimum &

Doesn’t this matter only for obscure systems code?

vold xmalloc(size_t sz)

{ /* my own malloc =/ }

int main (void)

{77 ...

int *1is = malloc (42 x sizeof (int));

}
Will it call my malloc() or the “other” one? Depends:

m statically or dynamically linked?
m what linker options?

m what compiler options?

m where does the other malloc() come from?
11

Linker-speak: what it’s used for

memory layout
memory placement
inter-module encapsulation

inter-module binding

inter-module versioning

link-time deduplication

build-time flexibility & configuration
extensibility

instrumentation

introspection

12

Linker-speak: where it’s specified

m carly Unix documentation
B man pages

m folklore

m source code

m the minds of hackers

13

One good linker deserves another

m 1972: AT&T Unix linker

m 1977: BSD linker

m c.1983: original GNU linker

m 1988: System V r4 linker (introduces ELF)
m c.1990: GNU BFD linker

m 2008: GNU gold linker

m c.2012: LLVM 11d linker

A common ambition
m be “mostly like that other linker”

m can I link my programs yet? do they seem to work?

Other platforms are available. .. 14

Back to the kernel

1d —m elf x86 64 —-build-id -o vmlinux \
-T arch/x86/kernel/vmlinux.lds \
arch/x86/kernel/head{ _64,64,}.0 \
arch/x86/kernel/init_task.o init/built-in.o \
——start—-group \

. # snip

Questions we could ask:

m does the output binary do the right thing?
m arc we using the linker the right way [for that]?

m did the linker do its job correctly?

15

Back to the kernel

1d —m elf x86 64 —-build-id -o vmlinux \
-T arch/x86/kernel/vmlinux.lds \
arch/x86/kernel/head{ _64,64,}.0 \
arch/x86/kernel/init_task.o init/built-in.o \
——start—-group \

. # snip

Questions we could ask:

m does the output binary do the right thing?
m arc we using the linker the right way [for that]?

m did the linker do its job correctly?

15

First step: executable spec for an ELF static linker

Lem spec of ELF static linking

m ELF file format

m cxecutable, actually working linker!

m architectures: x86-64 and partial AArch64, PPC64

m readable! comments, factoring

About 2 person-years of effort so far. ..

16

Link small programs against a small/real libc (uClibc)

m hello, bzip2, ...
m GNU C library exercises a lot of linker features

¢ “‘almost works”
Next step: link checker

m take a link job + output, answers y/n
m challenge: accommodate looseness

m ordering, padding, merging, discarding, relax / opt ...

17

What’s involved

read command line
gather input files (incl. archives, scripts)
resolve symbols
discard unneeded 1nputs
size support structures (GOT, PLT, ...)
interpret linker script. . .

. one pass to define & size output

. another pass to place output
complete support structures
apply relocations

write output file

18

A specification of sorts

1d —o OUTPUT /lib/crt0.o0 hello.o —-1c

m —1c maps to the archive 1ibc.a

The linker will search an archive only once, at the location where it is
specified on the command line. If the archive defines a symbol which was
undefined in some object which appeared before the archive on the
command line, the linker will include the appropriate file(s) from the
archive. However, an undefined symbol 1n an object appearing later on
the command line will not cause the linker to search the archive again.

Other linkers sometimes do something slightly different. . .

19

A more precise specification

let def.is_eligible = (fun (x ... x) —>
let (x snip more supporting definitions ... x)
in
let ref_and_def_are_in_same_archive
= match (def_coords, ref_coords) with
(InArchive(x1, _) :: _, InArchive(x2, _) = _) —>x1=x2
| - —> false
end in
(x main eligibility predicate x)
If ref.is_defined_or_.common_symbol then def_sym_is_ref_sym
else
if ref.is_unnamed then false (x never match empty names x)
else
if def_in_archive <> Nothing then 20

Is that enough? Is 1t correct?

ELF file format spec 1s quite well validated.

Linking spec 1s not quite a complete spec of real linking

m some looseness (e.g. 1in link order) not captured yet

m ABI-specific optimisations not modelled

— not yet usable as test oracle, but not far off. . .

More than a reference implementation
m ... capture space of permitted links

m usable in proof

21

m extracted to Isabelle/HOL (33,150 lines)

m proved termination of linker on all inputs
¢ (around 1,500 lines)

m proved a sample correctness theorem

¢ about (very simple) relocation on AMD64
¢ around 4,500 lines
¢ ... mostly re-usable lemmas

22

Reflections of a systems hacker

Getting used to functional style 1s no biggie. But

m can’t forget performance
m tool maturity matters
m linguistic convenience matters

m type-theoretic errors/problems can be inscrutable

¢ even to the fp-competent

23

Example: labelled memory images (1)

Our “intermediate representation’!

(x An element might have an address/offset, and
x It has some contents. x)
type element = <| startpos : maybe natural
; length : maybe natural
; contents : byte_pattern
>
type memory_image = Map.map string element (x name —> content x)

24

Example: labelled memory images (2)

type range = natural * natural (x start, length x)
type element_range = string « range (x element id, range x)

type annotated_memory_image ’abifeature = <|
elements : memory_image
; by_range : set ((maybe element_range) x (range_tag 'abifeature))
; by_tag : multimap (range_tag 'abifeature) (maybe element_range)
| >

Roll your own

m 1dentity (gensym)

m ordering

25

et elfFileFeatureCompare 1 {2 =
match (f1, f2) with
(ElfHeader(x1), ElfHeader(x2)) —> (x equal tags, so ... x) compare x1 :

| (ElfHeader(x1), -) —> LT

| (ElfSectionHeaderTable(x1), ElfHeader(x2)) —> GT
| (ElfSectionHeaderTable(x1), ElfSectionHeaderTable(x2)) —> (x equal tac
| (ElfSectionHeaderTable(x1), .) —> LT
| (ElfProgramHeaderTable(x1), ElfHeader(x2)) —> GT
| (ElfProgramHeaderTable(x1), ElfSectionHeaderTable(x2)) —> GT
| (ElfProgramHeaderTable(x1), ElfProgramHeaderTable(x2)) —> compare

Initially had a non-quadratic version, but. ..

26

Example: enumerations (1)

/* Legal values for sh_type (section type). */

#define SHT_NULL
#define SHT_PROGBITS
#define SHT SYMTAB
#define SHT_STRTAB
#define SHT_ RELA
#define SHT HASH
#define SHT_DYNAMIC
#define SHT_NOTE
#define SHT NOBITS

0
1
2
3
£
5
6
7
38

Section header table entry unus
Program data =/

Symbol table */

String table x/

Relocation entries with addends
Symbol hash table */

Dynamic linking information #/
Notes #*/

Program space with no data (bss

What’s the “right way” to model this. ..

m programmatically?

m mathematically?

27

Example: enumerations (2)

enum section_type {

NULL = 0, /* Section header table entry unused #*/
PROGBITS = 1, /% Program data */

SYMTAB = 2, /* Symbol table x/

STRTAB = 3, /* String table x*/

RELA = 4, /% Relocation entries with addends +*/
HASH = 5, /% Symbol hash table %/

DYNAMIC = 6, /#* Dynamic linking information */

NOTE = 7, /* Notes #*/

NOBITS = 8 /+ Program space with no data (bss) */

enums are a rather complex language feature. . .

m actually want extensible enums! -

Example: enumerations (3)

let
let
let
let
let
let
let
let
let

sht_null : natural =0
sht_progbits : natural = 1
sht_symtab : natural = 2
sht_strtab : natural = 3
sht_rela : natural =4
sht_hash : natural =5
sht_dynamic : natural = 6
sht_note : natural =7
sht_nobits : natural = 8

29

Some experience and observations

Performance

m “list of bytes” 1s a nice abstraction. ..

m not a good implementation

m need careful tool support
Linguistic convenience

m c.g. hex literals, fixed-width integers. . .

m boilerplate “for free”, e.g. comparison functions
No more Mr Nice Guy

m failwith essential

m cyclic linkage relation would help (irony)

m simulating “one-pass compiler” not ideal
30

Conclusions & what you can do

m http://www.bitbucket.org/Peter_Sewell/linksem
m read our OOPSLA 2016 paper

Thanks for your attention!

Ask me about

dynamic linking

looseness problems

_
_
m dark corners
m relationship to prior work
_

any other questions?
31

Some things we think we know

“systems software 1s written in C”
“for reasoning, we need semantics for C”

“C compilers provide separate compilation™

“linking 1s the joining of separate compiled units™

32

Linking: 1t’s just how we do separate compilation of C, right?

$ cc —g —¢c -0 hello.o hello.c && objdump -rdS hello.o

int main(int argc, char *xargv)

{

0: 48 83 ec 08 sub $0x8, %rsp
printf ("Hello, world!\n");
4: bf 00 00 00 00 mov $0x0, $edi
5: R X86_64 32 .rodata.strl.1
9: e8 00 00 00 0O callg e <main+Oxe>
a: R X86 064 PC32 puts—0x4

return 0O;

e: b8 00 00 00 0O mov $0x0, $Seax
13: 48 83 c4 08 add $0x8, $rsp
17: c3 retqg

33

Flexibility

/% Write formatted output to STREAM from the format string FORMAT. x/
int __fprintf (FILE xstream, const char xformat, ...)

{

va_list arg;
int done;
va_start (arg, format);
done = vfprintf (stream, format, arg);
va_end (arg);
return done;
h
ldbl_hidden_def (__fprintf , fprintf)

ldbl_strong_alias (__fprintf , fprintf)
/x We define the function with the real name here. But deep down in

libio the original function _IO_forintf is also needed. So make

an alias. x*/
ldbl_weak_alias (__fprintf , _IO_fprintf) 34

Dynamic linking

Two sides:

1. generate dynamically linkable binaries

2. actually link them
Majority of (1) already done, for overlap reasons. For (2):

m model loading, as done in OS or ld.so
m loading statically linked 1s simple enough
m dynamic linking is subtle/complex

m (ask me about dynamic linking)

35

Linking leakage into languages

if (&_IO_stdin_used != NULL)
{ /A& do something ... x/ }
else /4 something else ... x/

Is the else branch ever taken?

36

The knee-jerk reaction

The horror! Surely we need a new language.

Although:

Maybe 1n fact we need semantics for linker-speak.

W)
W)

W)

nat a
nat a

nat al

W)

nat al

how do we know 1t covers real requirements?

bout duplication?
bout fragmentation?

bout [lack of] portability?

pout all that existing code?

37

Linker-speak (1)

For ELF targets, the .section directive is used like this:

.section name [, "flags"[, @typel, @entsize]]]

38

Linker-speak (1)

For ELF targets, the .section directive is used like this:

.section name [, "flags"[, @typel, @entsize]]]

Or like this (from the C compiler):

struct t v
__attribute__ ((section (”.data.v”)))
={ /A .. %/ };

38

Linker-speak (1)

For ELF targets, the .section directive is used like this:

.section name [, "flags"[, @typel, @entsize]]]

Or like this (from the C compiler):

struct t v
__attribute__ ((section (”.data.v”)))
={ /A .. %/ };

Or like this (living dangerously):
struct t unique._v

__attribute__ ((section (”.data.v,.\"awG\”,.@progbits,_v,.comdat#”)))
={ /& .. %/ };

33

Linker-speak (2)

OUTPUT_FORMAT ("elf6d4-x36-04", "elfo6d-x36-064", "elf6d-x36-064

OUTPUT_ARCH (1386:x86—-64)
SECTIONS {

= SEGMENT_START ("text—-segment", 0x400000) + SIZEOF_HEADER

Lext ¢ { *(.text) }
.hash : { *=(.hash) }
.gnu.hash : { *(.gnu.hash)
.dynsym : { *x(.dynsym) }
.dynstr : { x(.dynstr) }
.interp : { *x(.interp) }
= DATA_SEGMENT_ALIGN (
CONSTANT
.data : { x(.data) }
.bss : { x(.bss) }

.dynamic : { *(.dynamic) }

}

CONSTANT (MAXPAGESIZE),

(COMMONPAGESIZE)) ;

39

Some of the spec (3)

OutputSection(AlwaysQOutput, Nothing, ”.preinit_array ”, |

DefineSymbol(lfUsed, ” __preinit_array_start ”, hidden_sym_spec)
; InputQuery(KeepEvenWhenGC, DefaultSort, filter_and_concat (
fun s —> name_matches ”.preinit_array” s))
; DefineSymbol(lfUsed, ”__preinit_array_end”, hidden_sym_spec)

)
... being the AST of the following linker script fragment:

. preinit_array

1
PROVIDE_HIDDEN (__preinit_array_start = .);
KEEP ((. preinit_array))
PROVIDE_HIDDEN (__preinit_array_end = .);
}

40

An actual specification document

Table 4.10: Relocation Types

Name Value Field Calculation
R_X86_ 64 NONE O | none none
R X86_64 64 1 | word64 S + A
R_X86_ 64 PC32 2 | word32 S + A - P
R _X86_64 GOT32 3 | word32 G + A
R_X86_64 PLT32 4 | word32 L + A - P
R _X86_ 64 COPY 5 | none none
R _X86_ 64 GLOB_DAT 6 | word64 S
R _X86_64 JUMP_SLOT 7 | word64 S
R X86_ 64 RELATIVE 8 | word64 B + A
R X86_64 GOTPCREL 9 | word32 G + GOT + A - P
R _X86_64 32 10 | word32 S + A
R _X86_64 3285 11 | word32 S + A
R_X86_64 16 12 | wordl6 S + A

41

Some of the spec (2)

t amdoe4_relocr =

match (string_of_amd64 _relocation_type r) with (x byte width %) (x truncate / sign

)
"R_X86_64_64" —> fun (img, p, rr) —> (8, fun (s, a) —>i2n
"R_X86_64_PC32" —> fun (img, p, rr) —> (4, fun (s, a) —> i2n_signed 32
"R_X86_64_PLT32" —> fun (img, p, rr) —> (4, fun (s, a) —> i2n_signed 32
"R_X86_64_GOTPCREL” —> fun (img, p, rr) —> (4, fun (s, a) —> i2n_signed 32
"R_X86_64_32" —> fun (img, p, rr) —> (4, fun (s, a) —> i2n
"R_X86_64_32S" —> fun (img, p, rr) —> (4, fun (s, a) —> i2n_signed 32
"R_X86_64_GOTTPOFF” —> fun (img, p, rr) —> (4, fun (s, a) —> i2n_signed 32

42

Some of the spec (2)

t amdoe4_relocr =

match (string_of_amd64 _relocation_type r) with (x calculation x)

(snip) ((n2i s) +a))

(snip) ((n2is) +a —p))

(snip) ((n2i (amd64_plt_slot_.addrimg rr s)) + a — (n2i p)))
(snip) ((n2i (amd64_got_slot_addrimg rrs)) + a — (n2i p)))
(snip) ((n2i s) +a))

(snip) ((n2i s) +a))

(snip) ((n2i (amd64_got_slot_addrimg rrs)) + a — (n2i p)))

(*)

43

CompCert: what it does

Verify compilation as far as symbolic assembly

B then use host toolchain/runtime!

checklink checks
m that the binary contains the expected instructions
m but 1t also contains other stuff. ..
m ... instructions from libc/crt

m ... linker metadata

44

Linker metadata can be malicious too

computation. We introduce our design and implemen-
tation of Cobbler, a proot-ot-concept toolkit capable of
compiling a Turing-complete language into well-formed
ELF executable metadata that get “executed” by the run-
time loader (RTLD). Our proof-of-concept toolkit high-
lights how important it 1s that defenders expand their fo-
cus beyond the code and data sections of untrusted bina-
ries, both in static analysis and 1n the dynamic analysis

of the early runtime setup stages as well as any time the
RTLD 1is invoked.

Shapiro, Bratus and Smith
“Weird Machines” in ELF
WOOT 2013 45

	A kernel is born
	Shopping list
	Of POPLs past (1)
	Of POPLs past (2)
	That kernel again
	Another shopping list
	Systems software is written inldots {}
	It's this whole other language
	Command lines are languages too
	Doesn't this matter only for obscure systems code?
	Linker-speak: what it's used for
	Linker-speak: where it's specified
	One good linker deserves another
	Back to the kernel
	First step: executable spec for an ELF emph {static} linker
	What it can do
	What's involved
	A specification of sorts
	A more precise specification
	Is that enough? Is it correct?
	Use in proof
	Reflections of a systems hacker
	Example: labelled memory images (1)
	Example: labelled memory images (2)
	The horror
	Example: enumerations (1)
	Example: enumerations (2)
	Example: enumerations (3)
	Some experience and observations
	Conclusions & what you can do
	Some things we think we know
	Linking: it's just how we do separate compilation of C, right?
	Flexibility
	Dynamic linking
	Linking leakage into languages
	The knee-jerk reaction
	Linker-speak (1)
	Linker-speak (2)
	Some of the spec (3)
	An actual specification document
	Some of the spec (2)
	Some of the spec (2)
	CompCert: what it does
	Linker metadata can be malicious too

