
L28: Advanced functional programming

Exercise 1

Due on 12th February 2018

Submission instructions

Your solutions for this exericse should be handed in to the Graduate Education
Office by 4pm on the due date. Additionally, please email the completed text
file exercise1.f to jeremy.yallop@cl.cam.ac.uk.

Additional instructions

This exercise involves the use of the fomega interpreter. Instructions for in-
stalling fomega are available on the course webpage:

https://www.cl.cam.ac.uk/teaching/1718/L28/materials.html

The accompanying file exercise1.f contains a number of definitions, any of
which may be used in the solutions to questions 3 and 4.
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1 Typing derivations

For each of the following System Fω terms either give a typing derivation or explain
why the term has no typing derivation:

(a) Λα::*.λh:α→ α.h h

(b) λf:(∀α::*.α).(fst (f [(1 → 1) × 1])) (f [1])

(c) λg:(∀φ::* ⇒ *.∀α::*.φ α→ α).Λγ.g [λβ.1] [γ] 〈〉

(You may assume the existence of the unit type 1 and value 〈〉 from Lecture 1)

(6 marks)
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2 Type inference and polymorphism

(a) Here are two definitions of the identity function

let id = fun x -> x
let id2 = id id

OCaml gives the first definition a generalized type:

val id : 'a -> 'a = <fun >

but gives the second definition a non-generalized type:

val id2 : '_a -> '_a = <fun >

Consequently, id can be applied to arguments of many different types:

(id 1, id "two", id false) ; (1, "two", false)

while id2 can only be applied to arguments of a single type:

(id2 1, id2 "two", id2 false) ; error!

Explain why the type checker treats the two definitions differently.

(b) Although the following two programs are very similar, the first program is
rejected by OCaml while the second program is accepted.

(* rejected by OCaml *)
let f x = (x, (fun y -> x :: y))
let g = f []
let i = (1 :: fst g, "two" :: fst g)

(* accepted by OCaml *)
let f x = (x, (fun y -> x :: y))
let g = fst (f [])
let i = (1 :: g, "two" :: g)

Explain briefly why the type checker rejects the first program but accepts the
second.

(6 marks)
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3 Arithmetic identities in System Fω

A number of equations familiar from high school arithmetic can also be applied
to types. For example, in arithmetic the value 1 acts as a right identity for
multiplication:

For any number a,
a× 1 ≡ a

and similarly in lambda calculus it is possible to write functions that convert back
and forth between the types A× 1 and A:

f : ∀A.A×1 → A
= ΛA.λp:A×1. f s t p

g : ∀A.A → A×1
= ΛA.λx:A.〈x,〈〉〉

(Furthermore, the composition of f and g corresponds to the identity function.
However, to capture this fact in the types we would need to switch from System Fω
to a more expressive calculus such as λC.)

Write similar pairs of System Fω functions that correspond to each of the following
three arithmetic identities:

(a) (a+ b) + c ≡ a+ (b+ c)
(+ is associative)

(b) a× (b+ c) ≡ a× b+ a× c
(× distributes over +)

(c) 0× a ≡ 0
(0 is an annihilator for ×)

(6 marks)
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4 Circuits and abstraction

The version of System Fω described in the lectures and implemented in the fomega

tool supports several additional constructs besides the basic forms for abstraction
and application: pairs, sums, and existential types. Although they are convenient,
these additional constructs are not entirely necessary, since they can be encoded in
the core of the language. This question investigates encodings of existential types.

(a) Define an operation

Exists :: (* ⇒ *) ⇒ *

representing an existential type, along with operations

pack_ : ?
open_ : ?

for constructing and using existentials.

The following test case may be helpful in developing your definitions. Given a
signature for booleans

Bools = λβ.β × β×(β → (∀α.α → α → α))

you should be able to construct the type Exists Bools and the terms involving
pack_ and open_ on the left hand side below. (The corresponding terms involving
the built-in pack and open are shown for reference on the right.)

pack_ [Bools]
[Unit + Unit]
〈inr [Unit] unit ,
in l [Unit] unit ,
λb:Unit+Unit.
Λα.
λr:α.
λs:α.
case b of x.s | y.r 〉

pack [Unit + Unit],
〈inr [Unit] unit ,
in l [Unit] unit ,
λb:Unit+Unit.
Λα.
λr:α.
λs:α.
case b of x.s | y.r 〉

as ∃β.Bools β

λp:Exists Bools.
open_ [Bools] p [Unit]
(Λβ.λbools:Bools β.
(@2 (@2 bools))

(@1 bools)
[Unit]
unit unit)

λp:∃β.Bools β.
open p as

β, bools in
(@2 (@2 bools))

(@1 bools)
[Unit]
unit unit

(b) It is often useful to build signatures for modules involving parameterized abstract
types. For example, the Queue and Stack mmodules in the standard library both
expose an abstract type for the container, paramterized by the type of elements:
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module Queue : sig
type 'a t
val create : unit -> 'a t
(* ... *)

module Stack : sig
type 'a t
val create : unit -> 'a t
(* ... *)

Here is a System Fω signature involving parametrized abstract types, and
exposing operations for building logical circuits with nor gates:

Gates =
λT::* ⇒ * ⇒ *.
(T (Bool × Bool) Bool) × # nor
(∀α.T α (α× α)) × # split
(∀α.∀β.∀γ.∀δ.T α γ → T β δ → T (α × β) (γ × δ)) × # join
(∀α.∀β.∀γ.T α β → T β γ → T α γ) # plug

The signature is parameterized by a type constructor T; in turn, T is
parameterised by two types representing the input and output to a circuit. There
are four value components. The first, of type T (Bool × Bool) Bool represents a
nor gate with the following standard truth table:

nor

P Q nor P Q
F F T
F T F
T F F
T T F

The remaining three components correspond to plumbing operations that can
be used to pass the same input to multiple components, and to wire circuits
together in parallel or series.

split join plug

Finally, for reference, here is an OCaml version of Gates:

module type Gates = sig
type ('i, 'o) t
val nor : (bool * bool , bool) t
val split : ('a, 'a * 'a) t
val join : ('a,'c) t -> ('b,'d) t -> ('a * 'b, 'c * 'd) t
val plug : ('a,'b) t -> ('b,'c) t -> ('a,'c) t

end

(i) Using the Gates signature, define a function not with the following type and
truth table:

not : ∀G::* ⇒ * ⇒ *.
Gates G → G Bool Bool

P not P
F T
T F
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(ii) Using the Gates signature (and, if you like, your definition of not from the
previous question, define a function and with the following type and truth
table:

and : ∀G::* ⇒ * ⇒ *.
Gates G → G (Bool × Bool) Bool

P Q and P Q
F F F
F T F
T F F
T T T

(iii) Give an implementation of Gates as a value of the following type:

function_gates : Gates (λX::*.λY::*.X → Y)

that represents a circuit as a function from input to output.

(iv) Give a second implementation of Gates as a value of the following type:

count_gates : Gates (λX.λY.Nat)

that represents a circuit as a natural number that corresponds to the
number of nor gates in the circuit.

(v) Since the type component T of the Gates signature does not have kind *,
Gates cannot be used with Exists.

Define Exists2, a variant of Exists for binary type operators, along with
constructor and deconstructor pack2_ and open2_ that are suitable for use
with Gates. You should ensure that the following expressions pass type
checking with your definitions:

Exists2 Gates

pack2_ [Gates] [λα.λβ.α→ β] function_gates

pack2_ [Gates] [λα.λβ.Nat] count_gates

λg:Exists2 Gates.
open2_ [Gates] g [Unit]
(ΛG::*⇒ *⇒ *.λg:Gates G.

(λg:G Bool Bool.unit)
(plug [G] g [Bool] [Bool] [Bool] (not [G] g) (not [G] g)))

(12 marks)
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