
L28: Advanced functional programming

Exercise 3

Due on 24th April 2018

This exercise uses the BER MetaOCaml compiler and several packages. You
can install both the compiler and the packages using opam:

opam remote add advanced-fp https://github.com/ocamllabs/advanced-fp-repo.git

opam switch 4.04.0+BER

eval $(opam config env)

opam install letrec re core_bench

The file README.md in the accompanying zip archive contains further instruc-
tions for building and running the code.

Submission instructions

Your solutions for this exericse should be handed in to the Graduate Education
Office by 4pm on the due date. Additionally, please email your completed code
as a file exercise3.zip to jeremy.yallop@cl.cam.ac.uk.

Changelog

14:00 Thu 29th Mar Corrected example in section 2
(ab|ac)d previously read (ab|ac)c*d.

17:00 Mon 9th Apr Corrected benchmark
Re_staged_tests.test_a_star_a

previously read Re_staged_tests.test_ab_star_c

01:00 Wed 18th Apr Added missing parentheses to example code in Q1(b)

1

jeremy.yallop@cl.cam.ac.uk

1 Tests of character: static analysis

A multi-stage program runs in two (or more) stages. The first stage, a generating
program produces as output a generated program that runs in the second stage. For
example, the staged power function examined in the lectures is a generating program;
it generates a program that performs a sequence of multiplications.

power .<x>. n x * x * x
generation

generating
program

generated
program

The values in a multi-stage program are divided into two classes: static values (such
as n above) are available to the generating program, while dynamic values (such as
x) are known only to the generated program.

However, it is often possible to determine various facts about dynamic values during
code generation. For example, consider the following fragment (which might have
been generated by combining smaller fragments):

.< if b < 20
then if b >= 30 || b < 10 then w

else x
else if b >= 15 then y

else z >.

Although b is a dynamic variable whose value is unknown, it is possible to deduce
the outcome of some of the tests involving b. In particular, the following code is only
executed if b < 20:

if b >= 30 || b < 10 then w
else x

and so the condition b >= 30 can never succeed.

Similarly, the following code is only executed if b >= 20:

if b >= 15 then y
else z

and so the condition b >= 15 can never fail. Combining these insights, we can simplify
the code to eliminate redundant checks:

.< if b < 20
then if b < 10 then w

else x
else y >.

This question involves building structures that keep track of the possible values of
dynamic variables in order to eliminate branches and simplify tests.

3

(Add your answers to this question to char test.ml)

(a) The function mem checks whether a character is a member of a set:

val mem : char -> CharSet.t -> bool

Define a staged version of mem with a dynamic character and a static set argument:

val mem_static : char code -> CharSet.t -> bool code

For example, the following program

.< fun c -> .˜(mem_static .<c>.
CharSet.of_list ['a'; 'b'; 'c'; '1'; '2'; '3']) >.

might generate this output:

.< fun c -> c = 'a' || c = 'b' || c = 'c'
|| c = '1' || c = '2' || c = '3' >.

(b) Comparing the character to each member of a set individually is inefficient.
Build a second staged implementation of mem, mem_static_interval, that generates
a set of interval tests instead. For example, the following program

.<fun c -> .˜(mem_static_interval .<c>.
(CharSet.of_list ['a'; 'b'; 'c'; '1'; '2'; '3']))>.

might generate this output:

.< fun c -> ('a' <= c && c <= 'c')
|| ('1' <= c && c <= '3') >.

(c) Define a module PSChar with the following signature:

module PSChar : sig
type ps
(* The type of partially -static characters *)

val inj : char code -> ps
(* Make a partially -static character from a dynamic character *)

val in_range : ps -> char*char ->
(ps -> 'a code) -> (ps -> 'a code) -> 'a code

(* Test whether a character lies within a range *)
end

where in_range is a staged version of the following code:

let in_range c (l,h) k1 k2 =
if l <= c && c <= h then k1 c else k2 c

with the following behaviour:

• Each call to in_range extends the partially-static representation with
knowledge about possible values. The argument passed to k1 incorporates
the knowledge that c lies in the range l. . .h; the argument passed to k2

incorporates the knowledge that c does not lie in the range l. . .h.

4

• Branches are omitted where possible: if it can be determined that the
character c does not lie in the range l. . .h then k1 is not called; if it can be
determined that the character c certainly lies in the range l. . .h then k2 is
not called.

• Interval tests should be reduced or eliminated where possible. For example,
if c is already known to lie in the range 'e'..'j' then

in_range c ('a','g') k1 k2

might generate code with the following condition

if c <= 'g' then ...

since c >= 'a' must always be true.

One reasonable representation of PSChar.ps is a pair of a dynamic variable and a
set of possible values for the variable:

type ps = char code * CharSet.t

However, you may use any representation you choose.

(d) Define a final staged version of mem mem_ps based on PSChar that (like
mem_static_interval) generates interval tests, and that eliminates or simplifies
tests where possible:

val mem_ps : PSChar.ps -> CharSet.t ->
(PSChar.ps -> 'a code) -> (PSChar.ps -> 'a code) -> 'a code

For example, the following program

.< fun c -> .˜(mem_ps (PSChar.inj .<c>.)
(CharSet.of_list ['a';'b';'c';'d';'e';'f'])
(fun p -> mem_ps p

(CharSet.of_list ['b';'d';'e';'f'])
(fun _ -> .<"w">.)
(fun _ -> .<"x">.))

(fun p -> mem_ps p
(CharSet.of_list ['c';'d';'e'])
(fun _ -> .<"y">.)
(fun _ -> .<"z">.))) >.

which is intended to behave similarly to the following pseudo-code

fun c -> if c ∈ {'a','b','c','d','e','f'}
then if c ∈ {'b','d','e','f'} then "w" else "x"
else if c ∈ {'c','d','e'} then "y" else "z"

might generate code like this:

.< fun c ->
if 'a' <= c && c <= 'f'
then if c = 'b' then "w"

else if 'd' <= c then "w" else "x"
else "z">.

5

2 Regular expressions and finite automata

Functions that match strings against regular expressions (regexes) are a good fit
for multi-stage programming for several reasons. First, since the regex is typically
available before the string, there is a natural division of the matching function into
stages. Second, careful analysis of regexes can significantly improve performance.
Third, a typical program reuses the same regex many times with different strings,
so performing extra work during code generation in order to produce more efficient
code is often worthwhile.

This section of the exercise involves staging a naive regex library to produce code
that is competitive with (or even faster than) the widely-used ocaml-re library.

The following diagram shows the main components of the library:

string

Regex.t

Nfa.nfa

(string → bool) codechar list → bool

Regex.parse

Regex.compile

Nfa_staged.acceptNfa.accept

this exercise

The main two functions of interest are Regex.compile, which converts a regex to an
equivalent Non-deterministic Finite Automaton (NFA), and Nfa.accept, which tests
whether a sequence of characters is acccepted by an NFA.

The following diagram shows how the regex "(ab|ac)d" is first turned into a tree
representation by Regex.parse, then into an NFA by Regex.compile:

"(ab|ac)d"

seq (alt (seq (chr 'a')
(chr 'b'))

(seq (chr 'a')
(chr 'c')))

(chr 'd') Sstart

a1

a2

b3

c4

d5
a

a

b

c

d

d

Regex.parse

Regex.compile

6

The final step is to run the NFA against a character sequence using NFA.accept to
determine whether the character sequence matches the original regex ("(ab|ac)d").
The NFA.accept function uses the approach described in Wikipedia:

Keep a set data structure of all states which the NFA might currently be in.
On the consumption of an input symbol, unite the results of the transition
function applied to all current states to get the set of next states. On the
consumption of the last input symbol, if one of the current states is a final
state, the machine accepts the string.

The questions that follow focus on this final step. Staging the naively-implemented
NFA.accept function can bring improvements of several orders of magnitude.

Sstart

a1

a2

b3

c4

d5
a

a

b

c

d

d

let rec x1 s i =
match s.[i] with
| c -> if c = 'a' then x2 s (i+1)

else false
| exception Invalid_argument _ ->

false
and x2 s i = . . .

Nfa_staged.accept

(Add your answers to this question to nfa staged.ml)

(a) (Staging the naive interpreter)

The first task is to implement a staged version of the Nfa.accept function using
staging annotations and the letrec function. There are two steps:

(i) First, define a function splitc that turns a dynamic character (type
char code) into a static character (type char) that is passed to the second
argument:

val splitc : char code -> (char -> 'a code) -> 'a code

(ii) Using splitc and letrec, define the function Nfa_staged.accept, starting from
the definition of the unstaged Nfa.accept function.

The staged accept function should use a set of states, StateSet.t, as the
index type. With a state set as the index type the generated code contains
a single function for each of the possible sets of states that an NFA can
be in; although the input machine is nondeterministic, the generated code
behaves deterministically.

7

You can test your code in the top-level:

let nfa = (Regex.compile (Regex.parse "(ab)|(ac)"));;
val nfa : Nfa.nfa = {Nfa.start = 0l; finals = <abstr >; next = <fun >}
let code = Nfa_staged.accept nfa ;;
val code : (char list -> bool) code = .<
let rec x1 = function

| [] -> false
| c::cr -> (match c with

| '\000' -> x3 cr
| '\001' -> x3 cr
| . . .)

and x2 = . . .

let accept = Runcode.run code;;
val accept : char list -> bool = <fun >
accept ['a'; 'b'];;
- : bool = true
accept ['b'; 'a'];;
- : bool = false

and using the test suite (type make test).

(b) (Improvement: removing redundant branches)

The size of the code generated by splitc can be reduced by using the information
available in the NFA representation about the possible transitions from the
current states.

(i) Write a function splitc2:

val splitc2 : Nfa.nfa -> StateSet.t ->
char code -> (char -> bool code) -> bool code

that generates code that only branches on characters with valid transitions
from the current state, returning false otherwise.

For example:

let nfa = Regex.compile (Regex.parse "(ab)|c");;
val nfa : Nfa.nfa = {Nfa.start = 0l; finals = <abstr >; next = <fun >}
let start = Nfa.StateSet.singleton nfa.Nfa.start;;
val start : Nfa.StateSet.t = <abstr >
.< fun c -> .˜(Nfa_staged.splitc2 nfa start .<c>. (fun _ -> .<true >.)) >.;;
- : (Nfa_staged.CharSet.elt -> bool) code = .<
fun c -> if c = 'c' then true else if c = 'a' then true else false >.

(ii) Using splitc2, define a function Nfa_staged.accept2 that generates more
compact code than Nfa.accept.

For example:

Nfa_staged.accept2 (Regex.compile (Regex.parse "a*b"));;
- : (Nfa_staged.CharSet.elt list -> bool) code = .<
let rec x1 = function
| [] -> false
| c::cr -> if c = 'b' then x3 cr

else if c = 'a' then x2 cr else false
and x2 = function

| [] -> false
| c::cr -> if c = 'b' then x3 cr

else if c = 'a' then x2 cr else false

8

and x3 = function
| [] -> true
| _::_ -> false
in x1 >.

(c) (Improvement: using strings rather than lists)

The accept functions developed so far operate on lists of characters. However, a
function that accepts strings instead provides a more convenient (and perhaps
more efficient) interface.

Write a function accept3 with the following signature:

val accept3 : nfa -> (string -> bool) code

using your accept2 from question (b) as a starting point.

For example:

Nfa_staged.accept3 (Regex.compile (Regex.parse "a*b"));;
- : (Nfa_staged.CharSet.elt list -> bool) code = .<
let rec x1 s i = match s[i] with
| exception Invalid_argument _ -> false
| c -> if c = 'b' then x3 s (i+1)

else if c = 'a' then x2 s (i+1) else false
and x2 s i = match s.[i] with
| exception Invalid_argument _ -> false
| c -> if c = 'b' then x3 s (i+1)

else if c = 'a' then x2 s (i+1) else false
and x3 s i = match s.[i] with
| exception Invalid_argument _ -> true
| c -> false
in fun s -> x1 s 0>.

(d) (Improvement: using more efficient tests)

(i) The splitc2 function (question (b)(i)) suffers from various inefficiencies:
characters are matched individually, which can lead to a slow linear search
where the number of valid transitions is large, and the continuation function
is invoked once for each matching character, leading to large code for certain
regexes. For example, the following call may (depending on the exact
implementation of accept3) generate extremely large and slow code:

Nfa_staged.accept3 (Regex.compile (Regex.parse ".a"))

Use your implementation of mem_ps from question 1 to write a function
splitc3 with the following signature:

let splitc3 : nfa -> StateSet.t ->
char code -> (StateSet.t -> bool code) -> bool code

that generates smaller faster code without linear searches, and that
coalesces calls to the next function where possible. For example, while
the following call using splitc2 inserts true three times, once for each of a,
b, and c,

let nfa = Regex.compile (Regex.parse "a|b|c");;
val nfa : Nfa.nfa = {Nfa.start = 0l; finals = <abstr >; next = <fun >}
.< fun c -> .˜(Nfa_staged.splitc2 nfa

9

(Nfa.StateSet.singleton nfa.Nfa.start)
.<c>. (fun _ -> .<true >.)) >.;;

- : (Nfa_staged.CharSet.elt -> bool) code = .<
fun c ->

if c = 'c'
then true
else if c = 'b' then true else if c = 'a' then true else false >.

a similar call to splitc3 inserts a single instance of true:

.< fun c -> .˜(Nfa_staged.splitc3 nfa
(Nfa.StateSet.singleton nfa.Nfa.start)
.<c>. (fun _ -> .<true >.)) >.;;

- : (char -> bool) code = .<
fun c -> if ('a' <= c) && (c <= 'c') then true else false >.

(ii) Write a final staged NFA interpreter, accept4, that uses splitc3 to generate
efficient, compact code. For example:

Nfa_staged.accept4 (Regex.compile (Regex.parse ".a"));;
- : (string -> bool) code = .<
let rec x1 s i = match s.[i] with

| c -> x2 s (i + 1)
| exception Invalid_argument _ -> false

and x2 s i =
match s.[i] with
| c -> if c = 'a' then x3 s (i + 1) else false
| exception Invalid_argument _ -> false

and x3 s i = match s.[i] with
| c -> false
| exception Invalid_argument _ -> true

in fun s -> x1 s 0>.

You may like to use the benchmarks in benchmark.ml to compare the
performance of the code generated by accept4 to the unstaged NFA
interpreter and to the ocaml-re library. (Type make bench to run the
benchmarks.)

10

