
11/20/17

1

L41:	Lab	2- IPC
Lecturelet 2

Dr Robert	N.	M.	Watson	and	Dr Graeme	Jenkinson
20	November	2017

L41:	Lab	2	– Kernel	implications	of	IPC
• A	quick	note	on	vm_fault()
• Learn	about	(and	trace)	POSIX	IPC
• Explore	buffering	and	scheduler	interactions
•Measure	the	probe	effect	
• This	is	the	first	of	two	labs	contributing	to	Lab	
Report	2:	
• Lab	2	takes	an	OS-centric	approach	
• Lab	3	takes	a	microarchitecture-centric	
approach	

•Use	data	from	both	to	write	the	lab	report	

L41	Lecturelet 2- Lab	2	IPC

11/20/17

2

Recall:	A	(kernel)	programmer	model	for	VM	

L41	Lecturelet 2- Lab	2	IPC

Machine-independent virtual memory (VM) Machine-dependant physical map (PMAP)

page

Read/write,
grows down,
anonymous

objectSt
ac

k

Read/write,
anonymous

objectH
ea

p
Li

br
ar

y Read/copy-on-
write, named

object

C
od

e Read/copy-on-
write, named

object

“vmspace”,
“vm_map”

“vm_map_entry”

anonymous
swap-backed

VM object

vnode
VM object

page

“vm_object”

shadow
anonymous

swap-backed
VM object

page
page

“vm_page”

swap pager

page
page

swap pager

vnode pager

“vm_pager”

vnode
“/bin/dd”

page
page

pte

data

data

data

code

codepage-table
directory

page-table
entry

superpage
data

pte

pde

pte
pte
pte

pte
pte

pte

physical
map

pde

pde

“pmap”

physical
memory

The	Mach	VM	fault	handler	(vm_fault)	

• Key	goal	of	the	Mach	VM	system:	be	as	lazy	as	possible
• Fill	pages	(with	file	data,	zeroes,	COW)	on	demand
• Map	pages	into	address	spaces	on	demand
• Flush	TLB	as	infrequently	as	possible

• Any	work	avoided	means	reduced	CPU	cycles	and	less	disk	I/O	
• Avoid	as	much	work	as	possible	when	creating	a	mapping	(e.g.,	
mmap(),	execve())	
• Instead,	do	on-demand	in	the	MMU	trap	handler,	
vm_fault()
• Machine-independent	function	drives	almost	all	VM	work	
• Input:	faulting	virtual	address,	output	mapped	page	or	signal
• Look	up	object	to	find	cached	page;	if	none,	invoke	pager	
• May	trigger	behaviour such	as	zero	filling	or	copy-on-write	

• A	good	thing	to	probe	with	DTrace to	understand	VM	traps
L41	Lecturelet 2- Lab	2	IPC

11/20/17

3

The	benchmark

• Simple,	bespoke	IPC	benchmark:	pipes	and	sockets
• Statically	or	dynamically	linked
• Adjust	user	and	kernel	buffer	sizes
• Various	output	modes	

L41	Lecturelet 2- Lab	2	IPC

root@l41-beaglebone data/ipc:~ # ./ipc-static
ipc-static [-Bqsv] [-b buffersize] [-i pipe|local] [-t totalsize] mode

Modes (pick one - default 1thread):
1thread IPC within a single thread
2thread IPC between two threads in one process
2proc IPC between two threads in two different processes

Optional flags:
-B Run in bare mode: no preparatory activities
-i pipe|local Select pipe or socket for IPC (default: pipe)
-q Just run the benchmark, don't print stuff out
-s Set send/receive socket-buffer sizes to buffersize
-v Provide a verbose benchmark description
-b buffersize Specify a buffer size (default: 131072)
-t totalsize Specify total I/O size (default: 16777216)

The	benchmark	(2)

• Three	operational	modes:
1thread IPC	within	a	single	thread	of	a	single	process
2thread IPC	between	two	threads	of	a	single	process	
2proc IPC	between	two	threads	in	two	processes

• Adjust	IPC	parameters:	
-i pipe Use	pipe()	IPC
-i local Use	socketpair()	IPC	
-b size Set	user	IPC	buffer	size
-t size Set	total	size	across	all	IPCs	
-s Also	set	in-kernel	buffer	size	for	sockets
-B Suppress	quiescence	(whole-program	tracing)	

• Output	flags:
-q Suppress	all	output	(whole-program	tracing)
-v Verbose	output	(interactive	testing)	

L41	Lecturelet 2- Lab	2	IPC

11/20/17

4

The	benchmark	(3)

• Use	verbose	output
• Use	pipe	IPC
• Run	bench	mark	in	a	single	thread
• Use	default	buffersize of	128K,	totalsize of	16M	

L41	Lecturelet 2- Lab	2	IPC

root@l41-beaglebone ~/ipc:~ # ./ipc-static -v -i
pipe 1thread
Benchmark configuration:

buffersize: 131072
totalsize: 16777216
blockcount: 128
mode: 1thread
ipctype: pipe
time: 0.033753791

485397.29 KBytes/sec

Experimental	questions	for	the	lab	report	

The	full	lab-report	assignment	will	be	distributed	during	
the	next	lab.
The	following	questions	are	intended	to	help	you	gather	
data	that	you	will	need	for	that	lab	report:	
• How	does	changing	the	buffer	size	affect	IPC	
performance	– and	why?	For	sockets,	consider	both	
with,	and	without,	the	-s flag.	
• Is	using	multiple	threads	faster	or	slower	than	using	
multiple	processes?

L41	Lecturelet 2- Lab	2	IPC

11/20/17

5

python-dtrace memory	leak

• Memory	leak	in	python-dtrace results	in	instability
• Work	around	by	adding	an	explicit	call	to:

dtrace_thread.consumer.__del__()
• Thanks	to	James	Clarke	for	spotting	the	issue

L41	Lecturelet 2- Lab	2	IPC

The benchmark has completed - stop

the DTrace instrumentation

dtrace_thread.stop()

dtrace_thread.join()

dtrace_thread.consumer.__del__()

This	lab	session	

• Use	this	session	to	continue	to	build	experience:
• Build	and	use	the	IPC	benchmark
• Use	DTrace to	analyse distributions	of	system	calls,	system-
call	execution	times,	and	system-call	arguments	and	return	
values
• Use	Jupyter/Python	to	analyse benchmark	results

• Remember	to	consider	the	hypotheses	the	
experimental	questions	are	exploring.
• Use	the	tools	in	the	most	productive	way:
• Command	line	DTrace for	quick	exploration.
• Jupyter for	data	capture,	visualisation and	analysis.

• Do	ask	us	if	you	have	any	questions	or	need	help
L41	Lecturelet 2- Lab	2	IPC

