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Last session: some simple network statistics

You measured the degree of each node and the diameter
of the network.
Next two sessions:

Today: finding gatekeeper nodes via betweenness
centrality.
Next session: using betweenness centrality of edges to split
graph into cliques.

Reading for social networks (all sessions):

Easley and Kleinberg for background: Chapters 1, 2, 3 and
first part of Chapter 20.
Brandes algorithm: two papers by Brandes (links in
practical notes).



Intuition behind clique finding

Certain nodes/edges are most crucial in linking densely
connected regions of the graph: informally gatekeepers.
Cutting those edges isolates the cliques/clusters.

Figure 3-14a from Easley and Kleinberg (2010)



Intuition behind clique finding

Figure 3-16 from Easley and Kleinberg (2010)



Gatekeepers: generalising the notion of local bridge

Last time we saw the concept of local bridge: an edge
which increased the shortest paths if cut.

Figure 3-16 from Easley and Kleinberg (2010)

But, more generally, the nodes that are intuitively the
gatekeepers can be determined by betweenness
centrality.



Betweenness centrality

https://www.linkedin.com/pulse/wtf-do-you-actually-know-who-influencers-walter-pike

The betweenness centrality of a node V is defined in terms
of the proportion of shortest paths that go through V for
each pair of nodes.
Here: the red nodes have high betweenness centrality.
Note: Easley and Kleinberg talk about ‘flow’: misleading
because we only care about shortest paths.



Betweenness, example

Claudio Rocchini: https://commons.wikimedia.org/wiki/File:Graph_betweenness.svg

Betweenness: red is minimum; dark blue is maximum.



Betweenness centrality, formally (from Brandes 2008)

Directed graph G =< V,E >

σ(s, t): number of shortest paths between nodes s and t
σ(s, t|v): number of shortest paths between nodes s and t
that pass through v.
CB(v), the betweenness centrality of v:

CB(v) =
∑
s,t∈V

σ(s, t|v)
σ(s, t)

If s = t, then σ(s, t) = 1

If v ∈ s, t, then σ(s, t|v) = 0



Number of shortest paths

σ(s, t) can be calculated recursively:

σ(s, t) =
∑

u∈Pred(t)

σ(s, u)

Pred(t) = {u : (u, t) ∈ E, d(s, t) = d(s, u) + 1} predecessors
of t on shortest path from s
d(s, u): Distance between nodes s and u

This can be done by running Breadth First search with
each node as source s once, for total complexity of
O(V (V + E)).



Pairwise dependencies

There are a cubic number of pairwise dependencies
δ(s, t|v) where:

δ(s, t|v) = σ(s, t|v)
σ(s, t)

Naive algorithm uses lots of space.
Brandes (2001) algorithm intuition: the dependencies can
be aggregated without calculating them all explicitly.
Recursive: can calculate dependency of s on v based on
dependencies one step further away.



One-sided dependencies

Define one-sided dependencies:

δ(s|v) =
∑
t∈V

δ(s, t|v)

Then Brandes (2001) shows:

δ(s|v) =
∑

(v,w)∈E
w : d(s,w)=d(s,v)+1

σ(s, v)

σ(s, w)
.(1 + δ(s|w))

And:

CB(v) =
∑
s∈V

δ(s|v)



Brandes algorithm

Iterate over all vertices s in V
Calculate δ(s|v) for all v ∈ V in two phases:

1 Breadth-first search, calculating distances and shortest
path counts from s, push all vertices onto stack as they’re
visited.

2 Visit all vertices in reverse order (pop off stack),
aggregating dependencies according to equation.



Brandes (2008) pseudocode



Step 1 - Prepare for BFS tree walk (Node A as s)

Figure 3-18 from Easley and Kleinberg (2010)



Brandes (2008) pseudocode: phase 1



Step 2 - Calculate σ(s, v), the number of shortest
paths between s and v

σ(s, t) =
∑

u∈Pred(t)

σ(s, u)
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paths between s and v

σ(s, t) =
∑

u∈Pred(t)

σ(s, u)



Step 2 - Calculate σ(s, v), the number of shortest
paths between s and v

σ(s, t) =
∑

u∈Pred(t)

σ(s, u)



Step 2 - Calculate σ(s, v), the number of shortest
paths between s and v
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σ(s, u)



Brandes (2008) pseudocode: phase 2



Step 3 - Calculate δ(s|v), the dependency of s on v

δ(s|v) =
∑

(v,w)∈E
w : d(s,w)=d(s,v)+1

σ(s, v)/σ(s, w).(1 + δ(s|w))
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Step 4 - Calculate betweenness centrality

You saw one iteration with s = A.
Now perform V iterations, once with each node as source.
Sum up the δ(s|v) for each node: this gives the node’s
betweenness centrality.



Brandes (2008) pseudocode



Brandes (2008): undirected graphs

As specified, this is for directed graphs.
But undirected graphs are easy: the algorithm works in
exactly the same way, except that each pair is considered
twice, once in each direction.
Therefore: halve the scores at the end for undirected
graphs.
Brandes (2008) has lots of other variants, including edge
betweenness centrality, which we’ll use in the next session.



Today

Task 11: Implement the Brandes algorithm for efficiently
determining the betweenness of each node.
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informal description.
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Ulrich Brandes (2008) On variants of shortest-path
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