13: Betweenness Centrality
Machine Learning and Real-world Data (MLRD)

Ann Copestake
(based on slides created by Simone Teufel)

Lent 2018

Last session: some simple network statistics

m You measured the degree of each node and the diameter
of the network.

m Next two sessions:

m Today: finding gatekeeper nodes via betweenness

centrality.
m Next session: using betweenness centrality of edges to split
graph into cliques.

m Reading for social networks (all sessions):

m Easley and Kleinberg for background: Chapters 1, 2, 3 and
first part of Chapter 20.

m Brandes algorithm: two papers by Brandes (links in
practical notes).

Intuition behind clique finding

m Certain nodes/edges are most crucial in linking densely
connected regions of the graph: informally gatekeepers.

m Cutting those edges isolates the cliques/clusters.

Figure 3-14a from Easley and Kleinberg (2010)

Intuition behind clique finding

(a) Step !

o)

© @ © @
o ©
© @ @ ®
@
(c) Step 3
Figure 3-16 from Easley and Kleinberg (2010)

Gatekeepers: generalising the notion of local bridge

m Last time we saw the concept of local bridge: an edge
which increased the shortest paths if cut.

Figure 3-16 from Easley and Kleinberg (2010)

m But, more generally, the nodes that are intuitively the
gatekeepers can be determined by betweenness
centrality.

Betweenness centrality

https://www.linkedin.com/pulse/wtf-do-you-actually-know-who-influencers-walter-pike

m The betweenness centrality of a node V is defined in terms
of the proportion of shortest paths that go through V for
each pair of nodes.

m Here: the red nodes have high betweenness centrality.

m Note: Easley and Kleinberg talk about ‘flow’: misleading
because we only care about shortest paths.

Betweenness, example

Claudio Rocchini: https://commons.wikimedia.org/wiki/File:Graph_betweenness.svg

m Betweenness: red is minimum; dark blue is maximum.

Betweenness centrality, formally (from Brandes 2008)

m Directed graph G =< V, E >
o(s,t): number of shortest paths between nodes s and ¢

o (s, t|v): number of shortest paths between nodes s and ¢
that pass through v.

m Cp(v), the betweenness centrality of v:

Cp(v) = Z o(s,t|v)

s,teV O—(S’ t)

m Ifs=¢ then o(s,t) =1
m Ifv € s,t, then o (s, t|v) =

Number of shortest paths

m o(s,t) can be calculated recursively:

o(sit)= Y osu)

u€Pred(t)

m Pred(t) = {u: (u,t) € E,d(s,t) = d(s,u) + 1} predecessors
of ¢ on shortest path from s
m d(s,u): Distance between nodes s and u
m This can be done by running Breadth First search with
each node as source s once, for total complexity of
oV(V+E)).

Pairwise dependencies

m There are a cubic number of pairwise dependencies
(s, t|v) where:

o(s,tfv)

o(s,t)

m Naive algorithm uses lots of space.

m Brandes (2001) algorithm intuition: the dependencies can
be aggregated without calculating them all explicitly.

d(s, tlv) =

m Recursive: can calculate dependency of s on v based on
dependencies one step further away.

One-sided dependencies

Define one-sided dependencies:

S(slv) =Y 6(s, t|v)

teV

Then Brandes (2001) shows:

=Y 29 (stw))

o(s,w)’
(v,w)EE
w: d(s,w)=d(s,v)+1
And:
Cp(v) =) (slv)

seV

Brandes algorithm

m lterate over all vertices s in V
m Calculate §(s|v) for all v € V in two phases:

1 Breadth-first search, calculating distances and shortest
path counts from s, push all vertices onto stack as they’re
visited.

2 Visit all vertices in reverse order (pop off stack),
aggregating dependencies according to equation.

Brandes (2008) pseudocode

path vertexb

input: directed graph
data: queue .

(Brandes, 2001).
~(V.E)

tack S (bath initially empty)
and forallv eV
dist[v]: d
Pred|v]:

tance from source

list of predecessors on shortest paths from source
olv]: number of shortest paths from source to v €
dependency of source on v € V.

v
output: hetweenness cglr] for all © € V (initialized to 0)
for s € V do

¥ single-source shortest-paths problem
¥ initialization

for w e V do Predfu] «
fort £ V do disift] — x
dist[s] — 0; s —1

| engueue s — }

empty list
aft] — 0

while Q not empty do
dequene v — Q; push v — §

foreach verter w such that (v, w) € E do
Vpatla dlscovcry "

a found for the firet time?
— o then
L thw] «— dist[v] + L

enquene w — Q

¥ path counting // — edee (v, i oo o shortess pack?

i distic] — distly] + 1 then
L alw] + alu] +ap]

append v — Pred|u]

lation 1+)
for v € V do 8] « 0

while § nat empty do

L pop w e §

for v & Predfu] do dle] — dfe] + 55 - (1+ 8fu])
if w £ s then cplu

— eplu] + 8w

N

Step 1 - Prepare for BFS tree walk (Node A as s)

Figure 3-18 from Easley and Kleinberg (2010)

Brandes (2008) pseudocode: phase 1

while ¢} not emply do
deqguene v — (;

push v — 8§
foreach verter w such that (v, w) € E do
¥ path discovery // — w found for the first time?
if dist|w| = oo then

distlw] — dist|v] + 1
enquene w — (J

¥ path counting ;/ — edge (v, 2] on & shortest path?
if dist{w| = dist[v] + 1 then
L alw] — aw| + oy

append v — Pred|uw]

Step 2 - Calculate o (s, v), the number of shortest
paths between s and v

Step 2 - Calculate o (s, v), the number of shortest
paths between s and v

//7Y\\
\/ /\/

\/\/

Step 2 - Calculate o (s, v), the number of shortest
paths between s and v

//\\
\/ /\/

Step 2 - Calculate o (s, v), the number of shortest
paths between s and v

//7Y\\\
\ / / \/

\/\/

Brandes (2008) pseudocode: phase 2

—

¥ accumulation

for v € V do dlv] — 0

back-propagation of dependencies

while 5 not empty do
L pop w— 8§

for v € Pred|w] do d[v] — §v] + %}], (1 + 8Jw])
if w # s then eglw| — eglw| + dfuw]

Step 3 - Calculate i(s|v), the dependency of s on v

// \\
N
\/\/
N/

6(K)O

= Z o(s,v)/o(s,w).(1+ d(s|w))
(v,w)EE
w: d(s,w)=d(s,v)+1

Step 3 - Calculate i(s|v), the dependency of s on v

= Z o(s,v)/o(s,w).(1 4+ §(s|w))
(v,w)eEE
w: d(s,w)=d(s,v)+1

Step 3 - Calculate i(s|v), the dependency of s on v

1(B 1 (o) 1(E
2(F) 10e) 20k
3(0)os 34
\GK
o(slv) = Z o(s,v)/o(s,w).(1+ d(s|w))
(v,w)eEE

w: d(s,w)=d(s,v)+1

Step 3 - Calculate i(s|v), the dependency of s on v

A\
A
«;ei% (o) (e
AV AN
\2;6‘ HOMEEC
YAY
S(slv) = 3 o(s,v)/o(s,w).(1 + 8(s|w))
(v,w)EE

w: d(s,w)=d(s,v)+1

Step 3 - Calculate i(s|v), the dependency of s on v

//7V\\
AV

\/\/

d(slv) = Z o(s,v)/o(s,w).(1 4+ §(s|w))
(v,w)EE
w: d(s,w)=d(s,v)+1

Step 3 - Calculate i(s|v), the dependency of s on v

AV,
\/\/
S

o(slv) = Z o(s,v)/o(s,w).(1+ §(s|w))
(v,w)EE
w: d(s,w)=d(s,v)+1

Step 3 - Calculate i(s|v), the dependency of s on v

5(slv) = > o (s,v) /0 (s,w).(1 + 8(s|w))
(v,w)€EE
w: d(s,w)=d(s,v)+1

Step 4 - Calculate betweenness centrality

m You saw one iteration with s = A.
m Now perform V iterations, once with each node as source.

m Sum up the d(s|v) for each node: this gives the node’s
betweenness centrality.

Brandes (2008) pseudocode

path vertexb

input: directed graph
data: queue .

(Brandes, 2001).
~(V.E)

tack S (bath initially empty)
and forallv eV
dist[v]: d
Pred|v]:

tance from source

list of predecessors on shortest paths from source
olv]: number of shortest paths from source to v €
dependency of source on v € V.

v
output: hetweenness cglr] for all © € V (initialized to 0)
for s € V do

¥ single-source shortest-paths problem
¥ initialization

for w e V do Predfu] «
fort £ V do disift] — x
dist[s] — 0; s —1

| engueue s — }

empty list
aft] — 0

while Q not empty do
dequene v — Q; push v — §

foreach verter w such that (v, w) € E do
Vpatla dlscovcry "

a found for the firet time?
— o then
L thw] «— dist[v] + L

enquene w — Q

¥ path counting // — edee (v, i oo o shortess pack?

i distic] — distly] + 1 then
L alw] + alu] +ap]

append v — Pred|u]

lation 1+)
for v € V do 8] « 0

while § nat empty do

L pop w e §

for v & Predfu] do dle] — dfe] + 55 - (1+ 8fu])
if w £ s then cplu

— eplu] + 8w

N

Brandes (2008): undirected graphs

m As specified, this is for directed graphs.

m But undirected graphs are easy: the algorithm works in
exactly the same way, except that each pair is considered
twice, once in each direction.

m Therefore: halve the scores at the end for undirected
graphs.

m Brandes (2008) has lots of other variants, including edge
betweenness centrality, which we’ll use in the next session.

Today

m Task 11: Implement the Brandes algorithm for efficiently
determining the betweenness of each node.

Literature

m Detailed notes on the Brandes algorithm on course page /
Moodle.

m Easley and Kleinberg (2010, page 79-82). But this is an
informal description.

m Ulrich Brandes (2001). A faster algorithm for betweenness
centrality. Journal of Mathematical Sociology. 25:163—177.

m Ulrich Brandes (2008) On variants of shortest-path
betweenness centrality and their generic computation.
Social Networks. 30 (2008), pp. 136—145

