3: Statistical Properties of Language Machine Learning and Real-world Data (MLRD)

Paula Buttery (based on slides created by Simone Teufel)

Lent 2018

Last session: We implemented a naive Bayes classifier

- We built a naive Bayes classifier.
- The accuracy of the un-smoothed classifier very seriously affected by unseen words.
- We implemented add-one (Laplace) smoothing:

$$\hat{P}(w_i|c) = \frac{count(w_i, c) + 1}{\sum_{w \in V} (count(w, c) + 1)} = \frac{count(w_i, c) + 1}{(\sum_{w \in V} count(w, c)) + |V|}$$

Smoothing helped!

Today: We will investigate frequency distributions in language

We will investigate frequency distributions to help us understand:

- What is it about the distribution of words in a language that affected the performance of the un-smoothed classifier?
- Why did smoothing help?

Word frequency distributions obey a power law

- there are a small number of very high-frequency words
- there are a large number of low-frequency words
- word frequency distributions obey a power law (Zipf's law)
- Zipf's law: the nth most frequent word has a frequency proportional to 1/n

"a word's frequency in a corpus is inversely proportional to its rank"

The parameters of Zipf's law are language-dependent

Zipf's law:

$$f_w \approx \frac{k}{r_w{}^{\alpha}}$$

where

 f_w : frequency of word w

 r_w : frequency rank of word w

 α , k: constants (which vary with the language)

e.g. α is around 1 for English but 1.3 for German

The parameters of Zipf's law are language-dependent

Actually...

$$f_w \approx \frac{k}{(r_w + \beta)^\alpha}$$

where

 β : a shift in the rank

see summary paper by Piantadosi

https://link.springer.com/article/10.3758/ s13423-014-0585-6

we won't worry about the rank-shift today

There are a small number of high-frequency words...

Top 10 most frequent words in some large language samples:

English

```
1 the
         61,847
2 of
         29,391
         26,817
3 and
4 a
         21,626
         18,214
5 in
6 to
         16,284
7 it
         10,875
8 is
         9,982
          9,343
9 to
          9,236
10 was
```

BNC, 100Mw

Eng	llish	German			
1 the 2 of 3 and 4 a 5 in 6 to 7 it 8 is 9 to 10 was	61,847 29,391 26,817 21,626 18,214 16,284 10,875 9,982 9,343 9,236	1 der 2 die 3 und 4 in 5 den 6 von 7 zu 8 das 9 mit 10 sich	7,377,879 7,036,092 4,813,169 3,768,565 2,717,150 2,250,642 1,992,268 1,983,589 1,878,243 1,680,106		
BNC, 100Mw	"Deutscher Wortschatz", 500Mw				

English		Ge	erman	Spanish		
1 the 2 of 3 and 4 a 5 in 6 to 7 it 8 is 9 to 10 was	61,847 29,391 26,817 21,626 18,214 16,284 10,875 9,982 9,343 9,236	1 der 2 die 3 und 4 in 5 den 6 von 7 zu 8 das 9 mit 10 sich	7,377,879 7,036,092 4,813,169 3,768,565 2,717,150 2,250,642 1,992,268 1,983,589 1,878,243 1,680,106	1 que 2 de 3 no 4 a 5 la 6 el 7 es 8 y 9 en 10 lo	32,894 32,116 29,897 22,313 21,127 18,112 16,620 15,743 15,303 14,010	
BNC, 100Mw	"Deutscher Wortschatz", 500Mw			subtitle 27.4Mv	*	

English		German		Spanish		Italian	
1 the	61,847	1 der	7,377,879	1 que	32,894	1 non	25,757
2 of	29,391	2 die	7,036,092	2 de	32,116	2 di	22,868
з and	26,817	3 und	4,813,169	3 no	29,897	з <mark>che</mark>	22,738
4 a	21,626	4 in	3,768,565	4 a	22,313	4 è	18,624
5 in	18,214	5 den	2,717,150	5 la	21,127	5 e	17,600
6 to	16,284	6 von	2,250,642	6 el	18,112	6 la	16,404
7 it	10,875	7 ZU	1,992,268	7 es	16,620	7 i l	14,765
8 is	9,982	8 das	1,983,589	8 y	15,743	8 un	14,460
9 to	9,343	9 mit	1,878,243	9 en	15,303	9 a	13,915
10 was	9,236	10 sich	1,680,106	10 lo	14,010	10 per	10,501
BNC,	"Deutscher		subtitles,		subtitles,		
100Mw		Wortscl 500Mw	*	27.4Mv	V	5.6Mw	

500Mw

English		German		Spanish		Italian		Dutch	
1 the 2 of 3 and 4 a 5 in 6 to 7 it 8 is	61,847 29,391 26,817 21,626 18,214 16,284 10,875 9,982	1 der 2 die 3 und 4 in 5 den 6 von 7 zu 8 das	7,377,879 7,036,092 4,813,169 3,768,565 2,717,150 2,250,642 1,992,268 1,983,589	1 que 2 de 3 no 4 a 5 la 6 el 7 es	32,894 32,116 29,897 22,313 21,127 18,112 16,620 15,743	1 non 2 di 3 che 4 è 5 e 6 la 7 il	25,757 22,868 22,738 18,624 17,600 16,404 14,765 14,460	1 de 2 en 3 het/'t 4 van 5 ik 6 te 7 dat 8 die	4,770 2,709 2,469 2,259 1,999 1,935 1,875 1,807
9 to 10 was BNC, 100Mw	9,982 9,343 9,236	9 mit 10 sich "Deutsc Wortscl	1,878,243 1,680,106	8 y 9 en 10 lo subtitle 27.4Mv	15,303 14,010 es,	9 a 10 per subtitle 5.6Mw	13,915 10,501	9 in 10 een subtitles 800Kw	1,639 1,637

It is helpful to plot Zipf curves in log-space

Reuters dataset: taken from https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf - chapter 5

By fitting a simple line to the data in log-space we can estimate the language specific parameters α and k (we will do this today!)

In log-space we can more easily estimate the language specific parameters

From Piantadosi https://link.springer.com/article/
10.3758/s13423-014-0585-6

Zipfian (or near-Zipfian) distributions occur in many collections

- Sizes of settlements
- Frequency of access to web pages
- Size of earthquakes
- Word senses per word
- Notes in musical performances
- machine instructions
- **.** . . .

Zipfian (or near-Zipfian) distributions occur in many collections

There is a relationship between vocabulary size and text length

So far we have been thinking about frequencies of particular words:

- we call any unique word a type: the is a word type
- we call an instance of a type a token: there are 13721 *the* tokens in Moby Dick
- the number of types in a text is the vocabulary (or dictionary size) for the text

Today we will explore the relationship between vocabulary size and the length of a text.

As we progress through a text we see fewer new types

Heaps' law describes the vocabulary / text-length relationship

Heaps' Law:

Describes the relationship between the size of a vocabulary and the size of text that gave rise to it:

$$u_n = kn^{\beta}$$

where

 u_n : number of types (unique items)—i.e. vocabulary size n: total number of tokens—i.e.text size β , k: constants (language-dependent) $\frac{\beta}{30} \text{ is around } \frac{1}{2}$ $\frac{30}{30} < k < 100$

It is helpful to plot Heaps' law in log-space

Zipf's law and Heaps' law affected our classifier

- Zipf curve has a lot of probability mass in the long tail.
- By Heaps' law, we need increasing amounts of text to see new word types in the tail

Zipf's law and Heaps' law affected our classifier

■ With MLE, only seen types receive a probability estimate:

e.g. we used:

$$\hat{P_{MLE}}(w_i|c) = \frac{count(w_i, c)}{\sum_{w \in V_{training}} count(w, c)}$$

- The total probability attributed to the seen items is 1.
- The estimated probabilities of seen types is too big!
- MLE (blue) overestimates the probability of seen types.

Smoothing redistributes the probability mass

Add-one smoothing redistributes the probability mass.

e.g. we used:

$$\hat{P}(w_i|c) = \frac{count(w_i,c) + 1}{\sum_{w \in V}(count(w,c) + 1)} = \frac{count(w_i,c) + 1}{(\sum_{w \in V}count(w,c)) + |V|}$$

- It takes some portion away from the MLE overestimate.
- It redistributes this portion to the unseen types.

Today we will investigate Zipf's and Heaps' law in movie reviews

Follow task instructions on moodle to:

- Plot a frequency vs rank graph for larger set of movie reviews (you are given helpful chart plotting code)
- Plot a log frequency vs log rank graph
- Use least-squares algorithm to fit a line to the log-log plot (you are given best fit code)
- Estimate the parameters of the Zipf equation
- Plot type vs token graph for the movie reviews

Ticking for Task 3

There is no automatic ticker for Task 3

- Write everything in your notebook
- Save all your graphs (as screenshots or otherwise)