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Last session: We implemented a naive Bayes
classifier

m We built a naive Bayes classifier.

m The accuracy of the un-smoothed classifier very seriously
affected by unseen words.

m We implemented add-one (Laplace) smoothing:

- count(w;, c) + 1
P . = =
(wile) > wey (count(w, c) + 1)

count(wg, c) + 1

(D wey count(w, c)) + V|

m Smoothing helped!



Today: We will investigate frequency distributions in
language

We will investigate frequency distributions to help us
understand:

m What is it about the distribution of words in a language that

affected the performance of the un-smoothed classifier?
m Why did smoothing help?



Word frequency distributions obey a power law

m there are a small number of very high-frequency words
m there are a large number of low-frequency words
m word frequency distributions obey a power law (Zipf's law)

m Zipf's law: the nth most frequent word has a frequency
proportional to 1/n

“a word'’s frequency in a corpus is inversely proportional to its
rank”
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The parameters of Zipf's law are language-dependent

Zipf's law:

k
fow~ —
where

Tw®
fw: frequency of word w

ry: frequency rank of word w

a, k: constants (which vary with the language)

e.g. ais around 1 for English but 1.3 for German



The parameters of Zipf's law are language-dependent

Actually...

where
(: a shift in the rank

see summary paper by Piantadosi

https://link.springer.com/article/10.3758/
s13423-014-0585-6

we won’t worry about the rank-shift today
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https://link.springer.com/article/10.3758/s13423-014-0585-6
https://link.springer.com/article/10.3758/s13423-014-0585-6
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There are a small number of high-frequency words...
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Similar sorts of high-frequency words across
languages

Top 10 most frequent words in some large language samples:
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Dutch

1 de 4,770
2en 2,709
shet/t 2,469
4van 2,259
5 ik 1,999
6 te 1,935
7 dat 1,875
s die 1,807
9in 1,639
10 een 1,637
subtitles,
800Kw
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It is helpful to plot Zipf curves in log-space

Reuters dataset: taken from https://nlp.stanford.edu/
IR-book/pdf/irbookonlinereading.pdf — chapter 5

Iog10 cf

log10 rank

By fitting a simple line to the data in log-space we can estimate
the language specific parameters « and % (we will do this
today!)

[m] = = =


https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf

In log-space we can more easily estimate the
language specific parameters

Spanish

Russian

Portuguese

From Piantadosi https://link.springer.com/article/
10.3758/s13423-014-0585-6


https://link.springer.com/article/10.3758/s13423-014-0585-6
https://link.springer.com/article/10.3758/s13423-014-0585-6

Zipfian (or near-Zipfian) distributions occur in many
collections

m Sizes of settlements

m Frequency of access to web pages
m Size of earthquakes

m Word senses per word

m Notes in musical performances

m machine instructions

...



Zipfian (or near-Zipfian) distributions occur in many
collections

world city populations for 8 countries
log-size vs log-rank
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There is a relationship between vocabulary size and
text length

words:

So far we have been thinking about frequencies of particular

m we call any unique word a type: the is a word type

m we call an instance of a type a token: there are 13721 the
tokens in Moby Dick

m the number of types in a text is the vocabulary (or
dictionary size) for the text

Today we will explore the relationship between vocabulary size
and the length of a text.



As we progress through a text we see fewer new types
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Heaps’ law describes the vocabulary / text-length
relationship

Heaps’ Law:
Describes the relationship between the size of a vocabulary
and the size of text that gave rise to it:

Uy, = kn®
where

n: total number of tokens—i.e.text size

B, k: constants (language-dependent)
B is around %

u,: Number of types (unique items)—i.e. vocabulary size
30 <k <100



It is helpful to plot Heaps’ law in log-space
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Zipf's law and Heaps’ law affected our classifier

m Zipf curve has a lot of probability mass in the long tail.
m By Heaps’ law, we need increasing amounts of text to see
new word types in the tail

Relataive frequency in Moby Dick
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Zipf's law and Heaps’ law affected our classifier

m With MLE, only seen types receive a probability estimate:
e.g. we used:

N count(w;, c
Pyrre(wilc) = 5 (wi, )

count(w, c)

m The total probability attributed to the seen items is 1.

m The estimated probabilities of seen types is too big!

we‘/training

m MLE (blue) overestimates the probability of seen types.
[m] = = =



Smoothing redistributes the probability mass

m Add-one smoothing redistributes the probability mass.

e.g. we used:

Pluwle) = count(wj, c) + 1 _ count(wj, c) + 1
Yowev(count(w,c) +1)  (3°,ep count(w, c)) + |V

m |t takes some portion away from the MLE overestimate.

m It redistributes this portion to the unseen types.

[m]

=
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Today we will investigate Zipf's and Heaps’ law in
movie reviews

Follow task instructions on moodle to:

m Plot a frequency vs rank graph for larger set of movie
reviews (you are given helpful chart plotting code)

m Plot a log frequency vs log rank graph

m Use least-squares algorithm to fit a line to the log-log plot
(you are given best fit code)

m Estimate the parameters of the Zipf equation
m Plot type vs token graph for the movie reviews



Ticking for Task 3

There is no automatic ticker for Task 3

m Write everything in your notebook

m Save all your graphs (as screenshots or otherwise)



