
9: Viterbi Algorithm for HMM Decoding
Machine Learning and Real-world Data

Helen Yannakoudakis1

Computer Laboratory
University of Cambridge

Lent 2018

1Based on slides created by Simone Teufel

Last session: estimating parameters of an HMM

The dishonest casino, dice edition.
Two hidden states: L (loaded dice), F (fair dice).
You don’t know which dice is currently in use. You can only
observe the numbers that are thrown.
You estimated transition and emission probabilities (Problem
1 from last time).
We are now turning to Problem 4.
We want the HMM to find out when the fair dice was out,
and when the loaded dice was out.
We need to write a decoder.

Decoding: finding the most likely path

Definition of decoding: Finding the most likely hidden state
sequence X that explains the observation O given the HMM
parameters µ.

X̂ = argmax
X

P (X,O|µ)

= argmax
X

P (O|X,µ)P (X|µ)

= argmax
X1...XT

T∏
t=1

P (Ot|Xt)P (Xt|Xt−1)

Search space of possible state sequences X is O(NT); too
large for brute force search.

Viterbi is a Dynamic Programming Application

(Reminder from Algorithms course)
We can use Dynamic Programming if two conditions apply:

Optimal substructure property
An optimal state sequence X1 . . . Xj . . . XT contains inside it
the sequence X1 . . . Xj , which is also optimal

Overlapping subsolutions property
If both Xt and Xu are on the optimal path, with u > t, then
the calculation of the probability for being in state Xt is part
of each of the many calculations for being in state Xu.

Viterbi is a Dynamic Programming Application

(Reminder from Algorithms course)
We can use Dynamic Programming if two conditions apply:

Optimal substructure property
An optimal state sequence X1 . . . Xj . . . XT contains inside it
the sequence X1 . . . Xj , which is also optimal

Overlapping subsolutions property
If both Xt and Xu are on the optimal path, with u > t, then
the calculation of the probability for being in state Xt is part
of each of the many calculations for being in state Xu.

The intuition behind Viterbi

Here’s how we can save ourselves a lot of time.
Because of the Limited Horizon of the HMM, we don’t need
to keep a complete record of how we arrived at a certain state.
For the first-order HMM, we only need to record one previous
step.
Just do the calculation of the probability of reaching each
state once for each time step.
Then memoise this probability in a Dynamic Programming
table
This reduces our effort to O(N2T).
This is for the first order HMM, which only has a memory of
one previous state.

Viterbi: main data structure

Memoisation is done using a trellis.
A trellis is equivalent to a Dynamic Programming table.
The trellis is (N + 2)× (T + 2) in size, with states j as rows
and time steps t as columns.
Each cell j, t records the Viterbi probability δj(t), the
probability of the most likely path that ends in state sj at
time t:

δj(t) = max
1≤i≤N

[δi(t− 1) aij bj(Ot)]

This probability is calculated by maximising over the best
ways of going to sj for each si.
aij : the transition probability from si to sj

bj(Ot): the probability of emitting Ot from destination state
sj

Viterbi algorithm, initialisation

Note: the probability of a state starting the sequence at t = 0 is
just the probability of it emitting the first symbol.

Viterbi algorithm, initialisation

Viterbi algorithm, initialisation

Viterbi algorithm, initialisation

Viterbi algorithm, main step

Viterbi algorithm, main step: observation is 4

Viterbi algorithm, main step: observation is 4

Viterbi algorithm, main step, ψ

ψj(t) is a helper variable that stores the t− 1 state index i on
the highest probability path.

ψj(t) = argmax
1≤i≤N

[δi(t− 1) aij bj(Ot)]

In the backtracing phase, we will use ψ to find the previous
cell/state in the best path.

Viterbi algorithm, main step: observation is 4

Viterbi algorithm, main step: observation is 4

Viterbi algorithm, main step: observation is 4

Viterbi algorithm, main step: observation is 4

Viterbi algorithm, main step: observation is 3

Viterbi algorithm, main step: observation is 3

Viterbi algorithm, main step: observation is 3

Viterbi algorithm, main step: observation is 3

Viterbi algorithm, main step: observation is 3

Viterbi algorithm, main step: observation is 5

Viterbi algorithm, main step: observation is 5

Viterbi algorithm, termination

Viterbi algorithm, termination

Viterbi algorithm, backtracing

Viterbi algorithm, backtracing

Viterbi algorithm, backtracing

Viterbi algorithm, backtracing

Viterbi algorithm, backtracing

Viterbi algorithm, backtracing

Viterbi algorithm, backtracing

Viterbi algorithm, backtracing

Why is it necessary to keep N states at each time step?

We have convinced ourselves that it’s not necessary to keep
more than N (“real”) states per time step.
But could we cut down the table to just a one-dimensional
table of T time slots by choosing the probability of the best
path overall ending in that time slot, in any of the states?

This would be the greedy choice
But think about what could happen in a later time slot.
You could encounter a zero or very low probability concerning
all paths going through your chosen state sj at time t.
Now a state sk that looked suboptimal in comparison to sj at
time t becomes the best candidate.
As we don’t know the future, this could happen to any state,
so we need to keep the probabilities for each state at each time
slot.

But thankfully, no more.

Precision and Recall

So far, we have measured system success in accuracy or
agreement in Kappa.
But sometimes it’s only one type of instances that we find
interesting.
We don’t want a summary measure that averages over
interesting and non-interesting instances, as accuracy does.
In those cases, we use precision, recall and F-measure.
These metrics are imported from the field of information
retrieval, where the difference beween interesting and
non-interesting examples is particularly high.
Accuracy doesn’t work well when the types of instances are
unbalanced

Precision and Recall

System says:
F L Total

Truth is: F a b a+b
L c d c+d
Total a+c b+d a+b+c+d

Precision of L: PL = d
b+d

Recall of L: RL = d
c+d

F-measure of L: FL = 2PLRL
PL+RL

Accuracy: A = a+d
a+b+c+d

Your task today

Task 8:
Implement the Viterbi algorithm.
Run it on the dice dataset and measure precision of L (PL),
recall of L (RL) and F-measure of L (FL).

Literature

Manning and Schutze (2000). Foundations of Statistical
Natural Language Processing, MIT Press. Chapter 9.3.2.

We use a state-emission HMM, but this textbook uses an
arc-emission HMM. There is therefore a slight difference in the
algorithm as to in which step the initial and final bj(kt) are
multiplied in.

Jurafsky and Martin, 2nd Edition, chapter 6.4
Smith, Noah A. (2004). Hidden Markov Models: All the
Glorious Gory Details.
Bockmayr and Reinert (2011). Markov chains and Hidden
Markov Models. Discrete Math for Bioinformatics WS 10/11.

