
CST 2019 Part IB

Computation Theory
Exercise Sheet

Exercise 1. Show that the following arithmetic functions are all register machine computable.

(a) First projection function p ∈ N!N, where p(x, y) ! x

(b) Constant function with value n ∈ N, c ∈ N!N, where c(x) ! n

(c) Truncated subtraction function, _ ·− _ ∈ N2
!N, where x ·− y !

{

x − y if y ≤ x

0 if y > x

(d) Integer division function, _div_ ∈ N2
!N, where

x div y !

{

integer part of x/y if y > 0

0 if y = 0

(e) Integer remainder function, _mod_ ∈ N2
!N, where x mod y ! x ·− y(x div y)

(f) Exponentiation base 2, e ∈ N!N, where e(x) ! 2x.

(g) Logarithm base 2, log2 ∈ N!N, where log2(x) !

{

greatest y such that 2y ≤ x if x > 0

0 if x = 0

Exercise 2. Let φe ∈ N⇀N denote the unary partial function from numbers to numbers
computed by the register machine with code e. Show that for any given register machine
computable unary partial function f ∈ N⇀N, there are infinitely many numbers e such that
φe = f . (Two partial functions are equal if they are equal as sets of ordered pairs; which is
equivalent to saying that for all numbers x ∈ N, φe(x) is defined if and only if f (x) is, and
in that case they are equal numbers.)

Exercise 3. In the following register machine program, assume that register Z holds 0 ini-
tially. What is its effect?

START A− S− EXIT

Z+ S− Z− HALT

A+ Z− S+

Exercise 4. Show that there is a register machine computable partial function f : N⇀N

such that both {x ∈ N | f (x)↓} and {y ∈ N | (∃x ∈ N) f (x) = y} are register machine
undecidable.

Exercise 5. Suppose S1 and S2 are subsets of N. Suppose f ∈ N!N is register machine
computable function satisfying: for all x in N, x is an element of S1 if and only if f (x) is an
element of S2. Show that S1 is register machine decidable if S2 is.

Exercise 6. Show that the set of codes ⟨e, e′⟩ of pairs of numbers e and e′ satisfying φe = φe′

is undecidable.

Exercise 7. For the example Turing machine given on slide 64, give the register machine
program implementing (S, T, D) := δ(S, T), as described on slide 70. [Tedious!—maybe just
do a bit.]

Exercise 8. Show that the following functions are all primitive recursive.

(a) Exponentiation, exp ∈ N2
!N, where exp(x, y) ! xy.

(b) Truncated subtraction, minus ∈ N2
!N, where minus(x, y) !

{

x − y if x ≥ y

0 if x < y

(c) Conditional branch on zero, ifzero ∈ N3
!N, where ifzero(x, y, z) !

{

y if x = 0

z if x > 0

(d) Bounded summation: if f ∈ Nn+1
!N is primitive recursive, then so is g ∈ Nn+1

!N

where

g(x⃗, x) !

⎧

⎪

⎨

⎪

⎩

0 if x = 0

f (x⃗, 0) if x = 1

f (x⃗, 0) + · · ·+ f (x⃗, x − 1) if x > 1.

Exercise 9. Recall the definition of Ackermann’s function ack (slide 102). Sketch how to build
a register machine M that computes ack(x1, x2) in R0 when started with x1 in R1 and x2 in
R2 and all other registers zero. [Hint: here’s one way; the next question steers you another
way to the computability of ack. Call a finite list L = [(x1, y1, z1), (x2, y2, z2), . . .] of triples of
numbers suitable if it satisfies

(i) if (0, y, z) ∈ L, then z = y + 1

(ii) if (x + 1, 0, z) ∈ L, then (x, 1, z) ∈ L

(iii) if (x + 1, y + 1, z) ∈ L, then there is some u with (x + 1, y, u) ∈ L and (x, u, z) ∈ L.

The idea is that if (x, y, z) ∈ L and L is suitable then z = ack(x, y) and L contains all the triples
(x′, y′, ack(x, y′)) needed to calculate ack(x, y). Show how to code lists of triples of numbers
as numbers in such a way that we can (in principle, no need to do it explicitly!) build a
register machine that recognises whether or not a number is the code for a suitable list of
triples. Show how to use that machine to build a machine computing ack(x, y) by searching
for the code of a suitable list containing a triple with x and y in it’s first two components.]

Exercise 10. For each n ∈ N, let gn be the function mapping mapping each y ∈ N to the
value ack(n, y) of Ackermann’s function at (n, y) ∈ N2.

(a) Show for all (n, y) ∈ N2 that gn+1(y) = (gn)(y+1)(1), where h(k)(z) is the result of k
repeated applications of the function h to initial argument z.

(b) Deduce that each gn is a primitive recursive function.

(c) Deduce that Ackermann’s function is total recursive.

Exercise 11. If you are still not fed up with Ackermann’s function ack ∈ N2
!N, show that

the λ-term ack ! λx. x (λ f y. y f (f 1)) Succ represents ack (where Succ is as on slide 123).

Exercise 12. Let I be the λ-term λx. x. Show that nI =β I holds for every Church numeral n.
Now consider

B ! λ f g x. g x I (f (g x))

Assuming the fact about normal order reduction mentioned on slide 115, show that if partial
functions f , g ∈ N⇀N are represented by closed λ-terms F and G respectively, then their
composition (f ◦ g)(x) ≡ f (g(x)) is represented by B F G.

