L9

Re cod -

A-Terms, M

are built up from a given, countable collection of

» variables x,y,z,...

by two operations for forming A-terms:

» A-abstraction: (Ax.M)

(w

nere x is a variable and M is a A-term)

> application: (M M")

(w

nere M and M’ are A-terms).

105

B-Reduction

Recall that Ax.M is intended to represent the function f
such that f(x) = M for all x. We can regard Ax.M as a
function on A-terms via substitution: map each N to

M|[N/x].

L10 109

L9

Substitution N [M/x]

x[Mlx] = M

yMIx] = vy ify#x
(Ay.N)[M/x] = Ay.N[Ml/x] if y# (M x)
(N1 N;)[M/x] = N;[M/x]| N,[M/x]

N [M")j) — rQ.SV\MC OP I'f/{)la(ﬂ/\[} 0\]1 ‘FVCL 0 CCWyy once b
Cfe w v N ot M‘,\O\/\)O\'(kﬂf\g,
" Cophre’ & fee variabus a M \o\g
A-bwdore tn N

108

L9

X

Yy
(Ay.N)
(N1 N2)

Substitution N [M/x]

M/x
M/x
Ml/x
M/x

M
y ifyFx
Ay.N[M/x] if y# (M x)

N;[M/x] N> [M/x]

Side-condition y # (M x) (y does not occur in M and

Yy # x) makes substitution “capture-avoiding".

E.g. if x #

Yy

(Ay.x)|y/x] # Ay.y

108

Substitution N [M/x]

x[MIx] = M

yMIx] =y ify#x
(Ay.N)[M/x] = Ay.N[Ml/x] if y# (M x)
(N1 N;)[M/x] = Ni[M/x]| N,[M/x] by

(Ay.x)|ylx] =4 (Az.x)[y/x] = Azy

In fact N — N|[M/x] induces a totally defined function
from the set of a-equivalence classes of A-terms to itself.

L9 108

., (7&%}\9{30 L)%‘ZL/%]

NG, (hz.
%)\é\rao\:)z.g/%]

No possible
(A piwre

NG, (7@%)\&30 \:)z“é}/%]
= M. (}\‘t.%)Q)\z,tj)x

Ax. () ac?[>‘lﬂ‘m/%]

|

pra (7\2.%)\9{30 L)“‘ZL/%]

= M. Q\E?:)QMLU)DC

|

Ax. (. @x\} [kg.x/g/

H0oSs1b\e

NG, (7\%..%)\9(30 \:)“‘?/%]
= M. Q\%‘%)O‘“’f})x

B 0SS\
Ax. (Ao UDUC\Q,[kﬂ‘”/l} | P%WJM

| .- onverk
=u AZ. (002 \3’[Xg‘ac/% - 1:@?0:4(

<
X

pv (7\%.2)\9{30 L >\°“‘<’}/%’J
= M. Q\%,E)O\w:ﬂx

AL O\U-\DDC\Q,[k«‘ﬂx/lg, j poss{bmm

Au. | .- converk
. A7 (huu)z \3’[J x/‘# ~ gw\/o{d(

<
X

— 2. O\ u-u>2(>\\9-71,>

Recall that Ax.M is intended to represent the function f
such that f(x) = M for all x. We can regard Ax.M as a
function on A-terms via substitution: map each N to

M|[N/x].
So the natural notion of computation for A-terms is given
by stepping from a

B-redex (Ax.M)N
to the corresponding
B-reduct M |[N/x]

L10 109

B-Reduction

One-step B-reduction, M — M’

M — M
(Ax.M)N — M|[N/x] Ax.M — Ax.M’
M — M’ M — M’
MN — M'N NM— NM

N=M M-—->M M=,N
N — N’

L10

109

B-Reduction

E.g.

- ((Ay.Az.z)u)y
(Ax.xy)((Ay.Az.z)u)

- (Ax.xy)(Az.2)

L10

: (Az.z)y——y

109

B-Reduction

E.g.

- ((Ay.Az.z)u)y
(Ax.xy)((Ay.Az.z)u)

- (Ax.xy)(Az.2)

L10

; (Az.z)y——y

109

B-Reduction

E.g.

- ((Ay.Az.z)u)y
(Ax.xy)((Ay.Az.z)u)

- (Ax.xy)(Az.2)

L10

; (Az.z)y——y

109

B-Reduction

E.g.

- ((Ay.Az.z)u)y
(Ax.xy)((Ay.Az.z)u)

- (Ax.xy)(Az.2)

L10

; (Az.z)y——y

109

B-Reduction

E.g.

- ((Ay.Az.z)u)y
(Ax.xy)((Ay.Az.z)u)

- (Ax.xy)(Az.2)

L10

; (Az.z)y ——y

109

Many-step B-reduction, M — M’

~

~—

M=,M M — M’ M — M’ M — M”
M — M’ M — M’ M — M"

(no steps) (1 step) (1 more step)
E.g.

(Axxy)((Ay z.2)u) — y

L10

110

p-Conversion M =g N

Informally: M =g N holds it N can be obtained from M
by performing zero or more steps of a-equivalence,
B-reduction, or B-expansion (= inverse of a reduction).

Eg u((Axy.vx)y) =g (Ax.ux)(Ax.vy)
because (Ax.ux)(Ax.vy) = u(Ax.vy)

and so we have

u((Axy.ox)y) =, u((Axy'.vx)y)

L10 111

p-Conversion M =g N

Informally: M =g N holds it N can be obtained from M
by performing zero or more steps of a-equivalence,
B-reduction, or B-expansion (= inverse of a reduction).

Eg u((Axy.vx)y) =g (Ax.ux)(Ax.vy)
because (Ax.ux)(Ax.vy) = u(Ax.vy)

and so we have

u((Axy.ox)y) =, u((Axy'.vx)y)
— u(Ay'.vy) reduction

L10 111

p-Conversion M =g N

Informally: M =g N holds it N can be obtained from M
by performing zero or more steps of a-equivalence,
B-reduction, or B-expansion (= inverse of a reduction).

Eg u((Axy.vx)y) =g (Ax.ux)(Ax.vy)
because (Ax.ux)(Ax.vy) = u(Ax.vy)

and so we have

u((Axy.ox)y) =, u((Axy'.vx)y)
— u(Ay'.vy) reduction
=s u(Ax.vy)

L10 111

p-Conversion M =g N

Informally: M =g N holds it N can be obtained from M
by performing zero or more steps of a-equivalence,
B-reduction, or B-expansion (= inverse of a reduction).

Eg u((Axy.vx)y) =g (Ax.ux)(Ax.vy)
because (Ax.ux)(Ax.vy) = u(Ax.vy)

and so we have

u((Axy.vx)y) u((Axy’.vx)y)

—u

— u(Ay'.vy) reduction
=s u(Ax.vy)

+— (Ax.ux)(Ax.vy) expansion

L10 111

p-Conversion M =g N

is the binary relation inductively generated by the rules:

M=, M M — M M =g M
M=gM M=gM M =g M
M=gM M =zM" M=gM
M =B M” Ax.M =B /\x.M’

L10 111

Church-Rosser Theorem

Theorem. — is confluent, that is, if My « M — M,,
then there exists M’ such that M7 — M’ « M. J

[Proof omitted.]

L10 112

Church-Rosser Theorem

Theorem. — is confluent, that is, if My « M — M,,
then there exists M’ such that M7 — M’ « M. J

Corollary. To show that two terms are B-convertible, it
suffices to show that they both reduce to the same term.

More precisely: My =g M, iff IM (M; — M « M>).

L10 112

Church-Rosser Theorem

Theorem. —» is confluent, that is, if My « M — M,,
then there exists M’ such that M7 — M’ « M. J

Corollary. M1 —B Mz iff AM (M1 —» M «— Mz)

Proof. =g satisfies the rules generating —; so M — M’ implies
M =g M'. Thus if My — M « M;, then M; =g M =g M and so
My =g M.

Conversely,

L10 112

Church-Rosser Theorem

Theorem. — is confluent, that is, if My « M — M,,
then there exists M’ such that M7 — M’ « M.

Corollary. M1 —B Mz iff AM (M1 — M «— Mz)

Proof. =g satisfies the rules generating —; so M — M’ implies

M =g M'. Thus if My — M « M;, then M; =g M =g M and so
My =B M.

Conversely, the relation {(My, M) | M (M7 — M « M>)}

satisfies the rules generating =g: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser

theorem: My ——» M «— My —» M’ «— M3

L10 112

Church-Rosser Theorem

Theorem. — is confluent, that is, if My « M — M,,
then there exists M’ such that M7 — M’ « M.

Corollary. M1 —B Mz iff AM (M1 — M «— Mz)

Proof. =g satisfies the rules generating —; so M — M’ implies

M =g M'. Thus if My — M « M;, then M; =g M =g M and so
My =B M.

Conversely, the relation {(My, M) | M (M7 — M « M>)}

satisfies the rules generating =g: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser

theorem: My ——» M «— My, —» M’ «—— M3
\C-R/
M,

L10 112

Church-Rosser Theorem

Theorem. — is confluent, that is, if My « M — M,,
then there exists M’ such that M7 — M’ « M.

Corollary. M1 —B Mz iff AM (M1 — M «— Mz)

Proof. =g satisfies the rules generating —; so M — M’ implies
M =g M'. Thus if My — M « M;, then M; =g M =g M and so
My =B M.

Conversely, the relation {(My, M) | M (M7 — M « M>)}
satisfies the rules generating =g: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser
theorem. Hence M =g M, implies AM (M7 — M’ « M>).

L10 112

B-Normal Forms

Definition. A A-term N is in -normal form (nf) if it
contains no B-redexes (no sub-terms of the form

(Ax.M)M’). M has S-nf N if M =g N with N a B-nf.

L10 113

B-Normal Forms

Definition. A A-term N is in S-normal form (nf) if it
contains no B-redexes (no sub-terms of the form

(Ax.M)M’). M has S-nf N if M =g N with N a B-nf.

y

Note that if N is a B-nf and N — N’, then it must be that N =, N’
(why?).

Hence if N =g N, with N7 and N; both B-nfs, then Ny =, N,. (For
if N1 =g N3, then by Church-Rosser Ny — M’ «— N, for some M’,
so Ny =, M" =, N,.)

So the B-nf of M is unique up to a-equivalence if it
exists.

(amd 7§ M D have onf N Hro,

L10 /\/\ MB>]\/) 113

Non-termination

Some A terms have no B-nf.
Eg Q= (Ax.xx)(Ax.xx) satisfies

» O — (xx)[(Axxx)/x] = Q,

» () - M implies () =, M.
So there is no B-nf N such that (3 =g N.

L10 114

Some A terms have no B-nf.
Eg Q= (Ax.xx)(Ax.xx) satisfies

» O — (xx)[(Axxx)/x] = Q,

» () - M implies () =, M.
So there is no B-nf N such that (3 =g N.

A term can possess both a -nf and infinite chains of
reduction from it.

Eg (Ax.y)Q) — vy, but also (Ax.y)Q) — (Axy)QQ — - - -

L10 114

Normal-order reduction is a deterministic strategy for
reducing A-terms: reduce the “left-most, outer-most” redex
first.

» left-most: reduce M before N in M N, and then

» outer-most: reduce (Ax.M)N rather than either of
M or N.

(cf. call-by-name evaluation).

Fact: normal-order reduction of M always reaches the f-nf
of M if it possesses one.

L10 115

