
λ-Terms, M

are built up from a given, countable collection of

! variables x, y, z, . . .

by two operations for forming λ-terms:

! λ-abstraction: (λx.M)
(where x is a variable and M is a λ-term)

! application: (M M′)
(where M and M′ are λ-terms).

Some random examples of λ-terms:

x (λx.x) ((λy.(x y))x) (λy.((λy.(x y))x))

L9 105



β-Reduction

Recall that λx.M is intended to represent the function f
such that f(x) = M for all x. We can regard λx.M as a
function on λ-terms via substitution: map each N to
M[N/x].

So the natural notion of computation for λ-terms is given
by stepping from a

β-redex (λx.M)N

to the corresponding

β-reduct M[N/x]

L10 109



Substitution N[M/x]
x[M/x] = M
y[M/x] = y if y ̸= x

(λy.N)[M/x] = λy.N[M/x] if y # (M x)
(N1 N2)[M/x] = N1[M/x] N2[M/x]

L9 108



Substitution N[M/x]
x[M/x] = M
y[M/x] = y if y ̸= x

(λy.N)[M/x] = λy.N[M/x] if y # (M x)
(N1 N2)[M/x] = N1[M/x] N2[M/x]

Side-condition y # (M x) (y does not occur in M and
y ̸= x) makes substitution “capture-avoiding”.

E.g. if x ̸= y
(λy.x)[y/x] ̸= λy.y

L9 108



Substitution N[M/x]
x[M/x] = M
y[M/x] = y if y ̸= x

(λy.N)[M/x] = λy.N[M/x] if y # (M x)
(N1 N2)[M/x] = N1[M/x] N2[M/x]

Side-condition y # (M x) (y does not occur in M and
y ̸= x) makes substitution “capture-avoiding”.

E.g. if x ̸= y ̸= z ̸= x

(λy.x)[y/x] =α (λz.x)[y/x] = λz.y

In fact N "→ N[M/x] induces a totally defined function
from the set of α-equivalence classes of λ-terms to itself.

L9 108















β-Reduction

Recall that λx.M is intended to represent the function f
such that f(x) = M for all x. We can regard λx.M as a
function on λ-terms via substitution: map each N to
M[N/x].

So the natural notion of computation for λ-terms is given
by stepping from a

β-redex (λx.M)N

to the corresponding

β-reduct M[N/x]

L10 109



β-Reduction

One-step β-reduction, M→ M′:

(λx.M)N → M[N/x]

M→ M′

λx.M → λx.M′

M→ M′

M N → M′ N

M→ M′

N M→ N M′

N =α M M→ M′ M′ =α N ′

N → N ′

L10 109



β-Reduction

E.g.
((λy.λz.z)u)y

(λx.x y)((λy.λz.z)u) (λz.z)y y

(λx.x y)(λz.z)

L10 109



β-Reduction

E.g.
((λy.λz.z)u)y

(λx.x y)((λy.λz.z)u) (λz.z)y y

(λx.x y)(λz.z)

L10 109



β-Reduction

E.g.
((λy.λz.z)u)y

(λx.x y)((λy.λz.z)u) (λz.z)y y

(λx.x y)(λz.z)

L10 109



β-Reduction

E.g.
((λy.λz.z)u)y

(λx.x y)((λy.λz.z)u) (λz.z)y y

(λx.x y)(λz.z)

L10 109



β-Reduction

E.g.
((λy.λz.z)u)y

(λx.x y)((λy.λz.z)u) (λz.z)y y

(λx.x y)(λz.z)

L10 109



Many-step β-reduction, M ! M′:

M =α M′

M ! M′

(no steps)

M→ M′

M ! M′

(1 step)

M ! M′ M′ → M′′

M ! M′′

(1 more step)

E.g.

(λx.x y)((λy z.z)u) ! y

(λx.λy.x)y ! λz.y

L10 110



β-Conversion M =β N

Informally: M =β N holds if N can be obtained from M
by performing zero or more steps of α-equivalence,
β-reduction, or β-expansion (= inverse of a reduction).

E.g. u ((λx y. v x)y) =β (λx. u x)(λx. v y)

because (λx. u x)(λx. v y)→ u(λx. v y)

and so we have

u ((λx y. v x)y) =α u ((λx y′ . v x)y)
→ u(λy′ . v y) reduction
=α u(λx. v y)
← (λx. u x)(λx. v y) expansion

L10 111



β-Conversion M =β N

Informally: M =β N holds if N can be obtained from M
by performing zero or more steps of α-equivalence,
β-reduction, or β-expansion (= inverse of a reduction).

E.g. u ((λx y. v x)y) =β (λx. u x)(λx. v y)

because (λx. u x)(λx. v y)→ u(λx. v y)

and so we have

u ((λx y. v x)y) =α u ((λx y′ . v x)y)
→ u(λy′ . v y) reduction
=α u(λx. v y)
← (λx. u x)(λx. v y) expansion

L10 111



β-Conversion M =β N

Informally: M =β N holds if N can be obtained from M
by performing zero or more steps of α-equivalence,
β-reduction, or β-expansion (= inverse of a reduction).

E.g. u ((λx y. v x)y) =β (λx. u x)(λx. v y)

because (λx. u x)(λx. v y)→ u(λx. v y)

and so we have

u ((λx y. v x)y) =α u ((λx y′ . v x)y)
→ u(λy′ . v y) reduction
=α u(λx. v y)
← (λx. u x)(λx. v y) expansion

L10 111



β-Conversion M =β N

Informally: M =β N holds if N can be obtained from M
by performing zero or more steps of α-equivalence,
β-reduction, or β-expansion (= inverse of a reduction).

E.g. u ((λx y. v x)y) =β (λx. u x)(λx. v y)

because (λx. u x)(λx. v y)→ u(λx. v y)

and so we have

u ((λx y. v x)y) =α u ((λx y′ . v x)y)
→ u(λy′ . v y) reduction
=α u(λx. v y)
← (λx. u x)(λx. v y) expansion

L10 111



β-Conversion M =β N

is the binary relation inductively generated by the rules:

M =α M′

M =β M′
M→ M′

M =β M′
M =β M′

M′ =β M

M =β M′ M′ =β M′′

M =β M′′
M =β M′

λx.M =β λx.M′

M =β M′ N =β N ′

M N =β M′ N ′

L10 111



Church-Rosser Theorem
Theorem. ! is confluent, that is, if M1 " M ! M2,
then there exists M′ such that M1 ! M′ " M2.

[Proof omitted.]

L10 112



Church-Rosser Theorem
Theorem. ! is confluent, that is, if M1 " M ! M2,
then there exists M′ such that M1 ! M′ " M2.

Corollary. To show that two terms are β-convertible, it
suffices to show that they both reduce to the same term.
More precisely: M1 =β M2 iff ∃M (M1 ! M " M2).

L10 112



Church-Rosser Theorem
Theorem. ! is confluent, that is, if M1 " M ! M2,
then there exists M′ such that M1 ! M′ " M2.

Corollary. M1 =β M2 iff ∃M (M1 ! M " M2).

Proof. =β satisfies the rules generating !; so M ! M′ implies
M =β M′. Thus if M1 ! M " M2, then M1 =β M =β M2 and so
M1 =β M2.

Conversely, the relation {(M1, M2) | ∃M (M1 ! M " M2)}
satisfies the rules generating =β: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser
theorem: M1 M M2 M′ M3

L10 112



Church-Rosser Theorem
Theorem. ! is confluent, that is, if M1 " M ! M2,
then there exists M′ such that M1 ! M′ " M2.

Corollary. M1 =β M2 iff ∃M (M1 ! M " M2).

Proof. =β satisfies the rules generating !; so M ! M′ implies
M =β M′. Thus if M1 ! M " M2, then M1 =β M =β M2 and so
M1 =β M2.

Conversely, the relation {(M1, M2) | ∃M (M1 ! M " M2)}
satisfies the rules generating =β: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser
theorem: M1 M M2 M′ M3

L10 112



Church-Rosser Theorem
Theorem. ! is confluent, that is, if M1 " M ! M2,
then there exists M′ such that M1 ! M′ " M2.

Corollary. M1 =β M2 iff ∃M (M1 ! M " M2).

Proof. =β satisfies the rules generating !; so M ! M′ implies
M =β M′. Thus if M1 ! M " M2, then M1 =β M =β M2 and so
M1 =β M2.

Conversely, the relation {(M1, M2) | ∃M (M1 ! M " M2)}
satisfies the rules generating =β: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser
theorem: M1 M M2

C-R

M′ M3

M′2

L10 112



Church-Rosser Theorem
Theorem. ! is confluent, that is, if M1 " M ! M2,
then there exists M′ such that M1 ! M′ " M2.

Corollary. M1 =β M2 iff ∃M (M1 ! M " M2).

Proof. =β satisfies the rules generating !; so M ! M′ implies
M =β M′. Thus if M1 ! M " M2, then M1 =β M =β M2 and so
M1 =β M2.

Conversely, the relation {(M1, M2) | ∃M (M1 ! M " M2)}
satisfies the rules generating =β: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser
theorem. Hence M1 =β M2 implies ∃M (M1 ! M′ " M2).

L10 112



β-Normal Forms
Definition. A λ-term N is in β-normal form (nf) if it
contains no β-redexes (no sub-terms of the form
(λx.M)M′). M has β-nf N if M =β N with N a β-nf.

L10 113



β-Normal Forms
Definition. A λ-term N is in β-normal form (nf) if it
contains no β-redexes (no sub-terms of the form
(λx.M)M′). M has β-nf N if M =β N with N a β-nf.

Note that if N is a β-nf and N ! N ′, then it must be that N =α N ′

(why?).

Hence if N1 =β N2 with N1 and N2 both β-nfs, then N1 =α N2. (For

if N1 =β N2, then by Church-Rosser N1 ! M′ " N2 for some M′,

so N1 =α M′ =α N2.)

So the β-nf of M is unique up to α-equivalence if it
exists.

L10 113



Non-termination
Some λ terms have no β-nf.

E.g. Ω ! (λx.x x)(λx.x x) satisfies

" Ω→ (x x)[(λx.x x)/x] = Ω,

" Ω# M implies Ω =α M.

So there is no β-nf N such that Ω =β N.

L10 114



Non-termination
Some λ terms have no β-nf.

E.g. Ω ! (λx.x x)(λx.x x) satisfies

" Ω→ (x x)[(λx.x x)/x] = Ω,

" Ω# M implies Ω =α M.

So there is no β-nf N such that Ω =β N.

A term can possess both a β-nf and infinite chains of
reduction from it.

E.g. (λx.y)Ω→ y, but also (λx.y)Ω→ (λx.y)Ω→ · · · .

L10 114



Non-termination
Normal-order reduction is a deterministic strategy for
reducing λ-terms: reduce the “left-most, outer-most” redex
first.

! left-most: reduce M before N in M N, and then
! outer-most: reduce (λx.M)N rather than either of

M or N.

(cf. call-by-name evaluation).

Fact: normal-order reduction of M always reaches the β-nf
of M if it possesses one.

L10 115




