LLambda-Definable Functions



Computation in A-calculus is given by B-reduction. To
relate this to register/Turing-machine computation, or to
partial recursive functions, we first have to see how to
encode numbers, pairs, lists, ...as A-terms.

We will use the original encoding of numbers due to
Church. ..
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Church’s numerals

MON 2N
Notation:{ MIN 2 MN
M"TIN 2 M(M"N)
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Church’s numerals

= Afxx
= Afx.fx
& Afxf(fx)

IN = O

I
||[>

n times

Aff( (F)-e)

Notation:

so we can write n as A f x.f"x and we have

L11

MON 2N
MIN 2MN
M"tIN = M(M"N)

QMNZ'[;M"N.
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Church’s numerals

0 = Afxx

1 2 Afxfx

2 = Afxif(fx) Eﬁ&ﬂfmﬁg
; \(JCJF_)I-_____J

n = Afxf((fx))

n times

MON 2N
Notation:{ MIN 2 MN
M"tIN = M(M"N)

so we can write n as Af x.f"x and we have n M N =g M" N |
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A-Definable functions

Definition. f € IN"—~IN is A-definable if there is a closed
A-term F that represents it: for all (xq,...,x,) € IN" and

y €N
> if f(x1,...,%:) =y, then Fxq---x, =py
> if f(x1,...,%,)T, then Fxq -+ x, has no B-nf.

For example, addition is A-definable because it is represented by

P = Axyxp A f x.x1 f(x2 fx):
Pmn=gAfx.mf(nfx)
—p Af xom f(f"x)
=g Afx. f"(f"x)
= Af x.f""x

= m-+n
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A-Definable functions

Definition. f € IN"—~IN is A-definable if there is a closed
A-term F that represents it: for all (xq,...,x,) € IN" and
y €N

> if f(x1,...,%,) =y, then Fxq-+-x, =g ¥

> if f(x1,...,%,)T, then Fxq -+ x, has no B-nf.

For example, addition is A-definable because it is represented by
P = Axyxp A f x.x1 f(x2 fx):
Pmn=gAfx.mf(nfx)

e =p Af x.m f(f"x)
s og mnalu =g Af x. f"(f"x)

b} n'r\o(MU{h'm\g $@}\fyc.fm_|'"ac

t™h N —m-+n
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Theorem. A partial function is computable if and only if it
is A-definable. J

We already know that

Register Machine computable
Turing computable
= partial recursive.

Using this, we break the theorem into two parts:

» every partial recursive function is A-definable
» A-definable functions are RM computable

L11 120



Definition. f € IN”"—~IN is A-definable if there is a closed
A-term F that represents it: for all (x1,...,x,) € IN" and

y €N
> if f(x1,...,%,) =y, then Fxq-+-x, =B Y
»/if f(x1,...,%x,)T, then Fxq -« x, has no B-nf.
This condition can make it quite tricky to find a A-term
representing a non-total function.

For now, we concentrate on total functions. First, let us
see why the elements of PRIM (primitive recursive
functions) are A-definable.
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Basic functions
» Projection functions, proj; € IN"—IN:

proj? (X1, ..., Xy) = X;

» Constant functions with value 0, zero” € IN*"—IN:

zero™ (X1, ..., Xy) = 0

» Successor function, succ € IN—IN:

succ(x) = x+1
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L11

Basic functions are representable

» proj? € IN"—IN is represented by Axq ...x,.x;
» zero” € IN"=IN is represented by Axq ...x,.0

» succ € IN—=IN is represented by

since

Succ = Axg fFx.f(x1 f x)

Succn =g Af x. f(n f x)
=5 Af % f(f" %)
= Afx f"lx
=n—+1
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Basic functions are representable

» proj? € IN"—IN is represented by Axq ...x,.x;
» zero” € IN"—=IN is represented by Axq ...x,.0
» succ € IN—=IN is represented by

Succ = Axg fFx.f(x1 f x)

since

Succn =g Af x. f(n f x)
=5 Af % f(f" %)
= Afx f"lx
=n—+1

(7\3@1{;’1- x,{ (f1) also reflore,ge\/\l‘g Succ >
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Representing composition

If total function f € IN"—IN is represented by F and total
functions g1,..., 9, € IN"=IN are represented by
G1,..., Gy, then their composition

fo(g1,-.-,9n) € N™=IN is represented simply by

AX1 oo X F(G1X1...%) oo . (G X1 oo X))

because F(Giai...am)...(Gpa1...a,)
—B Fgl(alr raﬂ*t) gn(alr s Om)
—B f(gl(all am) °Ign(alr°°°lam))
= fo(gl,...,gn)(al,...,am)
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Representing composition

If total function f € IN"—IN is represented by F and total
functions g1,..., 9, € IN"=IN are represented by
Gy, ..., Gy, then their composition

fo (gl, .,9n) € IN™=IN is represented simply by

AX1 oo X F(G1X1...%) oo . (G X1 oo X))

This does not necessarily work for partial functions. E.g. totally

undefined function # € IN—IN is represented by U = Ax1.Q) (why?)

and zero! € N—=N is represented by Z = Ax1.0; but zerol o 1 is not
represented by Axq.Z (U x1), because (zero! o u)(n)1 whereas
(Ax1. Z(U x1))n =5 ZQ =g 0. (What is zero' o u represented

by?)
(See Ex.12)
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Primitive recursion

Theorem. Given f € N"~IN and ¢ € N"T2-IN, there
is a unique h € IN"T1 ~IN satisfying

"h(X,0) = (%)
(h(Z,x+1) = g(F x h(X,x))

/\

for all ¥ € IN" and x € IN.

We write p"( f, g) for h and call it the partial function
defined by primitive recursion from f and g.
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Representing primitive recursion

If f € IN"=IN is represented by a A-term F and
g € IN"T2-1N is represented by a A-term G,

we want to show A-definability of the unique
h € N"T15IN satisfying

'h(d,0) = f(d)
(h(d,a+1) =g(a,ah(d, a))

or equivalently

h(d,a) =if a =0 then f(d)
else g(d,a —1,h(d,a — 1))

L11 127



Representing primitive recursion

If f € IN"=IN is represented by a A-term F and
g € IN"T2-1N is represented by a A-term G,

we want to show A-definability of the unique
h € N"t'SIN satisfying | h = @y (h)

where ® ¢, € (N"T1-IN)—(IN"T'-IN) is given by

®.(h)(d,a) =if a=0 then f(d)
else ¢g(d,a —1,h(d,a — 1))
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Representing primitive recursion

If f € IN"=IN is represented by a A-term F and
g € IN"T2-1N is represented by a A-term G,

we want to show A-definability of the unique
h € N"t'SIN satisfying | h = @y (h)

where ® ¢, € (N"T1-IN)— (IN"T'-IN) is given by. . .
Strategy:

> show that @, is A-definable;

» show that we can solve fixed point equations
X = M X | up to B-conversion in the A-calculus.
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Representing booleans

True = Axy.x
False = Axy.y
If = Afxy.fxy

satisfy

» If TrueM N =g TrueM N =g M
» If False M N =3 False M N =g N

L11
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Representing test-for-zero

Eq, = Ax.x(Ay.False) True ]
satisfies
» Eqy0 =g 0(Ay.False) True
=B True

» Eqyn+1 =g n41(Ay.False) True
=z (Ay.False)"™! True
=g (Ay.False)((Ay. False)” True)
—g False
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Representing predecessor

Want A-term Pred satisfying

Predn+1 =g n
PredQ B Q

Have to show how to reduce the “n 4+ 1-iterator” n + 1 to the
“n-iterator” n.

Idea: given f, iterating the function
gr: (v y) — (f(x), x)

n + 1 times starting from (x, x) gives the pair (f**1(x), f*(x)). So
we can get f"(x) from f"t1(x) parametrically in f and x, by building
gr from f, iterating n + 1 times from (x,x) and then taking the
second component.

Hence. ..
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Representing ordered pairs

Pair = Axvyf.fxy
Fst = Af.f True
Snd = Af. fFalse

satisfy
> Fst(PairM N) =g Fst(Af.f M N)
=g (Af.f M N) True
=g True M N
> Snd(PairMN) =g-:-- =4 N

L11
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Representing predecessor

Want A-term Pred satisfying

Predn+1 =4 n

Predg —B Q

Pred = Ay f x.Snd(y (G f) (Pair x x))

where

G = Af p.Pair(f(Fst p))(Fst p)

has the required fB-reduction properties.
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Representing primitive recursion

If f € IN"=IN is represented by a A-term F and
g € IN"T2-1N is represented by a A-term G,

we want to show A-definability of the unique
h € N"t'SIN satisfying | h = @y (h)

where ® ¢, € (N"T1-IN)—(IN"T'-IN) is given by

®.(h)(d,a) =if a=0 then f(d)
else ¢g(d,a —1,h(d,a — 1))
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Representing primitive recursion

If f € IN"=IN is represented by a A-term F and
g € IN"T2-1N is represented by a A-term G,

we want to show A-definability of the unique
h € N"t'SIN satisfying | h = @y (h)

where ® ¢, € (N"T1-IN)— (IN"T'-IN) is given by. . .
Strategy:

%;\show that @, is A—defina@
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