
Universal register machine, U

L4 41



High-level specification

Universal RM U carries out the following computation,
starting with R0 = 0, R1 = e (code of a program), R2 = a
(code of a list of arguments) and all other registers zeroed:

◮ decode e as a RM program P

◮ decode a as a list of register values a1, . . . , an

◮ carry out the computation of the RM program P
starting with R0 = 0, R1 = a1, . . . , Rn = an (and any
other registers occurring in P set to 0).

L4 42



Mnemonics for the registers of U and the role they play in
its program:

R1 ≡ P code of the RM to be simulated

R2 ≡ A code of current register contents of simulated RM

R3 ≡ PC program counter—number of the current instruction
(counting from 0)

R4 ≡ N code of the current instruction body

R5 ≡ C type of the current instruction body

R6 ≡ R current value of the register to be incremented or
decremented by current instruction (if not HALT)

R7 ≡ S, R8 ≡ T and R9 ≡ Z are auxiliary registers.

L4 43



Overall structure of U’s program

1 copy PCth item of list in P to N (halting if PC > length
of list); goto 2

2 if N = 0 then copy 0th item of list in A to R0 and halt,
else (decode N as 〈〈y, z〉〉; C ::= y; N ::= z; goto 3 )

{at this point either C = 2i is even and current instruction is R
+
i � Lz,

or C = 2i + 1 is odd and current instruction is R
−
i � Lj, Lk where z = 〈j, k〉}

3 copy ith item of list in A to R; goto 4

4 execute current instruction on R; update PC to next
label; restore register values to A; goto 1

L4 44



Overall structure of U’s program

1 copy PCth item of list in P to N (halting if PC > length
of list); goto 2

2 if N = 0 then copy 0th item of list in A to R0 and halt,
else (decode N as 〈〈y, z〉〉; C ::= y; N ::= z; goto 3 )

{at this point either C = 2i is even and current instruction is R
+
i � Lz,

or C = 2i + 1 is odd and current instruction is R
−
i � Lj, Lk where z = 〈j, k〉}

3 copy ith item of list in A to R; goto 4

4 execute current instruction on R; update PC to next
label; restore register values to A; goto 1

To implement this, we need RMs for manipulating (codes of) lists of
numbers. . .

L4 44



The program START→ S ::= R→HALT

to copy the contents of R to S can be implemented by

START S− R− Z− HALT

Z+ R+

S+

L4 45



The program START→ S ::= R→HALT

to copy the contents of R to S can be implemented by

START S− R− Z− HALT

Z+ R+

S+

L4 45



The program START→ S ::= R→HALT

to copy the contents of R to S can be implemented by

START S− R− Z− HALT

Z+ R+

S+

L4 45



The program START→ S ::= R→HALT

to copy the contents of R to S can be implemented by

START S− R− Z− HALT

Z+ R+

S+

L4 45



The program START→ S ::= R→HALT

to copy the contents of R to S can be implemented by

START S− R− Z− HALT

Z+ R+

S+

precondition:
R = x
S = y
Z = 0

postcondition:
R = x
S = x
Z = 0

L4 45



The program START→ push X

to L
→HALT

to carry out the assignment (X, L) ::= (0, X :: L) can be
implemented by

2X(2L + 1)

START Z+ L− Z− X− HALT

Z+ L+

L4 46



The program START→ push X

to L
→HALT

to carry out the assignment (X, L) ::= (0, X :: L) can be
implemented by

START Z+ L− Z− X− HALT

Z+ L+

L4 46



The program START→ push X

to L
→HALT

to carry out the assignment (X, L) ::= (0, X :: L) can be
implemented by

START Z+ L− Z− X− HALT

Z+ L+

L4 46



The program START→ push X

to L
→HALT

to carry out the assignment (X, L) ::= (0, X :: L) can be
implemented by

START Z+ L− Z− X− HALT

Z+ L+

precondition:
X = x
L = ℓ

Z = 0

postcondition:
X = 0
L = 〈〈x, ℓ〉〉 = 2x(2ℓ+ 1)
Z = 0

L4 46



The program START→ pop L

to X

→HALT

։EXIT
specified by

“if L = 0 then (X ::= 0; goto EXIT) else
let L = 〈〈x, ℓ〉〉 in (X ::= x; L ::= ℓ; goto HALT)”

can be implemented by

START X+ HALT

X− L− L+ L− Z− Z−

EXIT Z+ L+

L4 47



START X+ HALT

X− L− L+ L− Z− Z−

EXIT Z+ L+

L4 47



START X+ HALT

X− L− L+ L− Z− Z−

EXIT Z+ L+

L4 47



The program START→ pop L

to X

→HALT

։EXIT
specified by

“if L = 0 then (X ::= 0; goto EXIT) else
let L = 〈〈x, ℓ〉〉 in (X ::= x; L ::= ℓ; goto HALT)”

can be implemented by

START X+ HALT

X− L− L+ L− Z− Z−

EXIT Z+ L+

L4 47



Overall structure of U’s program

1 copy PCth item of list in P to N (halting if PC > length
of list); goto 2

2 if N = 0 then copy 0th item of list in A to R0 and halt,
else (decode N as 〈〈y, z〉〉; C ::= y; N ::= z; goto 3 )

{at this point either C = 2i is even and current instruction is R
+
i � Lz,

or C = 2i + 1 is odd and current instruction is R
−
i � Lj, Lk where z = 〈j, k〉}

3 copy ith item of list in A to R; goto 4

4 execute current instruction on R; update PC to next
label; restore register values to A; goto 1

L4 48



The program for U
START HALT

push 0

to A
T ::= P

pop T

to N

pop A

to R0

PC− pop N

to C

pop S

to R

push R

to A
PC ::= N R+ C− pop A

to R

R− pop N

to PC
N+ C− push R

to S

L4 49



The program for U
START HALT

push 0

to A
T ::= P

pop T

to N

pop A

to R0

PC− pop N

to C

pop S

to R

push R

to A
PC ::= N R+ C− pop A

to R

R− pop N

to PC
N+ C− push R

to S

L4 49



The program for U
START HALT

push 0

to A
T ::= P

pop T

to N

pop A

to R0

PC− pop N

to C

pop S

to R

push R

to A
PC ::= N R+ C− pop A

to R

R− pop N

to PC
N+ C− push R

to S

L4 49



The program for U
START HALT

push 0

to A
T ::= P

pop T

to N

pop A

to R0

PC− pop N

to C

pop S

to R

push R

to A
PC ::= N R+ C− pop A

to R

R− pop N

to PC
N+ C− push R

to S

L4 49



The program for U
START HALT

push 0

to A
T ::= P

pop T

to N

pop A

to R0

PC− pop N

to C

pop S

to R

push R

to A
PC ::= N R+ C− pop A

to R

R− pop N

to PC
N+ C− push R

to S

L4 49


