
The halting problem

L5 50

Definition. A register machine H decides the Halting
Problem if for all e, a1, . . . , an ∈ N, starting H with

R0 = 0 R1 = e R2 = ![a1, . . . , an]"

and all other registers zeroed, the computation of H always
halts with R0 containing 0 or 1; moreover when the
computation halts, R0 = 1 if and only if

the register machine program with index e eventually halts
when started with R0 = 0, R1 = a1, . . . , Rn = an and all
other registers zeroed.

L5 51

Definition. A register machine H decides the Halting
Problem if for all e, a1, . . . , an ∈ N, starting H with

R0 = 0 R1 = e R2 = ![a1, . . . , an]"

and all other registers zeroed, the computation of H always
halts with R0 containing 0 or 1; moreover when the
computation halts, R0 = 1 if and only if

the register machine program with index e eventually halts
when started with R0 = 0, R1 = a1, . . . , Rn = an and all
other registers zeroed.

Theorem. No such register machine H can exist.

L5 51

Proof of the theorem
Assume we have a RM H that decides the Halting Problem
and derive a contradiction, as follows:

Let H′ be obtained from H by replacing START→ by

START→ Z ::= R1→ push Z

to R2
→

(where Z is a register not mentioned in H’s program).

Let C be obtained from H′ by replacing each HALT (&
each erroneous halt) by R−0 R+

0

HALT

.

Let c ∈ N be the index of C’s program.

L5 52

Proof of the theorem
Assume we have a RM H that decides the Halting Problem
and derive a contradiction, as follows:

C started with R1 = c eventually halts
if & only if

H′ started with R1 = c halts with R0 = 0

L5 52

Proof of the theorem
Assume we have a RM H that decides the Halting Problem
and derive a contradiction, as follows:

C started with R1 = c eventually halts
if & only if

H′ started with R1 = c halts with R0 = 0
if & only if

H started with R1 = c, R2 = ![c]" halts with R0 = 0

L5 52

Proof of the theorem
Assume we have a RM H that decides the Halting Problem
and derive a contradiction, as follows:

C started with R1 = c eventually halts
if & only if

H′ started with R1 = c halts with R0 = 0
if & only if

H started with R1 = c, R2 = ![c]" halts with R0 = 0
if & only if

prog(c) started with R1 = c does not halt

L5 52

Proof of the theorem
Assume we have a RM H that decides the Halting Problem
and derive a contradiction, as follows:

C started with R1 = c eventually halts
if & only if

H′ started with R1 = c halts with R0 = 0
if & only if

H started with R1 = c, R2 = ![c]" halts with R0 = 0
if & only if

prog(c) started with R1 = c does not halt
if & only if

C started with R1 = c does not halt

L5 52

Proof of the theorem
Assume we have a RM H that decides the Halting Problem
and derive a contradiction, as follows:

C started with R1 = c eventually halts
if & only if

H′ started with R1 = c halts with R0 = 0
if & only if

H started with R1 = c, R2 = ![c]" halts with R0 = 0
if & only if

prog(c) started with R1 = c does not halt
if & only if

C started with R1 = c does not halt
—contradiction!

L5 52

Computable functions
Recall:
Definition. f ∈ Nn

⇀N is (register machine)
computable if there is a register machine M with at least
n + 1 registers R0, R1, . . . , Rn (and maybe more)
such that for all (x1, . . . , xn) ∈ Nn and all y ∈ N,

the computation of M starting with R0 = 0,
R1 = x1, . . . , Rn = xn and all other registers set
to 0, halts with R0 = y

if and only if f(x1, . . . , xn) = y.

Note that the same RM M could be used to compute a unary function
(n = 1), or a binary function (n = 2), etc. From now on we will
concentrate on the unary case. . .

L5 53

Enumerating computable functions

For each e ∈ N, let ϕe ∈ N⇀N be the unary partial
function computed by the RM with program prog(e). So
for all x, y ∈ N:

ϕe(x) = y holds iff the computation of prog(e) started
with R0 = 0, R1 = x and all other registers zeroed
eventually halts with R0 = y.

Thus
e %→ ϕe

defines an onto function from N to the collection of all
computable partial functions from N to N.

L5 54

Enumerating computable functions

For each e ∈ N, let ϕe ∈ N⇀N be the unary partial
function computed by the RM with program prog(e). So
for all x, y ∈ N:

ϕe(x) = y holds iff the computation of prog(e) started
with R0 = 0, R1 = x and all other registers zeroed
eventually halts with R0 = y.

Thus
e %→ ϕe

defines an onto function from N to the collection of all
computable partial functions from N to N.

L5 54

An uncomputable function
Let f ∈ N⇀N be the partial function with graph
{(x, 0) | ϕx(x)↑}.

Thus f(x) =

{

0 if ϕx(x)↑

undefined if ϕx(x)↓

L5 55

An uncomputable function
Let f ∈ N⇀N be the partial function with graph
{(x, 0) | ϕx(x)↑}.

Thus f(x) =

{

0 if ϕx(x)↑

undefined if ϕx(x)↓

f is not computable, because if it were, then f = ϕe for some e ∈ N

and hence

if ϕe(e)↑, then f(e) = 0 (by def. of f); so ϕe(e) = 0 (since
f = ϕe), hence ϕe(e)↓

if ϕe(e)↓, then f(e)↓ (since f = ϕe); so ϕe(e)↑ (by def. of f)

—contradiction! So f cannot be computable.

L5 55

(Un)decidable sets of numbers

Given a subset S ⊆ N, its characteristic function

χS ∈ N!N is given by: χS(x) $

{

1 if x ∈ S

0 if x /∈ S.

L5 56

(Un)decidable sets of numbers
Definition. S ⊆ N is called (register machine) decidable if
its characteristic function χS ∈ N!N is a register machine
computable function. Otherwise it is called undecidable.

So S is decidable iff there is a RM M with the property: for all x ∈ N,

M started with R0 = 0, R1 = x and all other registers zeroed eventually

halts with R0 containing 1 or 0; and R0 = 1 on halting iff x ∈ S.

L5 56

(Un)decidable sets of numbers
Definition. S ⊆ N is called (register machine) decidable if
its characteristic function χS ∈ N!N is a register machine
computable function. Otherwise it is called undecidable.

So S is decidable iff there is a RM M with the property: for all x ∈ N,

M started with R0 = 0, R1 = x and all other registers zeroed eventually

halts with R0 containing 1 or 0; and R0 = 1 on halting iff x ∈ S.

Basic strategy: to prove S ⊆ N undecidable, try to show that
decidability of S would imply decidability of the Halting Problem.

For example. . .

L5 56

Claim: S0 $ {e | ϕe(0)↓} is undecidable.

Proof (sketch): Suppose M0 is a RM computing χS0. From M0’s
program (using the same techniques as for constructing a universal
RM) we can construct a RM H to carry out:

let e = R1 and ![a1, . . . , an]" = R2 in
R1 ::= !(R1 ::= a1) ; · · · ; (Rn ::= an) ; prog(e)" ;

R2 ::= 0 ;
run M0

Then by assumption on M0, H decides the Halting
Problem—contradiction. So no such M0 exists, i.e. χS0 is
uncomputable, i.e. S0 is undecidable.

L5 57

Claim: S0 $ {e | ϕe(0)↓} is undecidable.

Proof (sketch): Suppose M0 is a RM computing χS0. From M0’s
program (using the same techniques as for constructing a universal
RM) we can construct a RM H to carry out:

let e = R1 and ![a1, . . . , an]" = R2 in
R1 ::= !(R1 ::= a1) ; · · · ; (Rn ::= an) ; prog(e)" ;

R2 ::= 0 ;
run M0

Then by assumption on M0, H decides the Halting
Problem—contradiction. So no such M0 exists, i.e. χS0 is
uncomputable, i.e. S0 is undecidable.

L5 57

Claim: S0 $ {e | ϕe(0)↓} is undecidable.

Proof (sketch): Suppose M0 is a RM computing χS0. From M0’s
program (using the same techniques as for constructing a universal
RM) we can construct a RM H to carry out:

let e = R1 and ![a1, . . . , an]" = R2 in
R1 ::= !(R1 ::= a1) ; · · · ; (Rn ::= an) ; prog(e)" ;

R2 ::= 0 ;
run M0

Then by assumption on M0, H decides the Halting
Problem—contradiction. So no such M0 exists, i.e. χS0 is
uncomputable, i.e. S0 is undecidable.

L5 57

Claim: S1 $ {e | ϕe a total function} is undecidable.

Proof (sketch): Suppose M1 is a RM computing χS1. From M1’s
program we can construct a RM M0 to carry out:

let e = R1 in R1 ::= !R1 ::= 0 ; prog(e)" ;
run M1

Then by assumption on M1, M0 decides membership of S0 from
previous example (i.e. computes χS0)—contradiction. So no such M1

exists, i.e. χS1 is uncomputable, i.e. S1 is undecidable.

L5 58

Claim: S1 $ {e | ϕe a total function} is undecidable.

Proof (sketch): Suppose M1 is a RM computing χS1. From M1’s
program we can construct a RM M0 to carry out:

let e = R1 in R1 ::= !R1 ::= 0 ; prog(e)" ;
run M1

Then by assumption on M1, M0 decides membership of S0 from
previous example (i.e. computes χS0)—contradiction. So no such M1

exists, i.e. χS1 is uncomputable, i.e. S1 is undecidable.

L5 58

