
Concurrent systems  
Lecture 1: Introduction to concurrency, threads, 

and mutual exclusion

 
Michaelmas 2018

Dr Anil Madhavapeddy and  
Dr. Richard Mortier

(With thanks to Dr Robert N.M. Watson  
and Dr Steven Hand)

J1

Concurrent and distributed systems

• One course, two parts
– 8 lectures on concurrent systems
– 8 further lectures of distributed systems

• Similar interests and concerns:
– Scalability given parallelism and distributed systems
– Mask local or distributed communications latency
– Importance in observing (or enforcing) execution orders
– Correctness in the presence of concurrency (+debugging)

• Important differences
– Underlying primitives: shared memory vs. message passing
– Distributed systems experience communications failure
– Distributed systems (may) experience unbounded latency
– (Further) difficulty of distributed time

J2

Concurrent systems outline

1. Introduction to concurrency, threads, and mutual
exclusion

2. More mutual exclusion, semaphores, producer-
consumer, and MRSW

3. CCR, monitors, concurrency in practice
4. Safety and liveness
5. Concurrency without shared data; transactions
6. Further transactions
7. Crash recovery; lock free programming; TM
8. Concurrent systems case study: FreeBSD Kernel

J3

Recommended reading

• “Operating Systems, Concurrent and Distributed
Software Design“, Jean Bacon and Tim Harris,
Addison-Wesley 2003

• “Modern Operating Systems”, (3rd Ed), Andrew
Tannenbaum, Prentice-Hall 2007

• “Java Concurrency in Practice”, Brian Goetz and
others, Addison-Wesley 2006

Throughout the term, I will suggest you look in Bacon
and Harris for more detailed explanations of
algorithms, as I can only present sketches in lecture.

J4

What is concurrency?

• Computers appear to do many things at once
– E.g. running multiple programs on your laptop
– E.g. writing back data buffered in memory to the hard disk while

the program(s) continue to execute

• In the first case, this may actually be an illusion
– E.g. processes time sharing a single CPU

• In the second, there is true parallelism
– E.g. Direct Memory Access (DMA) transfers data between

memory and I/O devices (e.g., NIC, SATA) at the same time as the
CPU executes code

– E.g., two CPUs execute code at the same time

• In both cases, we have a concurrency
– Many things are occurring “at the same time”

J5

In this course we will

• Investigate concurrency in computer systems
– Processes, threads, interrupts, hardware

• Consider how to control concurrency
– Mutual exclusion (locks, semaphores), condition

synchronization, lock-free programming

• Learn about deadlock, livelock, priority inversion
– And prevention, avoidance, detection, recovery

• See how abstraction can provide support for correct &
fault-tolerant concurrent execution
– Transactions, serialisability, concurrency control

• Explore a detailed concurrent software case study
• Later, we will extend these ideas to distributed systems

J6

Recall: Processes and threads

• Processes are instances of programs in execution
– OS unit of protection & resource allocation
– Has a virtual address space; and one or more threads

• Threads are entities managed by the scheduler
– Represents an individual execution context
– A thread control block (TCB) holds the saved context (registers,

including stack pointer), scheduler info, etc

• Threads run in the address spaces of their process
– (and also in the kernel address space on behalf of user code)

• Context switches occur when the OS saves the state of one
thread and restores the state of another
– If a switch is between threads in different processes, then process

state is also switched – e.g., the address space

J7

Concurrency with a single CPU (1)

• Process / OS concurrency
– Process X runs for a while (until blocks or interrupted)

– OS runs for a while (e.g. does some TCP processing)

– Process X resumes where it left off…

• Inter-process concurrency
– Process X runs for a while; then OS; then Process Y; then

OS; then Process Z; etc

• Intra-process concurrency
– Process X has multiple threads X1, X2, X3, …

– X1 runs for a while; then X3; then X1; then X2; then …

J8

Concurrency with a single CPU (2)

• With just one CPU, can think of concurrency as
interleaving of different executions, e.g.

Proc(A) OS Proc(B) Proc(C) Proc(A)OS Proc(B) OS OS

time

timer interrupt disk interrupt system call page fault

• Exactly where execution is interrupted and resumed is not
usually known in advance…

• this makes concurrency challenging!
• Generally should assume worst case behavior

J9Non-deterministic or so complex as to be unpredictable

Concurrency with multiple processors

• Many modern systems have multiple CPUs
– And even if don’t, have other processing elements

• Hence things can occur in parallel, e.g.

Proc(A) OS Proc(B) Proc(C)

Proc(A)

OS Proc(B) OS OS

time

CPU0

CPU1 Proc(A)OS Proc(D)Proc(C) OS

• Notice that the OS runs on both CPUs: tricky!

• More generally can have different threads of the
same process executing on different CPUs too

J10

OS

What might this code do?

J11

void main(void) {
 threadid_t threads[NUMTHREADS]; // Thread IDs
 int i; // Counter

 for (i = 0; i < NUMTHREADS; i++)
 threads[i] = thread_create(threadfn, i);

 for (i = 0; i < NUMTHREADS; i++)
 thread_join(threads[i]);
}

void threadfn(int threadnum) {
 sleep(rand(2)); // Sleep 0 or 1 seconds
 printf(“%s %d\n”, threadstr, threadnum);
}

What orders could
the printfs run in?

#define NUMTHREADS 4
char *threadstr = “Thread”;

Global variables are
shared by all threads

main() is called
once at startup

Each thread has its
own local variables

Additional threads
are started explicitly

Possible orderings of this program

• What order could the printf()s occur in?

• Two sources of non-determinism in example:
– Program non-determinism: Threads randomly sleep 0 or

1 seconds before printing

– Thread scheduling non-determinism: Arbitrary order for
unprioritised, concurrent wakeups, preemptions

• There are 4! (factorial) valid permutations
– Assuming printf() is indivisible

– Is printf() indivisible? Maybe.

• Even more potential timings of printf()s

J12

Multiple threads within a process
• A single-threaded process has code,

a heap, a stack, registers

• Additional threads have their own
registers and stacks

– Per-thread program counters ($pc)
allow execution flows to differ

– Per-thread stack pointers ($sp) allow
call stacks, local variables to differ

• Heap and code (+global variables)
are shared between all threads

• Access to another thread’s stack is
possible in some languages – but
deeply discouraged! J13

Code

Process
address
space

Heap

Thread 1
registers

$pc

$t0

$sp

$a0

$a1

Stack

Thread 2
registers

$pc

$t0

$sp

$a0

$a1

Stack

1:N - user-level threading
• Kernel only knows about (and

schedules) processes
• A userspace library implements

threads, context switching,
scheduling, synchronisation, …
– E.g., the JVM or a threading library

• Advantages
– Lightweight creation/termination +

context switch; application-specific
scheduling; OS independence

• Disadvantages
– Awkward to handle blocking system

calls or page faults, preemption;
cannot use multiple CPUs

• Very early 1990s!

J14

Kernel

P1
P2

CPU 1 CPU 2

P1
T1 T2

T3

1:1 - kernel-level threading

• Kernel provides threads directly
– By default, a process has one thread…
– … but can create more via system calls

• Kernel implements threads, thread
context switching, scheduling, etc.

• Userspace thread library 1:1 maps user
threads into kernel threads

• Advantages:
– Handles preemption, blocking syscalls
– Straightforward to use multiple CPUs

• Disadvantages:
– Higher overhead (trap to kernel); less

flexible; less portable

• Model of choice across major OSes
– Windows, Linux, MacOS, FreeBSD, Solaris,

…
J15

Kernel

P1

CPU 1 CPU 2

P1 T1

T2

T3

Kernel

P1

CPU 1 CPU 2

P1

T1

T2

T3
T2

M:N - hybrid threading
• Best of both worlds?

– M:N threads, scheduler activations, …

• Kernel exposes a smaller number (M) of
activations – typically 1:1 with CPUs

• Userspace schedules a larger number (N) of
threads onto available activations
– Kernel upcalls when a thread blocks, returning

the activation to userspace
– Kernel upcalls when a thread wakes up,

userspace schedules it on an activation
– Kernel controls maximum parallelism by

limiting number of activations

• Removed from most OSes – why?
• Now: Virtual Machine Monitors (VMMs)

– Each Virtual CPU (VCPU) is an activation

• Reappears in concurrency frameworks
– E.g., Apple’s Grand Central Dispatch (GCD)

J16

Advantages of concurrency

• Allows us to overlap computation and I/O on a
single machine

• Can simplify code structuring and/or improve
responsiveness
– E.g. one thread redraws the GUI, another handles user

input, and another computes game logic

– E.g. one thread per HTTP request

– E.g. background GC thread in JVM/CLR

• Enables the seamless (?!) use of multiple CPUs –
greater performance through parallel processing

J17

Concurrent systems

• In general, have some number of processes…
– … each with some number of threads …

– … running on some number of computers…

– … each with some number of CPUs.

• For this half of the course we’ll focus on a single
computer running a multi-threaded process
– most problems & solutions generalize to multiple

processes, CPUs, and machines, but more complex

– (we’ll look at distributed systems later in the term)

• Challenge: threads will access shared resources
concurrently via their common address space

J18

Example: Housemates Buying Beer

• Thread 1 (person 1)
1. Look in fridge

2. If no beer, go buy beer

3. Put beer in fridge

• In most cases, this works just fine…

• But if both people look (step 1) before either refills the
fridge (step 3)… we’ll end up with too much beer!

• Obviously more worrying if “look in fridge” is “check
reactor”, and “buy beer” is “toggle safety system” ;-)

• Thread 2 (person 2)

1. Look in fridge

2. If no beer, go buy beer

3. Put beer in fridge

J19

Solution #1: Leave a Note

• Thread 1 (person 1)
1. Look in fridge
2. If no beer & no note

1. Leave note on fridge
2. Go buy beer
3. Put beer in fridge
4. Remove note

• Thread 2 (person 2)

1. Look in fridge

2. If no beer & no note
1. Leave note on fridge

2. Go buy beer

3. Put beer in fridge

4. Remove note

• Probably works for human beings…

• But computers are stooopid!

• Can you see the problem?

J20

Non-Solution #1: Leave a Note
// thread 1
beer = checkFridge();
if(!beer) {
 if(!note) {
 note = 1;
 buyBeer();
 note = 0;
 }
}

// thread 2
beer = checkFridge();
if(!beer) {
 if(!note) {
 note = 1;
 buyBeer();
 note = 0;
 }
}

• Easier to see with pseudo-code…
J21

Non-Solution #1: Leave a Note
// thread 1
beer = checkFridge();
if(!beer) {
 if(!note) {

 note = 1;
 buyBeer();
 note = 0;
 }
}

// thread 2

beer = checkFridge();
if(!beer) {
 if(!note) {
 note = 1;
 buyBeer();
 note = 0;

 }
}

• Easier to see with pseudo-code…

context switch

context switch

J22

Non-Solution #1: Leave a Note

• Of course this won’t happen all the time
– Need threads to interleave in the just the right way

(or just the wrong way ;-)

• Unfortunately code that is ‘mostly correct’ is
much worse than code that is ‘mostly wrong’!
– Difficult to catch in testing, as occurs rarely

–May even go away when running under debugger
• e.g. only context switches threads when they block

• (such bugs are sometimes called Heisenbugs)

J23

Critical Sections & Mutual Exclusion

• The high-level problem here is that we have two
threads trying to solve the same problem
– Both execute buyBeer() concurrently

– Ideally want only one thread doing that at a time

• We call this code a critical section
– A piece of code which should never be concurrently

executed by more than one thread

• Ensuring this involves mutual exclusion
– If one thread is executing within a critical section, all

other threads are prohibited from entering it

J24

Achieving Mutual Exclusion

• One way is to let only one thread ever execute a
particular critical section – e.g. a nominated beer
buyer – but this restricts concurrency

• Alternatively our (broken) solution #1 was trying to
provide mutual exclusion via the note
– Leaving a note means “I’m in the critical section”;

– Removing the note means “I’m done”

– But, as we saw, it didn’t work ;-)

• This was because we could experience a context
switch between reading ‘note’, and setting it

J25

Non-Solution #1: Leave a Note

J26

// thread 1
beer = checkFridge();
if(!beer) {
 if(!note) {

 note = 1;
 buyBeer();
 note = 0;
 }
}

// thread 2

beer = checkFridge();
if(!beer) {
 if(!note) {
 note = 1;
 buyBeer();
 note = 0;

 }
}

context switch

context switch

We decide to enter
the critical section

here…
But only mark the

fact here …

These problems are referred to as race
conditions in which multiple threads

“race” with one another during
conflicting access to shared resources

Atomicity

• What we want is for the checking of note and the
(conditional) setting of note to happen without any
other thread being involved
– We don’t care if another thread reads it after we’re done; or

sets it before we start our check

– But once we start our check, we want to continue without any
interruption

• If a sequence of operations (e.g. read-and-set) occur as
if one operation, we call them atomic
– Since indivisible from the point of view of the program

• An atomic read-and-set operation is sufficient for us to
implement a correct beer program

J27

Solution #2: Atomic Note
// thread 1
beer = checkFridge();
if(!beer) {
 if(read-and-set(note)) {
 buyBeer();
 note = 0;
 }
}

// thread 2
beer = checkFridge();
if(!beer) {
 if(read-and-set(note)) {
 buyBeer();
 note = 0;
 }
}

• read-and-set(&address) atomically checks the value in
memory and iff it is zero, sets it to one
– returns 1 iff the value was changed from 0 -> 1

• This prevents the behavior we saw before, and is sufficient
to implement a correct program…
– although this is not that program :-)

J28

Non-Solution #2: Atomic Note
// thread 1
beer = checkFridge();
if(!beer) {

 if(read-and-set(note)) {
 buyBeer();
 note = 0;
 }
}

// thread 2

beer = checkFridge();
if(!beer) {
 if(read-and-set(note)) {
 buyBeer();
 note = 0;

 }
}

• Our critical section doesn’t cover enough!

context switch

context switch

J29

General mutual exclusion

• We would like the ability to define a region of
code as a critical section e.g.

// thread 1
ENTER_CS();
beer = checkFridge();
if(!beer)
 buyBeer();
LEAVE_CS();

// thread 2
ENTER_CS();
beer = checkFridge();
if(!beer)
 buyBeer();
LEAVE_CS();

• This should work …

• … providing that our implementation of ENTER_CS() / LEAVE_CS() is correct

J30

Implementing mutual exclusion

• One option is to prevent context switches
– e.g. disable interrupts (for kernel threads), or set an in-

memory flag (for user threads)

• ENTER_CS() = “disable context switches”;  
LEAVE_CS() = “re-enable context switches”

• Can work but:
– Rather brute force (stops all other threads, not just those

who want to enter the critical section)

– Potentially unsafe (if disable interrupts and then sleep
waiting for a timer interrupt ;-)

– And doesn’t work across multiple CPUs
J31

Implementing mutual exclusion

• Associate a mutual exclusion lock with each
critical section, e.g. a variable L
– (must ensure use correct lock variable!)

ENTER_CS() = “LOCK(L)”  
LEAVE_CS() = “UNLOCK(L)”

• Can implement LOCK() using read-and-set():

LOCK(L) {
 while(!read-and-set(L))
 ; // do nothing
}

UNLOCK(L) {
 L = 0;
}

J32

Solution #3: mutual exclusion locks
// thread 1
LOCK(fridgeLock);
beer = checkFridge();
if(!beer)
 buyBeer();
UNLOCK(fridgeLock);

// thread 2
LOCK(fridgeLock);
beer = checkFridge();
if(!beer)
 buyBeer();
UNLOCK(fridgeLock);

• This is – finally! – a correct program
• Still not perfect

– Lock might be held for quite a long time (e.g. imagine another
person wanting to get the milk!)

– Waiting threads waste CPU time (or worse)
– Contention occurs when consumers have to wait for locks

• Mutual exclusion locks often known as mutexes
– But we will prefer this term for sleepable locks – see Lecture 2
– So think of the above as a spin lock J33

Summary + next time

• Definition of a concurrent system
• Origins of concurrency within a computer
• Processes and threads
• Challenge: concurrent access to shared resources
• Critical sections, mutual exclusion, race conditions, atomicity
• Mutual exclusion locks (mutexes)

• Next time:
– More on mutual exclusion
– Hardware support for mutual exclusion
– Semaphores for mutual exclusion, process synchronisation, and

resource allocation
– Producer-consumer relationships.

J34

Anil Madhavapeddy

