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The story so far...

* Distributed systems are hard

* Looking at simple client/server interaction,
and use of Remote Procedure Call (RPC)
— invoking methods on server over the network

— middleware generates stub code which can
marshal / unmarshal arguments and replies

— saw case study of NFS (RPC-based file system)
e Other RPC systems (e.g., DCE RPC)



Object-Oriented Middleware

e SunRPC / DCE RPC forward functions, and do not
support complex types, exceptions, or polymorphism

* Object-Oriented Middleware (OOM) arose in the early
90s to address this
— Assume programmer is writing in OO-style (and language)

— Remote objects will behave like local objects, but their
methods will be forwarded over the network a la RPC

— References to objects can be passed as arguments or
return values — e.g., passing a directory object reference

— Promote NFS’s concept of a handle into the framework

 Makes it much easier to program — especially if your
program is already object oriented!



CORBA (1989)

* First OOM system was CORBA

— Common Object Request Broker Architecture
— Specified by the OMG: Object Management Group

* OMA (Object Management Architecture) is
the general model of how objects interoperate
— Objects provide services
— Clients makes a request to an object for a service

— Client doesn’t need to know where the object is, or
anything about how the object is implemented!

— Object interface must be known (public)



Object Request Broker (ORB)

e The ORB is the core of the architecture

— Connects clients to object implementations

— Conceptually spans multiple machines (in practice,
ORB software runs on each machine)
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Invoking Objects

* Clients obtain an object reference

— Typically via the naming service or trading service
— (Object references can also be saved for use later)

* Interfaces defined by CORBA IDL
* Clients can call remote methods in 2 ways:

1. Static Invocation: using stubs built at compile time
(just like with RPC)

2. Dynamic Invocation: actual method call is created
on the fly. It is possible for a client to discover new
objects at run time and access the object’s methods



CORBA IDL

e Definition of language-independent remote interfaces
— Language mappings to C++, Java, Smalltalk, ...
— Translation by IDL compiler

* Type system

— basic types: long (32 bit), long long (64 bit), short, float,
char, boolean, octet, any, ...

— constructed types: struct, union, sequence, array, enum
— objects (common super type Object)
 Parameter passing
— in, out, inout (= send remote, modify, update)
— basic & constructed types passed by value
— objects passed by reference



CORBA Pros and Cons

* CORBA has some unique advantages
— Industry standard (OMG)
— Language & OS agnostic: mix and match

— Richer than simple RPC (e.g. interface repository,
implementation repository, DLL support, ...)

— Many additional services (trading & naming, events &
notifications, security, transactions, ...)

 However:

— Really, really complicated / ugly / buzzwordy
— Poor interoperability, at least at first
— Generally to be avoided unless you need it!



Microsoft DCOM (1996)

e An alternative to CORBA:

— MS had invested in COM (object-oriented local IPC
scheme) so didn’t fancy moving to OMA

e Service Control Manager (SCM) on each machine
responsible for object creation, invocation, ...
— Essentially a lightweight ‘ORB’
 Added remote operation using MSRPC:
— Based on DCE RPC, but extended to support objects
— Augmented IDL called MIDL: DCE IDL + objects

— Requests include interface pointer IDs (IPIDs) to
identify object & interface to be invoked



DCOM vs. CORBA

* Both are language neutral, and object-oriented
« DCOM supports objects with multiple interfaces
— but not, like CORBA, multiple inheritance of interfaces

e DCOM handles distributed garbage collection:
— remote objects are reference counted (via explicit calls)
— ping protocol handles abnormal client termination

« DCOM is widely used (e.g. SMB/CIFS, RDP, ... )

 But DCOM is MS proprietary (not standard)...
— and no support for exceptions (return-code based)..
— and lacks many of CORBAs services (e.g. trading)

* Deprecated today in favor of .NET
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Java RM|

* 1995: Sun extended Java to allow RMI
— RMI = Remote Method Invocation

* Essentially an OOM scheme for Java with clients,
servers, and an object registry

— Object registry maps from names to objects
— Supports bind()/rebind(), lookup(), unbind(), list()

 RMI was designed for Java only
— No goal of OS or language interoperability

— Hence cleaner design, tighter language integration
— E.g., distributed garbage collection
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RMI: new classes

 Remote class:
— one whose instances can be used remotely
— within home address space, a regular object

— within foreign address spaces, referenced indirectly
via an object handle

* Serializable class: [nothing to do with transactions!]

— object that can be marshalled/unmarshalled

— if a serializable object is passed as a parameter or
return value of a remote method invocation, the value
will be copied from one address space to another

— (for remote objects, only the object handle is copied)
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RMI: new classes

* Remote class:

needed for remote objects

(when passing references)
via an object handle

* Serializable class: [nothing to do with transactions!]

needed for parameters

or
(when passing data) e value

will be copied from one address space to another
— (for remote objects, only the object handle is copied)
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RMI: the big picture

lookup() bind) I remote object
cll:ent. —— implementation
application reference .

flargs)

return/exn

flargs) return/exception

marshal stream

* Registry can be on server... or one per distributed system
— client and server can find it via the LocateRegistry class

* Objects being serialized are annotated with a URL for the class
— unless they implement Remote => replaced with a remote reference
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Distributed garbage collection

 With RMI, can have local & remote object references
scattered around a set of machines

e Build distributed garbage collection over local GC:
— When a server exports object O, it creates a skeleton S[O]

— When a client obtains a remote reference to O, it creates a
proxy object P[O], and remotely invokes dirty(O)

— Local GC will track the liveness of P[O]; when it is locally
unreachable, client remotely invokes clean(O)

— If server notices no remote references, can free S[O]
— If S[O] was last reference to O, then it too can be freed

* Like DCOM, server removes a reference if it doesn’t
hear from that client for a while (default 10 mins)
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OOM: summary

e OOM enhances RPC with objects
— types, interfaces, exceptions, ...

e Seen CORBA, DCOM and Java RMI

— All plausible, and all still used today

— CORBA most general (language and OS agnostic),
but also the most complex: design by committee

— DCOM is MS-only; being phased out for .NET

— Java RMI decent starting point for simple
distributed systems... but lacks many features

— (EJB is a modern CORBA/RMI/<stuff> megalith)



XML-RPC

* Systems seen so far all developed by large
industry, and work fine in the local area...

— But don’t (or didn’t) do well through firewalls ;-)

* |[n 1998, Dave Winer developed XML-RPC

— Use XML to encode method invocations (method
names, parameters, etc)

— Use HTTP POST to invoke; response contains the
result, also encoded in XML

— Looks like a regular web session, and so works fine
with firewalls, NAT boxes, transparent proxies, ...



XML-RPC example

XML-RPC Request XML-RPC Response
<?xml version="1.0"7?> <?xml version="1.0"7?>
<methodCall> <methodResponse>
<methodName>util.InttoString</methodName> <params>
<params> <param>
<param> <value><string>Fifty Five</string></value>
<value><i4>55</i4></value> </param>
</param> </params>

</params> </methodResponse>
</methodCall>

e Client side names method (as a string), and lists
parameters, tagged with simple types

e Server receives message (via HTTP), decodes,
performs operation, and replies with similar XML

* |nefficient & weakly typed... but simple, language
agnostic, extensible, and eminently practical!



SOAP & web services

e XML-RPC was a victim of its own success
« WWW consortium decided to embrace it, extend
it, and generally complify it up

— SOAP (Simple Object Access Protocol) is basically
XML-RPC, but with more XML bits

— Support for namespaces, user-defined types, multi-
hop messaging, recipient specification, ...

— Also allows transport over SMTP (!), TCP & UDP
 SOAP is part of the Web Services world
— As complex as CORBA, but with more XML ;-)
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Moving away from RPC

SOAP 1.2 defined in 2003

— Less focus on RPC, and more on moving XML
messages from A to B (perhaps via C & D)

One major problem with all RPC schemes is that
they were synchronous:

— Client is blocked until server replies

— Poor responsiveness, particularly in wide area

2006 saw introduction of AJAX
— Asynchronous Javascript with XML

— Chief benefit: can update web page without reloading

Examples: Google Maps, Gmail, Google Docs, ...
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Representational State Transfer (REST)

e AJAX still does RPC (just asynchronously)

* |s a procedure call / method invocation really the
best way to build distributed systems?

* Representational State Transfer (REST) is an
alternative ‘paradigm’ (or a throwback?)
— Resources have a name: URL or URI

— Manipulate them via POST (create), GET (select),
PUT (create/overwrite), and DELETE (delete)

— More recently added: PATCH (partial update in place)
— Send state along with operations

* Very widely used today (Amazon, Flickr, Twitter)
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Client-server interaction: summary

e Server handles requests from client

— Simple request/response protocols (like HTTP)
useful, but lack language integration

— RPC schemes (SunRPC, DCE RPC) address this

— OOM schemes (CORBA, DCOM, RMI) extend RPC
to understand objects, types, interfaces, exns, ...

 Recent WWW developments move away from
traditional RPC/RMI:

— Avoid explicit IDLs since can slow evolution
— Enable asynchrony, or return to request/response



Clocks and distributed time

e Distributed systems need to be able to:
— order events produced by concurrent processes;
— synchronize senders and receivers of messages;
— serialize concurrent accesses to shared objects; and
— generally coordinate joint activity
* This can be provided by some sort of clock:

— physical clocks keep time of day
e (must be kept consistent across multiple nodes — why?)

— logical clocks keep track of event ordering
* Relativity can’t be ignored: think satellites
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Physical clock technology

e Quartz Crystal Clocks (1929)

— resonator shaped like a tuning fork
— laser-trimmed to vibrate at 32,768 Hz

— standard resonators accurate to 6ppm at 31°C... so
will gain/lose around 0.5 seconds per day

— stability better than accuracy (about 2s/month)
— best resonators get accuracy of ~1s in 10 years

* Atomic clocks (1948)
— count transitions of the cesium 133 atom
—9,192,631,770 periods defined to be 1 second
— accuracy is better than 1 second in 6 million years...



Coordinated Universal Time (UTC)

* Physical clocks provide ticks but we want to know
the actual time of day

— determined by astronomical phenomena

e Several variants of universal time
— UTO0: mean solar time on Greenwich meridian

— UT1: UTO corrected for polar motion; measured via
observations of quasars, laser ranging, & satellites

— UT2: UT1 corrected for seasonal variations

— UTC: civil time, tracked using atomic clocks, but kept
within 0.9s of UT1 by occasional leap seconds
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Computer clocks

e Typically have a Real-Time Clock (RTC)
— CMOS clock driven by a quartz oscillator
— battery-backed so continues when power is off
* Also have range of other clocks (PIT, ACPI,
HPET, TSC, ...), mostly higher frequency
— free running clocks driven by quartz oscillator
— mapped to real time by OS at boot time

— programmable to generate interrupts after some
number of ticks (~= some amount of real time)
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Operating-system use of clocks

e (OSes use time for many things
— Periodic events — e.g., time sharing, statistics, at, cron
— Local I/O functions — e.g., peripheral timeouts; entropy
— Network protocols — e.g., TCP DELACK, retries, keep-alive
— Cryptographic certificate/ticket generation, expiration
— Performance profiling and sampling features
* Ticks trigger interrupts
— Historically, timers at fixed intervals (e.g., 100Hz)
— Now, tickless: timer reprogrammed for next event
— Saves energy, CPU resources — especially as cores scale up

Which of these require physical time vs logical time? What will happen to

each if the real-time clock drifts or steps due to synchronization?



Summary + next time (!)

* Object-Oriented Middleware (OOM)
— CORBA, DCOM, RMI, XML-RPC, SOAP, REST

 Clocks and distributed time

— Physical clock technology, UTC
— What clocks in computers are for...

* More on physical time
* Time synchronization

* Ordering
— The “happens-before” relation
— Logical and vector clocks
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